
Migrating, Managing, and Booting
Cray XC and CMC/eLogin

Jeff Keopp, Joel Landsteiner, Harold Longley
Cray Inc.

Agenda

● Introduction to SMW/CLE system management
● New system management features since UP01
● Best practices for using Ansible
● Troubleshooting XC system booting problems
● Migrating SMW/CLE software from 7.2/5.2 to 8.0/6.0
● Intro to CMC/eLogin system management
● Migrating CIMS/CDL to CMC/eLogin
● CLE Boot Performance and Reliability
● Q & A

CUG 2017 Copyright 2017 Cray Inc.
2

Introduction to SMW/CLE system management

● Cray XC System
● Management features
● Management of software images
● Configuration Management Framework
● Node to image mapping
● Boot process (software plus configuration)

CUG 2017 Copyright 2017 Cray Inc.
3

Cray XC System

Blower cabinet Compute cabinets
EMI/RFI filter
on both inlet (left side)
and outlet (right side)

Blower cabinet Compute cabinets

CUG 2017 Copyright 2017 Cray Inc.
4

Compute
Blade
4 Nodes
Service (I/O)
Blade
2 or 4 Nodes

Chassis
Rank 1
Network
16 Compute
Blades
No Cables
64 Compute
Nodes

Group
Rank 2
Network
Passive
Electrical
Network
2 Cabinets
6 Chassis
384 Compute
Nodes

System
Rank 3
Network
Active
Optical
Network
Hundreds of
Cabinets
Up to 10s of
thousands of
nodes

Cray XC System Building Blocks

CUG 2017 Copyright 2017 Cray Inc.
5

Identifying Components
● System components are labeled according to physical ID (HSS

Identification), node ID, IP address, or class
Component Format Description
System s0, p0 all All components attached to the SMW.

Cabinet cX-Y Cabinet number and row; this is the cabinet controller (CC) host
name.

Chassis cX-Yc# Physical chassis in cabinet: 0, 1, 2. Chassis are numbered from
bottom to top.

Blade or slot cX-Yc#s# Physical blade slot in chassis:0 – 15, numbered from lower left to
upper right; this is the Blade controllers (BC) hosts name.

Node cX-Yc#s#n# Node on a blade: 0 - 3 for compute blades 1 and 2 for I/O blades

Aries ASIC cX-Yc#s#a# Cray Aries ASIC on a blade: always 0
Link cX-Yc#s#a#l# Link port of a Aries ASIC: 00 – 57 (octal)

CUG 2017 Copyright 2017 Cray Inc.
6

System Management Workstation (SMW)
● SMW is the single point of control for the HSS and system administration

● Used by operators, administrators and service personnel
● Management of daily operations (booting, halting, and dumping), installing software, system

configuration, administration, and diagnosing system faults
● Ethernet connections:

● site-admin (Customer) network
● HSS (Hardware Supervisory System) network
● Admin network (boot and SDB nodes)
● With optional SMW High Availability software (SMW HA)

● 2 heartbeat networks
● DRBD network to replicate disk for Power Management database

● Includes a Fibre Channel or SAS HBA connected to the boot RAID
● Includes iDRAC (integrated Dell Remote Access Controller) on R815 and R630 SMWs

● Remote power control
● Remote console

CUG 2017 Copyright 2017 Cray Inc.
7

Optional High Availability (HA) SMW
● Two SMWs using cluster

management software
(SuSE High Availability
Extension) in an
active/passive mode
● This allows for the passive

SMW to take over the duties
of the active SMW in the
event of a software or
hardware fault on the active
SMW

Chassis 0
Chassis 1
Chassis 2

Chassis 0
Chassis 1
Chassis 2

Chassis 0
Chassis 1
Chassis 2

Cabinet controller Cabinet controller Cabinet controller

HSS network

Active SMW Passive SMW

RAID Boot
node

site admin network

SDB
node

CUG 2017 Copyright 2017 Cray Inc.
8

Service Node Roles and Functions
● Service nodes are defined by the service they provide

● The “service” includes hardware and software components
● Service nodes can be I/O nodes or repurposed compute nodes (RCN)

● I/O Nodes are configured with Fibre Channel, InfiniBand, Ethernet, or SAS cards
● I/O Nodes could be configured with PCI SSDs in the case of DataWarp nodes

Service Node Role
Boot Tier 1 – Boots other nodes and serves images to Tier 2 nodes
SDB Tier 1 - Service Database node
Login Allows users to control their applications. Configured with a GigE or 10-GigE card
LNET Lustre Network Router – provides access to external Lustre filesystems
DVS Data Virtualization Servers used to project external file systems (NFS, GPFS, and more) to other nodes

RSIP Realm-specific IP – Provides access to external IP addresses
DataWarp DataWarp-managed nodes with SSD hardware or DataWarp API gateway nodes
WLM Nodes providing a role for workload management
DAL Direct Attached Lustre nodes (MGS, MDS, or OSS)
RCN Used for Tier 2, MOM, or MAMU nodes

CUG 2017 Copyright 2017 Cray Inc.
9

Data Virtualization Service (DVS)

CUG 2017

● Cray DVS is a distributed network service that provides transparent access to
filesystems residing on the service I/O nodes and/or remote servers in the
data center
● Projects local filesystems resident on service nodes or remote file servers to compute

and service nodes within the Cray system
● Projecting makes a filesystem available on nodes where it does not physically reside
● Uses the Linux-supplied VFS interface to process filesystem access operations
● Can project any POSIX-compliant filesystem

● Cray has extensively tested DVS with NFS™ and General Parallel File System (GPFS™)

● Represents a software layer that provides scalable transport for filesystem services
● Provides I/O performance and scalability to a large number of nodes, far beyond the typical

number of clients supported by a single NFS server
● Operating system noise and impact on compute node memory resources are both minimized in

the Cray DVS configuration

Copyright 2017 Cray Inc.
10

Cray Scalable Services
● Nodes are classified into tiers

● SoA - Server of Authority – SMW
● Tier 1 – Boot and SDB nodes
● Tier 2 – Special nodes
● Tier 3 – Clients – service and

compute nodes
● Distribute from SMW

● config sets (9P)
● zypper/yum repos

● Distribute from boot
● DVS netroot
● DVS diags
● DVS PE

● Aggregate to SMW
● LLM logging

SoA
(SMW)

tier1 servers
(boot and SDB)

tier2 servers
(repurposed compute nodes)

tier3 clients
(service and compute nodes)

CUG 2017 Copyright 2017 Cray Inc.
11

Basic System Configuration

CUG 2017

Tier 1 node
SDB node

E

E

Tier 1 node
Boot node

Compute node

Compute node

Compute node

Compute node
sdb_node_db

sdb_node_alps

boot_node_imps

boot_node_home

boot_node_nvolatile

smw_node_repos

smw_node_log

smw_node_imps

smw_node_home

smw_node_db

Lustre
file system

NF
S

SoA
SMW

Tier 2

Tier 2

Tier 2

Tier 2

Tier 2

Compute
node

Login
gateway

node

Login
gateway

node

Lustre

Lustre
LNET

or
DVS

bootRAID

Copyright 2017 Cray Inc.
12

Separate Software and Configuration

● Node Images contain [unconfigured] code
● Different images for admin, compute, service, login, DAL, …

● Config sets contain centralized configuration
● Global config set used by SMW and CLE
● CLE config set used by CLE

● Putting software and configuration together at boot
● Some configuration changes can be applied after boot

CUG 2017 Copyright 2017 Cray Inc.
13

SMW

Update
Repo

Update
Repo

Update
RepoProductProduct

Product
RepoProductProduct

Product
ISO

Image
Image

Image
Image

Recipe
Recipe

Recipe
Recipe

Node Images
● Install software

● Repositories created from
product DVDs
● Read-only
● Empty writeable update

repositories created for
future use

● Recipes installed for
default image types.

● Create images
● Create image roots from

recipes and rpm
repositories

● The resulting images are
mostly unconfigured

CUG 2017 Copyright 2017 Cray Inc.
14

SMW

Update
Repo

Update
Repo

Update
RepoProductProduct

Product
RepoProductProduct

Product
ISO

Config
Template

Config
Template

Config
Template Config

Set

Centralized Configuration
● Config Set container

● Centralized configuration
● Contains multiple configuration files, for

different areas.
● Well defined schema facilitates tools
● YAML format allows direct editing
● Other (non-YAML) content can be added

as necessary.

● Configurator tool
● Understands the schema
● Validates values, prompts for missing

content
● Allows quick updating of specific values
● Creates and consumes configuration

worksheets

● Configuration Worksheets
● For fresh installs, big changes
● Alternative display and input method
● Editable
● Import into Configurator

Config
Worksheet

CUG 2017 Copyright 2017 Cray Inc.
15

SMW

Image
Image

Image
Image

Config
Set

Admin

Compute

Login

Service

Boot Software With Configuration

CUG 2017 Copyright 2017 Cray Inc.
16

SMW

Image
Image

Image
Image

Config
Set

Admin

Compute

Login

Service

Boot Software With Configuration

● Nodes boot
unconfigured image

CUG 2017 Copyright 2017 Cray Inc.
17

SMW

Image
Image

Image
Image

Config
Set

Admin

Compute

Login

Service

Boot Software With Configuration

● Nodes boot
unconfigured image

● Early init does:
● Basic discovery of node

ID, kernel parameters,
etc.

HW Discovery

HW Discovery

HW Discovery

HW Discovery

CUG 2017 Copyright 2017 Cray Inc.
18

SMW

Image
Image

Image
Image

Config
Set

Admin

Compute

Service

Login

Config
Set

Config
Set

Config
Set

Config
Set

HW Discovery

HW Discovery

HW Discovery

HW Discovery

Boot Software With Configuration

● Nodes boot
unconfigured image

● Early init does:
● Basic discovery of node

ID, kernel parameters,
etc.

● Imports read-only config
set

CUG 2017 Copyright 2017 Cray Inc.
19

SMW

Image
Image

Image
Image

Config
Set

Admin

Compute

Service

Login

Config
Set

Config
Set

Config
Set

Config
Set

Boot Software With Configuration
● Nodes boot unconfigured

image

● Early init does:
● Basic discovery of node ID,

kernel parameters, etc.
● Imports read-only config set
● Runs Cray Ansible plays

● Ansible plays contained in
the image

● Consumes system facts from
the discovery

● Consumes config set data
● Updates /etc configuration
● Updates running system

HW Discovery

HW Discovery

HW Discovery

HW Discovery

CUG 2017 Copyright 2017 Cray Inc.
20

SMW

Image
Image

Image
Image

Config
Set

Admin

Compute

Service

Login

Config
Set

Config
Set

Config
Set

Config
Set

Boot Software With Configuration
● Nodes boot unconfigured image

● Early init does:
● Basic discovery of node ID, kernel

parameters, etc.
● Imports read-only config set
● Runs Cray Ansible plays in init

● Ansible plays contained in the image
● Consumes system facts from the

discovery
● Consumes config set data
● Updates /etc configuration
● Updates running system

● Node is booted and configured
● Normal init process starts, systemd

takes over
● Some Cray software started via

systemd
● Run Cray Ansible plays in multi-user

HW Discovery

HW Discovery

HW Discovery

HW Discovery

CUG 2017 Copyright 2017 Cray Inc.
21

SMW

Update
Repo

Update
Repo

Update
RepoProductProduct

Product
RepoProductProduct

Upgrade
ISOs

Image
Image

Image
Image

Recipe
Recipe

Recipe
Recipe

Config
Template

Config
Template

Config
Template Config

Set

Staged Upgrades
● Focus:

● Minimal downtime
● Safe: rollback possible

● Snapshots and Versions
● SMW root gets btrfs snapshot
● CLE objects are all explicitly versioned

● While running current system in
production…
● Update repositories
● Apply software to snapshots
● Build new CLE images
● Apply new configuration to config sets

● Switch to new release
● Shut down SMW and CLE system
● Reboot SMW
● Update firmware
● Refresh snapshots and config sets

where necessary
● Boot new system

● Revert if necessary

Image
Image

Image
Image

Config
Set

CUG 2017 Copyright 2017 Cray Inc.
22

Staged upgrades reduce downtime

● Create a btrfs snapshot using the snaputil command or installer
● Installation of new software happens to that snapshot

● Use snaputil to chroot into the snapshot to
● Run imgbuilder to create CLE boot images from image recipes and optionally update NIMS

map
● Update config sets using configurator (cfgset)

● Update config set for CLE without pre/post-scripts
● Update global config set without pre/post-scripts

● Use NIMS to map boot images and kernel parameters to nodes
● When ready to use the new software, use snaputil to choose snapshot

● Shutdown CLE
● Reboot SMW to the new snapshot
● Reboot cabinet and blade controllers with new HSS images
● Update cabinet and blade controller firmware and node BIOS (if needed)
● Update global and CLE config set with pre/post-scripts
● Boot CLE

CUG 2017 Copyright 2017 Cray Inc.
23

SMW

Update
Repo

Update
Repo

Update
RepoProductProduct

Product
RepoProductProduct

Patch
ISO

Image
Image

Image
Image

Recipe
Recipe

Recipe
Recipe

Config
Template

Config
Template

Config
Template Config

Set

Software Patches
● Safe

● SMW root can get btrfs snapshot
● CLE objects are explicitly versioned
● Clone global and CLE config sets

● Process:
● Patchset README, INSTALL files in

/var/opt/cray/patchsets
● Recorded in

/etc/opt/cray/release/pkginfo
● Apply rpms to update repositories
● Rebuild images and/or update

configuration
● Stage for booting
● Reboot or live update or rolling

patches, depending on the changes
● Rollback if necessary

Config
Set

Image

CUG 2017 Copyright 2017 Cray Inc.
24

Software Patches – service nodes

● Comparison of update procedures for service nodes
● Live updates (no reboot needed)

● ssh, user commands, SUSE rpms
● Warm reboot of patched service nodes

● GNI driver, RSIP, RCA driver
● System reboot (required)

● Patches that change protocols
● Patches that reboot the boot node
● IDS changes

● System reboot (recommended)
● Security patches
● DataWarp

CUG 2017 Copyright 2017 Cray Inc.
25

Live Updates

● CLE service and compute nodes have zypper or yum repositories
which use scalable services as http servers for software repos
● tier1 servers (boot node and SDB node) reference SMW
● tier2 servers reference tier1 servers
● All other nodes reference tier2 servers

● On each node use zypper or yum commands to update rpms from
those repos
● cle_node# zypper --non-interactive install python3
● cle_node# pcmd –r –n ALL_COMPUTE “zypper --non-interactive install

python3”
● dal_node# yum -y install python3

● Any rpms changed this way will disappear when the node reboots
unless the boot image is rebuilt and the node rebooted from the new
boot image.

CUG 2017 Copyright 2017 Cray Inc.
26

Rolling Patches – compute nodes

● Rolling Patch
● Provides the ability to apply a qualified patch to a set of compute

nodes without rebooting the system
● Not for service nodes

● Compute Node Patches
● Not all patches qualify

● Some may have dependencies requiring a system reboot
● Only allows for patches within a release

● Upgrades between releases still require a system reboot
● Requires the use of a workload manager (WLM)

CUG 2017 Copyright 2017 Cray Inc.
27

Rolling Patches – compute nodes

● Setup required
● Set up controlling batch queue in WLM
● Install patch RPMs into a repository on the SMW
● Create new image which contains patch
● Test patched image on some node(s)
● Use cnode to make patched image default for compute nodes
● Invoke upgrade with cnat command

● cnat (compute node administration tool) command
● Runs a batch script through a workload manager
● Ensures that it runs successfully on each specified node
● This allows administrative tasks to run on compute nodes without interfering with

user jobs
cnat [-h] [-c CONFIG] [-o OUTPUT] [-l {debug,info,warning,error,critical}]

[-n NODE_LIST | -N NODE_LIST_FILE | -r RESUME] [--version] script

CUG 2017 Copyright 2017 Cray Inc.
28

Rolling Patches – cnat-reboot

● cnat-reboot is an included script which reboots the
nodes assigned to it by the workload manager
● Must be run by crayadm to be able to reboot a node
crayadm@login> cnat -n <node list> /opt/cray/cnat/default/bin/cnat-reboot
● Will control reboot of compute nodes to new image
● Post invocation actions supported are

● Suspend upgrade
● Cancel upgrade
● Rollback upgrade

CUG 2017 Copyright 2017 Cray Inc.
29

Rolling Patches – cnat

crayadm@login> cnat -l debug -l info -n 32 hostname
Using script /bin/hostname
Creating output directory cnat-20160502101159
Setting up node features
Submitting 0 50-node jobs and a 1-node job
2016-05-02 10:11:59,652 INFO Submitted batch job 14632
2016-05-02 10:11:59,691 INFO Batch job 14632 started on node 32
2016-05-02 10:11:59,730 INFO Batch job 14632 succeeded
Results: 1 job, 1 succeeded, 0 failed

CUG 2017 Copyright 2017 Cray Inc.
30

Rolling Patches – cnat-status

● cnat-status gives further information about the status of a cnat run.
cnat-status [-h] outputdir
crayadm@login> cnat-status cnat-20160502101159
cnat pid 3213 started Mon May 2 10:11:59 2016 by crayadm on opal-p2

using config /etc/opt/cray/cnat/cnat.yaml
using script /bin/hostname

Job 14632 submitted Mon May 2 10:11:59 2016
started Mon May 2 10:11:59 2016 on nid 32
ended Mon May 2 10:11:59 2016 exit code 0

No pending nodes
No active nodes
1 completed node: 32
No failed nodes

CUG 2017 Copyright 2017 Cray Inc.
31

Programming Environment

● Same PE software content can be used for:
● Compute
● Login
● eLogin

● Installed and managed on the SMW
● Uses the craype-installer
● Deployed to boot node for internal XC nodes
● Deployed to Cray Management Controller (CMC) for eLogin

● PE available via a network file system for diskless XC
nodes

CUG 2017 Copyright 2017 Cray Inc.
32

PE Management

PE
Image

PE
Image

Mount (NFS)

Push (As Needed)

boot node on Boot Raid

PE
Image

Network FS / Cached

PE
Image

Bind

Network FS / Cached

PE
Monthly

Releases

Install (Monthly)

SMW

boot nodetier2compute/login

SMW on BootRAID

/opt/cray/pe
/opt/…

Mount (DVS)

ISOs

CUG 2017

PE recipe

Make PE image (Once
Per CLE Release)

Copyright 2017 Cray Inc.
33

Management of software

● Management of software with IMPS
● File formats
● Repositories
● Image recipes
● Package collections
● Image root
● Boot image

CUG 2017 Copyright 2017 Cray Inc.
34

File formats

● YAML (YAML Ain't Markup Language)
● Common data types easily mapped to most high-level languages

● list, associative array, and scalar
● Cray commands for changing, searching, displaying, validating

● Ensure files stay in correct format
● JSON (JavaScript Object Notation)

● Open standard format
● A proper subset of YAML

● Data objects consist of attribute–value pairs
● Both formats are “importable” into Python and Ansible

CUG 2017 Copyright 2017 Cray Inc.
35

Repositories

● All repositories are housed on SMW
● /var/opt/cray/repos

● Some repositories may be shared by SMW and CLE
● SLE Server
● SLE Software Developer’s Kit
● SLE Workstation Extension
● SLE Module Legacy
● SLE Module Public Cloud

● Other repositories unique to SMW or to CLE
● SMW software to be installed on SMW
● CLE software to be installed on SMW
● CLE software to be installed on CLE SLES nodes
● CLE software to be installed on CLE DAL nodes
● CentOS for CLE DAL nodes

● Empty “update” repositories created for future use
● Patches
● Security updates

● Site can create their own repositories

CUG 2017 Copyright 2017 Cray Inc.
36

Image Recipes

● Each default image type has an image recipe installed on SMW
● Compute, admin, service, login, DAL (Direct Attached Lustre)
● All Cray image recipes are named to avoid naming conflicts

● Each image recipe is in a JSON file
● Has name and description
● Includes package collections, packages (rpms), repositories, and other recipes

● JSON file may contain more than one image recipe
● Versioned JSON file(s) for each Cray software release

● Everything has a rationale
● Description explaining why each package collection, package, repository, or recipe is listed

● Custom image recipes can be created to serve specific purposes
● Site can create their own recipes

● SMW location:
● /etc/opt/cray/imps/image_recipes.d/

CUG 2017 Copyright 2017 Cray Inc.
37

Package Collections

● Represent logical groupings of packages (rpms)
● Contain versioned and unversioned package names
● CLE Installed package collections are read only
● Package collections can include packages and other

package collections
● Site can create their own package collections
● SMW location:

● /etc/opt/cray/imps/package_collections.d/

CUG 2017 Copyright 2017 Cray Inc.
38

Image Recipe Example 1
{

"compute_cle_6.0up01_sles_12_x86-64_ari": {

"description": “Compute image for SLES 12",

"package_collections": {

"cle-compute_6.0up01_sles_12_kernel_ari": {

"rationale": "Provides the needed kernel and kernel drivers."

},

"cle_6.0up01_sles_12_compute": {

"rationale": "This image recipe is a SLES 12 compute node; add all package
collections befitting a Cray SLES 12 compute image."

}

},

"packages": {},

"recipes": {

"seed_common_6.0up01_sles_12_x86-64": {

"rationale": "Start all SLES recipes with common base UID/GIDs"

}

},

"repositories": {

…

}

},CUG 2017 Copyright 2017 Cray Inc.
39

Image Recipe Example 2
"repositories": {

"cle_6.0up01_sles_12_x86-64_ari": {
"rationale": "A base set of Cray provided packages for SLES

12."

},
"cle_6.0up01_sles_12_x86-64_ari_updates": {

"rationale": "A repository for Cray provided updates to
packages for SLES 12."

},

"sles_12_x86-64": {
"rationale": "The base OS used to build SLES 12 based nodes."

},
"sles_12_x86-64_updates": {

“rationale": "Needed for updating an image recipe for new SLES
12 package updates."

}

}
CUG 2017 Copyright 2017 Cray Inc.

40

Package Collection Example 1
{

"cle_6.0up01_sles_12_base": {
"description": "Collection of packages for base SLES node capabilities.",
"package_collections": {},
"packages": {

"ansible": {
"rationale": "Configuration management package needed to configure

nodes."
},

...
"zypper": {

"rationale": "This utility allows install/update of packages
dynamically from within a SLES node."

}
}

…
},

}

CUG 2017 Copyright 2017 Cray Inc.
41

Package Collection Example 2
"cle_6.0up01_sles_12_compute": {

"description": "Collection of packages for base SLES compute node
capabilities.",

"package_collections": {

"cle_6.0up01_sles_12_base": {
"rationale": "compute nodes need base software"

},

"cle_6.0up01_sles_12_compute_cray": {

"rationale": "Cray packages installed on a compute node"

},
},

"packages": {

"ksh": {

"rationale": "Needed for Test group."

},
"tcsh": {

"rationale": "Required by some applications and some customer sites."

}CUG 2017 Copyright 2017 Cray Inc.
42

Customizing Image Recipe Support

● Adding non-rpm content to an image root
● Modify JSON image recipe file to

● Copy content from location on SMW
● Execute post-build commands and/or scripts

● Post-build scripts can use several environmental variables
● IMPS_IMAGE_NAME
● IMPS_VERSION
● IMPS_IMAGE_RECIPE_NAME
● IMPS_POSTBUILD_FILES

● Post-build commands and scripts always run chrooted
● Automatic cleanup of files which were copied into the image root

CUG 2017 Copyright 2017 Cray Inc.
43

Customizing Image Recipe Example

"image_recipe_name": {
...
"package_collections": { ... },
"packages": { ... },
”recipes": { ... },
"postbuild_copy": [

"/file/on/smw/sample.py",
...
"/dir/on/smw"

],
"postbuild_chroot": [

"chroot_command1",
...
"chroot_commandN"

],
"repositories": { ... }

},

CUG 2017 Copyright 2017 Cray Inc.
44

Customizing Image Recipe – seed recipe

"seed_common_6.0up01_sles_12_x86-64": {
"description": "Common seed image for SLES 12 images",
"package_collections": {},
"packages": {

"rpm": {
"rationale": "allow IMPS to build RPM database"

},
"shadow": {

"rationale": "minimal package to add users"
}

},
"postbuild_chroot": [

"/usr/sbin/groupadd --gid 499 mysql",
"/usr/sbin/groupadd --gid 492 ntp",
"/usr/sbin/useradd --uid 60 --gid 499 --no-user-group --home-dir /var/lib/mysql --shell

/bin/false --comment added_during_image_create mysql",
"/usr/sbin/useradd --uid 74 --gid 492 --no-user-group --home-dir /var/lib/ntp --shell

/bin/false --comment added_during_image_create ntp",
"repositories": { ... }

},

CUG 2017 Copyright 2017 Cray Inc.
45

Customizing Image Recipe – WLM recipe

"wlm_service": {
"description": "WLM service node image",
"recipes": {

"service_cle_6.0up01_sles_12_x86-64_ari": {
"rationale": "Start from standard service node recipe"

},
"packages": {},
"package_collections": {},
"postbuild_chroot": [

"${IMPS_POSTBUILD_FILES}/pbs/pbs_imps_installer.py",
"${IMPS_POSTBUILD_FILES}/moab_torque/moab_torque_imps_installer.py",
"rpm -ivh ${IMPS_POSTBUILD_FILES}/moab_torque/*.rpm"

],
"postbuild_copy": [

"/home/crayadm/wlm_install/pbs_service/pbs",
"/home/crayadm/wlm_install/p1/moab_torque"

],
"repositories": {}

},

CUG 2017 Copyright 2017 Cray Inc.
46

Image Roots and Boot Images

● Image root
● Root filesystem tree on the SMW
● Created from image recipe
● All rpm dependencies are resolved from repositories
● Each image root is related to a single image recipe
● /var/opt/cray/imps/image_roots

● Boot image
● Created from image root
● Packaged into a format suitable for booting
● Each boot image related to a single image root
● /var/opt/cray/imps/boot_images

● The resulting images are essentially unconfigured!

CUG 2017 Copyright 2017 Cray Inc.
47

Boot Images

● Multiple images used to boot CLE
● Admin node boot image – used by boot and SDB
● Service node boot image – used by most service nodes
● Login node boot image – used by login nodes
● Compute node boot image – used by compute nodes
● DAL node boot image – used by DAL nodes
● Custom boot images created by the site

● NIMS associates a boot image with each node
● Image used to boot external login nodes

● eLogin node boot image

CUG 2017 Copyright 2017 Cray Inc.
48

tmpfs versus netroot
● tmpfs

● Default location of the root file system on Cray XC series systems
● Always used for service nodes (except login nodes) and DAL (direct-attached Lustre) nodes
● Efficient and fast root file system access
● Large memory footprint
● File system content is limited to reduce memory footprint
● Typically used when minimal commands and libraries required
● Works well for compute nodes with well defined workloads and for service nodes that are used primarily for internal services

● netroot
● Alternative approach that mounts the root file system from a network source
● Used only for compute and login nodes, never for service nodes (except login nodes)
● Uses overlayfs to layer tempfs on top of a read-only network file system
● Slower root file system access
● Increased node boot time
● Minimized memory footprint due to leveraged network
● No restriction on file system content
● Typically used when a robust set of commands and libraries required (netroot enables large network-based images, formerly

enabled through the DSL feature)
● Works well for compute nodes with diverse workloads and for compute nodes requiring a small memory footprint

CUG 2017 Copyright 2017 Cray Inc.
49

tmpfs comparison with netroot
Memory consumption Number of rpms

Admin image root – tmpfs 1400MB 600

Service image root – tmpfs 1700MB 670

Login image root – tmpfs 3600MB 1100

Compute image root – tmpfs 1500MB 745

Login image root – netroot 125MB 2500

Compute image root – netroot 150MB 2380

CUG 2017

Note: Numbers are approximate for UP03. Use of netroot preload may change memory consumption.
Cray image recipes for tmpfs and netroot can be used as sub-recipes in a
site recipe then customized with additional rpms needed or reduced to
remove rpms not needed

Copyright 2017 Cray Inc.
50

Configuration Management Framework

● Config sets
● IDS (IMPS Distribution Service)
● Configuration data
● Configurator
● Boot process configuration

● cray-ansible and Ansible

CUG 2017 Copyright 2017 Cray Inc.
51

Config sets

● All configuration information needed to operate the logical system
will be stored in a central repository called a “configuration set” or
“config set”

● More than one config set can exist to support partitioned systems
or alternate configurations.

● The config sets reside on the SMW and are made available to all
nodes in the system read-only

● All config sets are shared throughout the system, but only one is
active on a given node at a time.

● Two config sets
● global config set which covers both the management domain (“SMW” and

“CMC”) as well as truly global data
● CLE config set (for p0, or on a partitioned system for p1, p2, p3, etc.)

CUG 2017 Copyright 2017 Cray Inc.
52

Config sets – directory structure on node

● From the end node's perspective, it's just a directory of
config files for the current CLE and global config sets
/etc/opt/cray/config/current
/etc/opt/cray/config/global

● /etc/opt/cray/config/current subdirectories
ansible, config, dist, files

● /etc/opt/cray/config/current/config YAML files
cray_alps_config.yaml, cray_logging_config.yaml,
cray_net_config.yaml, cray_scalable_services_config.yaml, etc.
● Configurator processes only files ending in “config.yaml”
● cray-ansible makes all files ending in “yaml” available as local vars

● A site can include config data without using a configurator template

CUG 2017 Copyright 2017 Cray Inc.
53

Config sets – directory structure on SMW

● The config set that is mounted on the nodes lives on the SMW
smw:/var/opt/cray/imps/config/sets/p0
● Subdirectories

ansible, changelog, config, dist, files, worksheets
● Worksheet files

cray_alps_worksheet.yaml, cray_logging_worksheet.yaml, cray_net_worksheet.yaml,
cray_scalable_services_worksheet.yaml, etc.

● Other config sets on SMW
smw:/var/opt/cray/imps/config/sets/p0
smw:/var/opt/cray/imps/config/sets/p0-preupgrade-20150324
smw:/var/opt/cray/imps/config/sets/p0-postupgrade-20150324
smw:/var/opt/cray/imps/config/sets/global

● The global config set is also available on the SMW as a link to the
/var/opt/cray/imps/config/sets/global
smw:/etc/opt/cray/config/global

CUG 2017 Copyright 2017 Cray Inc.
54

Config set distribution - IDS

● In order for the config set to be available on all nodes, a cache is distributed by
the IMPS Distribution Service (IDS)

● IDS leverages the 9P network filesystem and the Linux automounter facility to
transport the cache via Cray scalable services from the SMW, tier1, tier2 to the
entire XC system
● diod (user-space export daemon) can re-share a 9P mount
● Read-only allows us to leverage caching
● autofs allows for resiliency and failover

● Config set caching
● cray-cfgset-cache daemon on SMW

● Responds to kernel inotify events for changes in config sets
● After change noticed, 4 seconds later a new squashfs file and checksum are generated
● Cached version of the config set is copied to the nodes and checksum verified

● Full copy of the config set is on the node
● Updated at boot time or upon demand

CUG 2017 Copyright 2017 Cray Inc.
55

Config set data

● Stored in YAML
● Configuration files include both user data and

management metadata
● Configurator will merge and manage configuration data

within the config set
● Schema standardized to support configuration tool and

provide common look and feel

CUG 2017 Copyright 2017 Cray Inc.
56

Configurator

● XC™ Series System Configurator User Guide (CLE 6.0.UPxx S-2560)
● The configurator

● Completely data driven by files called templates
● Merge existing configuration data with new templates

● Configuration templates
● Provide useful documentation for the value
● Provide useful defaults
● Provide value and syntax checking to be used by configurator

● Run configurator to collect new data
● Will automatically prompt/merge new data elements
● System administrator’s “answers” to questions become new setting

CUG 2017 Copyright 2017 Cray Inc.
57

Configurator

● Iterate on the configurator as necessary
● Admin can configure a specific service

smw# cfgset update -s cray_alps -S unset -l basic p0
smw# cfgset update -s cray_alps -S all -l advanced p0

● Can run configurator in 3 different modes
● All modes

● Merge in new templates
● Run pre/post-configuration scripts (unless suppressed with --no-scripts)
● Create configuration worksheets based on current settings

● auto – Asks questions based on filters (level and state) from
command line

● interactive – View or change any setting in any service
● prepare – Does not ask any questions

CUG 2017 Copyright 2017 Cray Inc.
58

Config Templates - schema

● Design of template schema drives how information is
gathered
● YAML format
● Cray-provided templates start with “cray_”
● <service_name>_config.yaml

● cray_logging_config.yaml
● Template sections

● Service
● Describes the service
● Initial question about whether the service should be configured further

● Settings
● Contains questions to be answered to configure service

CUG 2017 Copyright 2017 Cray Inc.
59

Config Templates Example – schema

cray_service_name:

...
[service meta]
…
settings:

...
[service settings]
...

...

CUG 2017 Copyright 2017 Cray Inc.
60

Config Templates - service

● Fields in template for service
● Title - explanation of the service
● Guidance – description to aid in enable/disabling service
● Enabled – boolean decision to configure service (or not)
● Configured – whether this has been configured already
● Level – required, basic, or advanced
● Config_after – this should be configured after these other services
● Template_type – CLE or global

CUG 2017 Copyright 2017 Cray Inc.
61

Config Templates Example – service
cray_scalable_services:

enabled: true
configurator:

allow_none: true
comments: []
configured: true
config_after: []
default_value: true
guidance: "Cray scalable services defines which servers (nodes) are used in

the scaling of the system. Scalable services must be configured to ensure
a properly functioning system. \nOnce defined, these servers will be used
in various services, such as DVS, to provide horizontal scaling, or scaling
out, of those services. Horizontal scaling allows the system to utilize
user-defined nodes to work together as a single unit to increase workflow
output. \nScalable services defines a tree of servers starting with the
Server of Authority (SoA), followed by tier1 and tier2 servers as represented
below.\n tier2\n tier1 --\nSoA
\ -- tier2\n tier1 --\n”

level: required
template_type: cle
title: Cray Scalable Services

CUG 2017 Copyright 2017 Cray Inc.
62

Config Templates - settings

● Fields in template for settings
● Title - explanation of the class
● Guidance – description to aid in setting the value(s)
● Members – values of the class
● Regex – regular expression to validate input
● Configured - whether this has been configured already
● Level – required, basic, or advanced
● Argspec – one or more values to be configured
● Data - one or more values which have been configured

CUG 2017 Copyright 2017 Cray Inc.
63

Config Templates Example – settings
cray_scalable_services:

settings:
scalable_service:

data:
tier1:
- c0-0c0s0n1

configurator:
argspec:

tier1:
allow_none: false
configured: true
default_value: []
guidance: 'A list of tier1 server cnames. \nThe tier1

servers must have a direct network connection to
the Server of Authority (SoA). The SoA is typically
the SMW. Any node that is directly connected to
the SoA can function as a tier1 server.\On Cray
CLE systems, the boot node must be specified as
a tier1 server. The SDB should also be specified

assuming it is properly configured to reach the
SOA.\nAdding additional tier1
servers provide enhanced resiliency.\nThere
must be at least one tier1 server listed.'

level: required
multival_key: false
purge: false
regex: ^c(\d+)-(\d+)c([0-2])s(\d[0-5]?)n([0-3])$
title: Tier1 servers
type: list

scope_type: class
comments: []
guidance: null
purge: false

Note: This example is before UP02. In UP02 tier1
comes from a nodegroup not a list of cnames

CUG 2017 Copyright 2017 Cray Inc.
64

Config Templates – settings multival

● Users prompted for each key
● then data which applies to it

● Example
● boot_node_ethernet

● Key1
● Values

● Key2
● Values

CUG 2017 Copyright 2017 Cray Inc.
65

Config Templates Example – settings multival
[...]
settings:

some_node_ethernet:
[...]

data:
- key: eth0
netmask: 255.255.255.0
ipaddress: 123.45.67.89

- key: eth1
netmask: 255.255.240.0
ipaddress: 192.168.0.1

configurator:
scope_type: multival
argspec:

interface:
multival_key: true
type: string
level: basic
default_value: "eth0"

title: Ethernet Interface
guidance: Enter the ethernet interface name like "eth0".
[...]

netmask:
type: string
level: basic
default_value: "255.255.255.0"
title: Netmask
guidance: Enter the netmask.
[...]

ipaddress:
type: string
level: basic
default_value: "192.168.0.1"
title: IP Address
guidance: Enter the ethernet IP address.
[...]

CUG 2017 Copyright 2017 Cray Inc.
66

Config Templates – cray_node_groups
● Node groups define logical, non-exclusive groupings

of CLE nodes
● Enables CLE nodes to be logically grouped and referenced by

group name within the configuration data of CLE services
● Cray Simple Sync (UP01)
● Other Cray config templates (After UP01)

● Provides a single location in the CLE configuration data where
nodes can be managed at the system administrator’s discretion

● Group name can be used by Ansible plays
● Site created Ansible plays
● Cray Simple Sync Ansible play (UP01)
● Other Cray Ansible plays (After UP01)

CUG 2017 Copyright 2017 Cray Inc.
67

Config Templates – cray_node_groups
cray_node_groups:

configurator:
template_type: [‘cle’]
level: required
default_value: true
...

settings:
groups:

data:
- key: example_group_1

members:
- c0-0c0s8n0
- c0-0c0s8n1

- key: example_group_2
members:

- c0-0c0s8n1
- c0-0c0s8n2
- c0-0c0s8n3

configurator:
scope: multival
argspec:

group_name:
multival_key: true
type: string
...

members:
title: Group Members
type: list
default_value: []
...

CUG 2017 Copyright 2017 Cray Inc.
68

Configurator - cfgset

● Updating a config set – actions by the configurator
● Clone the config set as a backup (for this run of the configurator)
● Run pre-configuration scripts
● Validate templates and configuration data

● YAML syntax validation check
● Schema validation check
● Merge templates

● Prompt for all information to be configured
● Regenerate configuration worksheets
● Write changelog entry

/var/opt/cray/imps/config/sets/p0/changelog/changelog_2015-09-29T12:00:37.yaml
● Run post-configuration scripts
● Remove backup config set (from this run of the configurator)

CUG 2017 Copyright 2017 Cray Inc.
69

Simple Sync

● Simple Sync service provides a simple and easy to use mechanism for administrators to
copy files onto their system without resorting to writing an Ansible play

● Files that are placed in the following directory structure will be copied onto nodes with
matching criteria:
smw:/var/opt/cray/imps/config/sets/p0/files/simple_sync/

./common/files/ # matches all nodes

./platform/[compute, service]/files/ # matches compute or service nodes

./nodegroups/<node_group_name>/files/ # matches members of <node_group_name>

./hardwareid/<hardwareid>/files/ # matches nodes with matching hardware id

./hostname/<hostname>/files/ # matches nodes with hostname
● Files, including directory structure below ./files/ will be replicated on the target node

starting at /
smw:/var/opt/cray/imps/config/sets/p0/files/simple_sync/

./common/files/etc/myapplication.conf
● will be placed on all nodes as /etc/myapplication.conf

● Avoid copying files from one OS type (SLES) to another OS type (CentOS) when using
common, platform service, and customized node groups

CUG 2017 Copyright 2017 Cray Inc.
70

Simple Sync

● Change to simple sync directory for CLE config set
smw# cd /var/opt/cray/imps/config/sets/p0/files/simple_sync

● Make a file for all nodes
smw# touch common/files/pluto.common

● Make a file for all service nodes
smw# touch platform/service/files/pluto.service

● Make a file for all compute nodes
smw# touch platform/compute/files/pluto.compute

● Make a file for nodegroup called testgroup
smw# touch nodegroup/testgroup/files/pluto.testgroup

● Make a file for node c0-0c0s3n2
smw# touch hardwareid/c0-0c0s3n2/files/pluto.c0-0c0s3n2

● Content will be delivered during a boot, but you can deliver it immediately to the nodes
boot# /etc/init.d/cray-ansible start
sdb# /etc/init.d/cray-ansible start
sdb# pcmd -r -n ALL_NODES_NOT_ME "/etc/init.d/cray-ansible start”
● ALL_NODES, ALL_COMPUTE, ALL_SERVICE, ALL_SERVICE_NOT_ME

CUG 2017 Copyright 2017 Cray Inc.
71

NIMS

● Node Image Mapping Service (NIMS) maps a node to
“boot attributes” when a node is booted
● boot image
● loadfile
● config set
● kernel parameters

● NIMS daemon (nimsd)
● Responds to HSS boot manager via HSS events to provide boot

attributes when booting and rebooting nodes
● Interacts with administrative commands cmap and cnode

CUG 2017 Copyright 2017 Cray Inc.
72

NIMS

● NIMS Map
● Collection of nodes, either entire machine (p0) or a system partition (p2)
● Multiple maps possible, but only one map active for a given partition
● Maps are associated with one partition and cannot span partitions
● The system administrator can control which map is the active map for a

partition
● Contains NIMS node groups

● A node can be assigned to an arbitrary group for ease of changing boot attributes
● Use “cmap” command to manipulate NIMS maps

● NIMS Node
● Represents the physical, bootable node on the XC system
● Use “cnode” command to manipulate information about a node in a given

NIMS map

CUG 2017 Copyright 2017 Cray Inc.
73

NIMS - cnode

● To display all nodes in the current active map:
smw# cnode list
Node Type Group Image
Loadfile Config Set Parameters
c0-0c0s0n0 service service /var/opt/cray/imps/boot_images/service_cle_6.0.UP01-
build6.0.68_sles_12-created20160212.cpio - NIMS_GROUP=service
ids=10.128.0.130,10.128.0.138 config_set=p0

c0-0c0s10n3 compute compute /var/opt/cray/imps/boot_images/initrd-compute-
large_cle_6.0.UP01-build6.0.68_sles_12-created20160212.cpio - NIMS_GROUP=compute
netroot=compute-large_cle_6.0.UP01-build6.0.68_sles_12-created20160210
ids=10.128.0.130,10.128.0.138 config_set=p0

c0-0c1s1n1 service login /var/opt/cray/imps/boot_images/login_cle_6.0.UP01-
build6.0.68_sles_12-created20160212.cpio - NIMS_GROUP=login
ids=10.128.0.130,10.128.0.138 config_set=p0

CUG 2017 Copyright 2017 Cray Inc.
74

Booting – What is New?

● Boot the system
crayadm@smw> xtbootsys -a auto.pluto.start

● What is new with booting?
● boot manager interacts with nimsd for boot images
● xtbootsys extracts debugging information from all boot images
● xtbootsys sets up mappings for the config set being used
● Boot automation files should avoid strict boot ordering of service

nodes

CUG 2017 Copyright 2017 Cray Inc.
75

Boot process - boot sequence

● Ansible plays happen in two phases during boot
● Execution of Ansible in initrd /init
● Normal Linux multi-user startup with systemd
● Another execution of Ansible at the end of multiuser

● Ansible
● If you ask it to perform an action, it will generally not perform any

action the second time if the first succeeds.
● The exception is for actions that MUST ONLY be performed at a

certain time
● For example, if your play starts a process you only want to have that

happen at multiuser mode

CUG 2017 Copyright 2017 Cray Inc.
76

Boot process - execution in initrd

● The first execution of Ansible in_init
● Create a config file for a service before the service is started in multi-

user
● Prepare the storage prior to the boot of the system

● Create LVM volume groups, volumes and filesystems
● When the system starts, these filesystems will be mounted and ready for

use.
● An Ansible play running in_init should not execute

processes
● These should only be launched in multiuser
● When enabling systemd processes in_init

● Manage the default links instead of using a service enable/disable because
systemd isn’t running

CUG 2017 Copyright 2017 Cray Inc.
77

Boot process – Linux startup

● Linux startup
● Because we configured many things in_init, when the standard

Linux startup occurs utilizing systemd, system services should
start up properly configured

● Filesystems will be mounted at this time

CUG 2017 Copyright 2017 Cray Inc.
78

Boot process – second Ansible run

● Ansible in multi-user
● Many of the configuration files were modified during in_init those

actions will be no-ops
● Ansible plays can specify dependencies on other plays to ensure

they are performed first
● For example, the ALPS play can depend on the database play such that

we know the database is up by the time it gets to ALPS
● Your play should do whatever it takes to get your service

into operation
● For example, some plays like the database play have to first ensure

the database is up, but then also load the schemas if needed, and
load data into the database, all in the correct order

CUG 2017 Copyright 2017 Cray Inc.
79

How A Config Set Becomes Applied Config

1. Configurator
● Creates the config set, gathers data

2. NIMS
● Maps image and config set to nodes

3. IDS: Distributes config set to node during early boot
● Mounts the config set on the node for consumption

4. cray-ansible takes over

CUG 2017 Copyright 2017 Cray Inc.
80

How A Config Set Becomes Applied Config

● cray-ansible (wraps Ansible runs)
● Ensures the config set cache on the node is current
● Assembles/orders Ansible plays

● From the image
● Provided by the site in the config set

● Gathers “facts” (system data: OS type, runlevel, hostname)
● Reads in config set data
● Is executed in two phases to apply configuration data via plays

● Plays are responsible for determining the
configuration to apply during each phase

CUG 2017 Copyright 2017 Cray Inc.
81

Agenda

● Introduction to SMW/CLE system management

● New system management features since UP01
● Best practices for using Ansible
● Troubleshooting XC system booting problems
● Migrating SMW/CLE software from 7.2/5.2 to 8.0/6.0
● Intro to CMC/eLogin system management
● Migrating CIMS/CDL to CMC/eLogin
● CLE Boot Performance and Reliability
● Q & A

CUG 2017 Copyright 2017 Cray Inc.
82

New System Management Features since UP01

CUG 2017

● Boot Performance and reliability
improvements (UP01) (details later)
● Config set caching
● Netroot preload

● Boot troubleshooting guide released
(between UP01 and UP02)
● XC™ Series Boot Troubleshooting Guide CLE

6.0 UPxx S-2565)
● Boot performance and reliability

improvements (UP02) (details later)
● Ansible filtering
● Fact collection tweaks
● Sparse looping adjustments
● Boot profiler

● Admin recipe (UP02)
● Ansible log (init_netroot_setup, init,

booted) for log and file-changelog (UP02)

● eLogin nodes now use Simple Sync v2
(UP02)

● Node groups (UP02)
● Improved config set validation (UP03)
● Boot performance and reliability

improvements (UP03) (details later)
● Greater boot concurrency support
● ARP table initialization
● PE ldconfig caching
● ntpd improvements
● Node groups optimization
● DVS read only optimizations

● Ansible Play Writing guide (UP03)
● XC™ Series Ansible Play Writing Guide (CLE

6.0 UP03 S-2582)
● Migration guides (UP03+)

Copyright 2017 Cray Inc.
83

UP02 changes

CUG 2017

● Admin recipe
● For boot and SDB node
● Smaller version of service recipe

● May be small enough that when workload manager (WLM) content is
added, the resulting image is still small enough to PXE boot SDB node

● Ansible log change for netroot
● For nodes which use netroot, the logs from “init” phase of cray-

ansible have been split into “init_netroot_setup” and “init”
● file-changelog-init_netroot_setup
● sitelog-init_netroot_setup

● eLogin nodes now use Simple Sync v2
● All nodes now use same version of Simple Sync

● Same directory structure, same Ansible plays

Copyright 2017 Cray Inc.
84

Node groups (UP02)

CUG 2017

● Only used for Simple Sync in UP01 to transfer files to groups of nodes
● Define and manage logical groupings of system nodes

● Nodes can be grouped arbitrarily, though typically they are grouped by software functionality or
hardware characteristics, such as login, compute, service, DVS servers, and RSIP servers

● Can be referenced by name within all CLE services in that config set
● Eliminates the need to specify groups of nodes for each service individually and greatly

streamlining service configuration
● Used in Cray-provided Ansible plays and can be also used in site-local Ansible

plays
● Similar to, but more powerful, than the class specialization feature of CLE 5.2

● For example, a node can be a member of more than one node group but could belong to only
one node class in CLE 5.2

● Sites are encouraged to define their own node groups and specify their
members

● Defined in cray_node_groups service of the config set

Copyright 2017 Cray Inc.
85

Node groups (UP02) Characteristics

CUG 2017

● Node group membership is not exclusive
● a node may be a member of more than one node group.

● Node group membership is specified as a list
● cnames for CLE nodes
● hostid (command output) for SMW
● hostnames for eLogin nodes

● All compute nodes and/or all service nodes can be added as node group
members by including the keywords “platform:compute” and/or
“platform:service” in a node group

● Any CLE configuration service is able to reference any defined node group by
name

● CMF exposes node group membership of the current node through the local
system "facts" provided by the Ansible runtime environment
● Each node knows to which node groups it belongs and that knowledge can be used in Cray

and site-local Ansible playbooks

Copyright 2017 Cray Inc.
86

Node groups (UP02) Default Node Groups

CUG 2017

● compute_nodes
● Defines all compute nodes for the given partition

● service_nodes
● Defines all service nodes for the given partition

● smw_nodes
● Add the output of the hostid command for the SMW
● For an SMW HA system, add the host ID of the second SMW also

● boot_nodes
● Add the cname of the boot node
● If there is a failover boot node, add its cname also

● sdb_nodes
● Add the cname of the SDB node
● If there is a failover SDB node, add its cname also

● login_nodes
● Add the names of internal login nodes on the system.

● all_nodes
● Defines all compute nodes and service nodes on the system
● Add external nodes (eLogin nodes), as needed.

● tier2_nodes
● Add the cnames of nodes that will be used as tier2 servers in the cray_scalable_services configuration.

Copyright 2017 Cray Inc.
87

Node groups (UP02) Additional Platform Keywords

CUG 2017

● Cray uses these two platform keywords to create default node groups that contain all compute or all
service nodes.
● platform:compute
● platform:service

● Sites that need finer-grained groupings can use these additional platform keywords to create custom
node groups that contain all compute or service nodes with a particular core type.
● platform:compute-XXNN
● platform:service-XXNN

● For XXNN, substitute a four-character processor/core designation, such as KL64 or KL68, which
designate the two Intel® Xeon Phi™ processors (Knights Landing) with different core counts.

Processor (XX) Core (NN) Intel Code Name

BW 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, 40, 44 Broadwell

HW 04, 06, 08, 10, 12, 14, 16, 18, 20, 24, 28, 32, 36 Haswell

IV 02, 04, 06, 08, 10, 12, 16, 20, 24 Ivy Bridge

KL 60, 64, 66, 68, 72 Knights Landing

SB 04, 06, 08, 12, 16 Sandy Bridge

Copyright 2017 Cray Inc.
88

Improved config set validation (UP03)

CUG 2017

● Our goal is to detect configuration errors before system boot
● Focus areas

● Validation Rules plugin functionality for configurator
● Cray use only – not open for customer additions (yet)

● New configurator core data types
● cname
● hostname

● Fully qualified domain name (FQDN) allowed
● ipv4_address

● Configurator bug fixes
● Configurator template updates found via audit

● Implement Validation Rules
● Use new configurator core data types
● Update regular expressions
● Update guidance, default values, and level

Copyright 2017 Cray Inc.
89

Improved config set validation (UP03)

CUG 2017

● Validation Rules plugin functionality for configurator
● Automatically runs all rules

smw# cfgset validate p0
● List all rules

smw# cfgset list-rules p0
● List all rules for a service

smw# cfgset list-rules -s cray_net p0
● List a specific rule

smw# cfgset list-rules -n system-config.cray_networking.CLENetworksValidGateway p0
- name: system-config.cray_networking.CLENetworksValidGateway
location: /opt/cray/imps_config/system-config/default/configurator/rules/cray_networking.py
description:

The gateway address for each network defined in cray_net must be an ip address that is in the network, and it
must not be the highest or lowest address in the network, which is reserved for broadcast.

● Skip all the rules
smw# cfgset validate --no-rules global

Copyright 2017 Cray Inc.
90

Agenda

● Introduction to SMW/CLE system management
● New system management features since UP01
● Best practices for using Ansible
● Troubleshooting XC system booting problems
● Migrating SMW/CLE software from 7.2/5.2 to 8.0/6.0
● Intro to CMC/eLogin system management
● Migrating CIMS/CDL to CMC/eLogin
● CLE Boot Performance and Reliability
● Q & A

CUG 2017 Copyright 2017 Cray Inc.
91

Best Practices for Using Ansible

CUG 2017

● Ansible Introduction
● Cray specific techniques, practices, and processes
● Ansible references

Copyright 2017 Cray Inc.
92

Ansible – Terms

● Playbook
● One or more plays

● Play
● For XC, a collection of tasks to run on

“localhost”
● Task

● For XC, perform a specific sequence of
actions on “localhost”

● Modules
● Large Ansible library of common code

● Control system resources like services,
packages, or files

● Execute system commands
● Roles

● Abstraction for naming a group of things
that perform same function

● Separate code from data
● Jinja2 templates (code)
● Variables (data)

● Jinja2
● Python-based template engine
● Templates have placeholders for

parameter values which can be replaced
with variables

● Data
● Facts

● Automatically available
● Discovered at run time

● Variables
● User-defined

CUG 2017 Copyright 2017 Cray Inc.
93

Ansible – Local System Facts

● Boot process provides access to a group of Ansible
facts that describe the running node
node# ansible -m setup localhost

● Ansible provides a large amount of system information
by default, but additional facts are useful when
deciding when and where to perform configuration
tasks
● http://docs.ansible.com/ansible/playbooks_variables.html#local-

facts-facts-d

CUG 2017 Copyright 2017 Cray Inc.
94

Ansible – Best Practices 1

● Ansible expects that all tasks are idempotent
● (action performed only once, even if play is run more than once)
● Care should be taken to ensure that tasks prescribe the desired state of the running system, making

changes only when necessary
● See http://docs.ansible.com/ansible/glossary.html#resource-model

● When modifying files on a running system
● Keep in mind that other services may access the file
● Take the appropriate measures to ensure the modifications do not interfere with other operations.
● Leave a breadcrumb that the file is updated by an automated process

● The “insertbefore” or “insertafter” options in the Ansible “lineinfile” module are well-suited to help with this.
● Look at the directory of Ansible modules, if you find that you are trying to do something

that is difficult to achieve in a few simple steps
● It is likely that Ansible already has a module that provides the functionality
● See http://docs.ansible.com/ansible/modules_by_category.html.

● The Ansible “ini_file” module was specially created for modifying INI-style configuration
files
● Use this instead of “lineinfile” when applicable.

CUG 2017 Copyright 2017 Cray Inc.
95

Ansible – example.yaml

boot# grep example /etc/ansible/site.yaml
- include: /etc/opt/cray/config/current/ansible/example.yaml
boot# cat /etc/opt/cray/config/current/ansible/example.yaml

- hosts: localhost

vars:
run_after:
- common

roles:
- example

CUG 2017 Copyright 2017 Cray Inc.
96

Ansible – example tasks

boot# cd /etc/opt/cray/config/current/ansible/roles/example/tasks
boot# ls
copy.yaml lineinfile.yaml main.yaml service.yaml shell.yaml template.yaml
boot# cat main.yaml

- name: task main, template example
include: template.yaml

- name: task main, make copy of config file
include: copy.yaml

- name: task main, customize for second instance
include: lineinfile.yaml

- name: task main, turn on rsyncd
include: service.yaml

- name: task main, run a shell script, but only once
include: shell.yaml

CUG 2017 Copyright 2017 Cray Inc.
97

Ansible – example tasks

boot# cat template.yaml

- name: task template, set variables
set_fact:
myservice_foo=true
myservice_bar=9999
myservice_baz=turnip

- name: task template, create
myservice.conf config
template:
src=myservice.conf.j2
dest=/etc/myservice.conf

Jinja2 template file
boot# cat ../templates/myservice.conf.j2
myservice.conf
{{ ansible_managed }}

foo={{ "yes" if myservice_foo else "no" }}
bar={{ myservice_bar }}
baz={{ myservice_baz }}

CUG 2017 Copyright 2017 Cray Inc.
98

Ansible – example tasks

boot# cat copy.yaml

- name: task copy, check for file
stat:
path=/etc/myservice2.conf

register: result

- name: task copy, make copy of
myservice.conf
synchronize:
src=/etc/myservice.conf
dest=/etc/myservice2.conf

when: not result.stat.exists

boot# cat lineinfile.yaml

- name: task lineinfile, customize existing
config
lineinfile:
dest=/etc/myservice2.conf
regexp="^baz="
line="baz=onion"
backup=yes

CUG 2017 Copyright 2017 Cray Inc.
99

Ansible – example tasks
boot# cat service.yaml

- name: task service, turn on rsyncd
service:
name=rsyncd
state=started

when: not ansible_local.cray_system.in_init

boot# cat shell.yaml

- name: task shell, do something
shell: "echo hello > /tmp/foo && touch

/var/run/something"
args:
creates: /var/run/something

CUG 2017 Copyright 2017 Cray Inc.
100

Ansible – Running a Play 1

boot# ansible-playbook -v /etc/opt/cray/config/current/ansible/example.yaml
PLAY [localhost]
**
GATHERING FACTS

ok: [localhost]
TASK: [example | task template, set variables]

ok: [localhost] => {"ansible_facts": {"myservice_bar": "9999",
"myservice_baz": "turnip", "myservice_foo": "true"}}

TASK: [example | task template, create myservice.conf config]

ok: [localhost] => {"changed": false, "gid": 0, "group": "root", "mode":
"0644", "owner": "root", "path": "/etc/myservice.conf", "size": 199,
"state": "file", "uid": 0}

CUG 2017 Copyright 2017 Cray Inc.
101

Ansible – Running a Play 2

TASK: [example | task copy, check for file]

ok: [localhost] => {"changed": false, "stat": {"atime": 1429911953.80648,
"ctime": 1429911256.7013516, "dev": 3, "exists": true, "gid": 0, "inode":
110300, "isblk": false, "ischr": false, "isdir": false, "isfifo": false,
"isgid": false, "islnk": false, "isreg": true, "issock": false, "isuid":
false, "md5": "9d4ec22f000e91f8cc39dcfd6864d46c", "mode": "0644", "mtime":
1429911256.7013516, "nlink": 1, "pw_name": "root", "rgrp": true, "roth":
true, "rusr": true, "size": 198, "uid": 0, "wgrp": false, "woth": false,
"wusr": true, "xgrp": false, "xoth": false, "xusr": false}}

TASK: [example | task copy, make copy of myservice.conf]

skipping: [localhost]

CUG 2017 Copyright 2017 Cray Inc.
102

Ansible – Running a Play 3

TASK: [example | task lineinfile, customize existing config]

ok: [localhost] => {"backup": "", "changed": false, "msg": ""}

TASK: [example | task service, turn on rsyncd]

ok: [localhost] => {"changed": false, "name": "rsyncd", "state": "started"}

TASK: [example | task shell, do something]

skipping: [localhost]

PLAY RECAP
**
localhost : ok=6 changed=0 unreachable=0
failed=0

CUG 2017 Copyright 2017 Cray Inc.
103

Ansible – Best Practices 2

● YAML whitespace is “space” characters and not tab characters
● http://www.yaml.org/spec/1.2/spec.html

● Write comments (starting with #)
● Bad comments are worse than no comments at all

● Always name tasks
● Provide a description about why something is being done
● This name is shown when the playbook is run

● Use debug module to display the value of a variable
● With a when clause this can be used to show some collected data if data is not defined

● Always mention the state
● The ‘state’ parameter is optional to a lot of modules
● Whether ‘state=present’ or ‘state=absent’, it’s always best to leave that parameter in your playbooks to make it clear,

especially as some modules support additional states
● Keep It Simple

● When you can do something simply, do something simply
● Do not reach to use every feature of Ansible together, all at once
● If something feels complicated, it probably is, and may be a good opportunity to simplify things

http://docs.ansible.com/playbooks_best_practices.html

CUG 2017 Copyright 2017 Cray Inc.
104

Cray specific Ansible techniques, practices, and
processes

CUG 2017

● Basic guidelines for Ansible on SMW, CLE, and eLogin
● When are Ansible plays run?
● Which Ansible plays are run?
● How to specify order of plays
● When will plays execute?
● What data is available to plays?
● How to distribute Ansible plays using config set
● Testing Ansible plays
● How to search in image root and config set for Ansible plays
● Ansible Limitations

Copyright 2017 Cray Inc.
105

Ansible – Augmenting CMF

● Cray’s CMF allows additional configuration tasks
● Add site-specific config temples with site data settings
● Add site-specific tasks in concert with Cray-provided Ansible boot-

time execution acting on config set with Cray data and site data
● Extending cray-ansible with site Ansible plays

● Start/stop services
● Enable/disable services
● Change crontab entries
● Modify files
● Copy files
● Run shell programs when node meets certain conditions

CUG 2017 Copyright 2017 Cray Inc.
106

Ansible

● Framework for developers to write Ansible plays
● Ansible plays

● Will configure the software
● Can be either in the image or in the config set

● cray-ansible will find plays in both locations and include them automatically
● Config set is the proper place for site playbooks to retain separation between image

and configuration
● Integrating site Ansible plays into config set

● smw:/var/opt/cray/imps/config/sets/<config_set>/ansible/myplay.yaml
● smw:/var/opt/cray/imps/config/sets/p0/dist/<other files>

● Play runs automatically with all Cray provided plays
● Simple mechanism to influence play ordering
● For example, to amend what ALPS configuration is done

● ensure site play runs after the ALPS play

CUG 2017 Copyright 2017 Cray Inc.
107

Ansible – Boot Process Configuration

● All Ansible plays run ON the system at boot time
● Ansible "pull" mode

● Configuration happens locally on the node instead of being
initiated from some central management node.

● "self configuring model”
● cray-ansible finds all Ansible plays installed and executes them
● Ansible plays are packaged with their application software

● In other words, ALPS plays get packaged with the ALPS software

CUG 2017 Copyright 2017 Cray Inc.
108

Configuring MySQL Example

● cray-ansible runs Ansible twice
(sandwiches Linux startup)

● Init phase - during Linux init
● “pre-configures” Linux
● Shut off Linux default services we don’t want
● Setup HSN network interfaces

● …Linux/systemd takes over

● Booted phase – after Linux is booted
multi-user
● configures software, starts services

Node Image at Boot time

CUG 2017

kernel loaded

/init bootstrapping

cray-ansible in /init

Prepare mysql volume

Prep mysql filesystem

Configure mysql

Linux boot (systemd) Mount disk

Start mysql

cray-ansible in booted
multi-user

Ensure mysql running

Load mysql schema

Load mysql data

Start ALPS

Copyright 2017 Cray Inc.
109

Play Ordering During Ansible Runs

● cray-ansible determines order via play directives

1. run_early – a container of plays, first group to be run
2. run_late – a container of plays, last group to be run
3. run_after – specifies dependencies
4. run_before – specifies dependencies (reserved for customers)

• Everything not specified is in “run_early” container
• Dependencies take precedence over run_early/run_late
• cray-ansible sorts all plays (in image and those in config set)

• Dependency-ordered list of plays stored in /etc/ansible/site.yaml

CUG 2017 Copyright 2017 Cray Inc.
110

systemd (SLES) or sysvinit (CentOS)

Play Ordering During Ansible Runs
Image Plays Config Set Plays

cray-ansible

Run Early Run Late

• Discovers Plays
• Orders Plays
• Gathers System info

Run Early Everything else Run Late

Phase I (init)

Linux Startup

Phase II (booted)

Bo
ot

 T
im

el
in

e

1 2

4 5

CUG 2017

3

Copyright 2017 Cray Inc. 111

Ansible – Cray system facts

● Cray system facts are in /etc/ansible/facts.d/cray_system.fact
● in_init

● True if current Ansible run is prior to the Linux systemd/sysvinit startup phase, false if after
● roles

● A list of node roles assigned to the node. Possible values are: “boot”, “sdb”, and “smw”.
● This is deprecated now that node groups exist. Do not use “roles” in UP02 or later.

● platform
● One of “service” or “compute” (undefined for SMW)

● is_cray_blade
● True if the node is a Cray-proprietary blade, otherwise false (for example: SMW, CMC, and

eLogin nodes)
● uses_systemd

● True if the base distribution uses systemd or not

CUG 2017 Copyright 2017 Cray Inc.
112

Ansible – Cray system facts

● cname
● Component name of the node (c0-0c0s0n1).
● This is deprecated now. Use hostid instead in UP02 or later.

● nid
● Node ID of the current node (example: for nid00045, nid = 45)

● sessionid
● XC boot session identifier

● hostid
● Hostname for non-Cray proprietary blades (for example, SMW), cname for Cray nodes

● nims_group
● From the kernel parameter in /proc/cmdline which was assigned for this node on SMW with

cnode command
● node_groups

● A list of node_groups which have this node as a member

CUG 2017 Copyright 2017 Cray Inc.
113

Ansible – Using Cray system facts

- hosts: localhost
vars: # Cray-provided node “facts” + config set data
nid: ansible_local.cray_system.nid
is_nid7: ansible_local.cray_system.nid == "7”
is_login: ansible_local.cray_system.hostid |

ismember(cray_login.settings.login_nodes.data.members_groups)
is_sdb: ansible_local.cray_system.hostid |

ismember(cray_sdb.settings.node_groups.data.sdb_groups)
in_init: ansible_local.cray_system.in_init
is_svc: ansible_local.cray_system.platform == "service“
is_nims_blue: “blue” in ansible_local.cray_system.nims_group
is_node_group_red: “red” in ansible_local.cray_system.node_groups

run_after: # Call out a runtime dependency
- simple_sync

CUG 2017 Copyright 2017 Cray Inc.
114

Ansible – Using Cray system facts

tasks:
Option:Use Ansible modules to do individual steps (example: start a service)
- name: start awesomed service on nid0007, sdb, login nodes,

blue nims group, red node_group
service: name=awesomed state=started args="-f /path/to/awesome_config.conf"
when:
(is_nid7 or is_login or is_sdb or is_nims_blue or is_node_group_red) and
not in_init

Option: Let me just do everything in my script
- name: run my script on all service nodes
shell: /etc/opt/cray/config/current/dist/site_script.sh >> somelog.txt
when:
is_svc and not in_init

CUG 2017 Copyright 2017 Cray Inc.
115

Ansible – Using Cray system facts
- name: task nfshomedir, make mount point
file:
path=/home/users
state=directory
mode=755
when: ansible_local.cray_system.hostid |

ismember(cray_login.settings.login_nodes.data.members_groups)

- name: task nfshomedir, add mount to fstab
lineinfile:
dest=/etc/fstab
regexp="^172.30.79.66:/home/users"
line="172.30.79.66:/home/users /home/users nfs nfsvers=3,noacl 0 0"
backup=yes
when: ansible_local.cray_system.hostid |

ismember(cray_login.settings.login_nodes.data.members_groups)

CUG 2017 Copyright 2017 Cray Inc.
116

Ansible – Using Cray system facts

node# cat someplay.yaml

Stop a service on some nodes
- name: don't run cron except on login nodes
hosts: localhost

tasks:
- name: control cron
service:
name: cron
state: stopped

when:
(not ansible_local.cray_system.hostid |

ismember(cray_login.settings.login_nodes.data.member_groups)
and not ansible_local.cray_system.in_init

CUG 2017 Copyright 2017 Cray Inc.
117

Ansible – Using Cray system facts
- hosts: localhost
vars:
nid: [ansible_local.cray_system.nid]
run_before:
- ssh

tasks:
- name: find nid match in external hosts file, capture IP address
shell: “grep {{nid}} /etc/mysitelocal/hosts-external | head -1 | awk '{ print $4 }’”
register: external_ipaddr

- name: add ListenAddress/external options to file
lineinfile:
dest: /etc/sshd/sshd_config
regexp="^SSHD_OPTS="
line="SSHD_OPTS=‘-u0 -f /etc/ssh/sshd_config.external -o ListenAddress={{external_ipaddr}}’"
backup: yes

when:
external_ipaddr is defined

- debug: msg=“Did not find external interface to start SSHD on...”
when: external_ipaddr is not defined

CUG 2017 Copyright 2017 Cray Inc.
118

Ansible – Play Ordering
boot# cat /etc/ansible/site.yaml

#This file was autogenerated at 2016-04-21T16:30:38+06:00

- include: /etc/ansible/set_hostname.yaml
- include: /etc/ansible/simple_sync.yaml

- include: /etc/ansible/early.yaml

- include: /etc/ansible/dws-dvs.yaml

- include: /etc/ansible/local_users.yaml

- include: /etc/ansible/firewall_init.yaml

- include: /etc/ansible/networking.yaml

- include: /etc/ansible/ssh.yaml

- include: /etc/ansible/lnet.yaml

- include: /etc/ansible/common.yaml

- include: /etc/ansible/persistent_data.yaml

- include: /etc/ansible/ipforward_routes.yaml

- include: /etc/ansible/llm.yaml

- include: /etc/ansible/sm_inv.yaml

- include: /etc/ansible/rsip.yaml

- include: /etc/ansible/compute_node.yaml

- include: /etc/ansible/liveupdates.yaml

- include: /etc/ansible/db.yaml

- include: /etc/ansible/alps.yaml

- include: /etc/ansible/munge.yaml

- include: /etc/ansible/drc.yaml

- include: /etc/ansible/capmc.yaml

- include: /etc/ansible/wlm_detect.yaml

- include: /etc/ansible/service_node.yaml

- include: /etc/ansible/login_node.yaml

- include: /etc/ansible/dvs.yaml

- include: /etc/ansible/cle_lustre_client.yaml

- include: /etc/ansible/dws.yaml

Play's play types (netroot_setup) are excluded

#- include: /etc/ansible/netroot_setup.yaml

- include: /etc/ansible/netroot_cop.yaml

- include: /etc/ansible/multipath.yaml

- include: /etc/ansible/rca.yaml

- include: /etc/ansible/node_health.yaml

- include: /etc/ansible/rur.yaml

- include: /etc/ansible/ccm.yaml

- include: /etc/ansible/baseopts.yaml

- include: /etc/ansible/cray_image_binding.yaml

- include: /etc/ansible/sysconfig.yaml

- include: /etc/ansible/sysenv.yaml

- include: /etc/ansible/wlm_trans.yaml

- include: /etc/ansible/xtremoted.yaml

- include: /etc/ansible/cle_node.yaml

- include: /etc/ansible/freemem.yaml

- include: /etc/ansible/cle_motd.yaml

- include: /etc/ansible/allow_users.yaml

CUG 2017 Copyright 2017 Cray Inc.
119

Ansible – Play Ordering Log
boot# more /var/opt/cray/log/ansible/sitelog-booted
2016-04-21 16:30:35,494 Starting Ansible configuration start-cle phase
2016-04-21 16:30:36,135 Ignoring '/etc/opt/cray/config/current/config/cray_ipforward_config.yaml': Global inherit requested
2016-04-21 16:30:36,484 Ignoring '/etc/opt/cray/config/current/config/cray_logging_config.yaml': Global inherit requested
2016-04-21 16:30:36,760 Ignoring '/etc/opt/cray/config/current/config/cray_multipath_config.yaml': Global inherit requested
2016-04-21 16:30:37,816 Ignoring '/etc/opt/cray/config/current/config/cray_time_config.yaml': Global inherit requested
2016-04-21 16:30:38,006 Ignoring lower precedence file: /etc/opt/cray/config/global/config/cray_firewall_config.yaml
2016-04-21 16:30:38,530 Writing updated gathering to /etc/ansible/ansible.cfg
2016-04-21 16:30:38,531 Writing updated library to /etc/ansible/ansible.cfg
2016-04-21 16:30:38,532 Writing updated log_path to /etc/ansible/ansible.cfg
2016-04-21 16:30:46,739

2016-04-21 16:30:46,739 PLAY [local set_hostname playbook] **
2016-04-21 16:30:46,739
2016-04-21 16:30:46,739 GATHERING FACTS ***
2016-04-21 16:30:46,739
2016-04-21 16:30:46,739 ok: [localhost]
2016-04-21 16:30:46,739

2016-04-21 16:30:46,739 TASK: [set_hostname | task main, define nid format hostname for Cray blades else leave null] ***
2016-04-21 16:30:46,739
2016-04-21 16:30:46,739 ok: [localhost] => {"ansible_facts": {"host": "nid00001”}}
2016-04-21 16:30:46,739 CUG 2017 Copyright 2017 Cray Inc.

120

Ansible set_hostname Play

boot# cat /etc/ansible/set_hostname.yaml

Cray top level configuration management play
set_hostname
Copyright 2016 Cray Inc. All Rights Reserved.

- name: local set_hostname playbook
hosts: localhost

vars:
run_early: True

cray_play_type:
- cle
- netroot_setup

roles:
- role: set_hostname
when: cray_net.enabled and

cray_net.settings.service.data.cray_managed

CUG 2017 Copyright 2017 Cray Inc.
121

Ansible set_hostname Role

boot# cat /etc/ansible/roles/set_hostname/tasks/main.yaml
Cray role set_hostname
Copyright 2014-2016 Cray Inc. All Rights Reserved.
- name: task main, define nid format hostname for Cray blades else
leave null
set_fact:
host={{ 'nid%05d' |format(ansible_local.cray_system.nid|int)
if ansible_local.cray_system.is_cray_blade else '' }}

- name: task main, redefine hostname if found in networking config
set_fact:
host={{item.hostname}}

with_items:

cray_global_net.settings.hosts.data|union(cray_net.settings.hosts.dat
a)
when: ansible_local.cray_system.hostid == item.hostid

and item.hostname != ""

If we've determined a hostname, write it out
- name: task main, update hostname file and trigger hostname
command
template:
src=hostname.j2
dest=/etc/hostname
backup=yes

when: host != ""
notify: sethostname

CUG 2017 Copyright 2017 Cray Inc.
122

Ansible Facts and Config Set

● Use ansible command to list facts available on a node
node# ansible -m setup localhost | grep ansible_kernel
"ansible_kernel": "3.12.60-52.49.1_2.2-cray_ari_s”

● View cray system facts on a node
node# /etc/ansible/facts.d/cray_system.fact

● Explore the config set data from the SMW
smw# cfgset search --level advanced -s cray_global_net -t admin global

● cfgsetquery searches for variable name and sub path
matches, but provides the namespace path
node# /opt/cray/cfgutils/bin/cfgsetquery networks.data

CUG 2017 Copyright 2017 Cray Inc.
123

Testing Ansible plays in config set
● Switch between production and development configurations

● Clone the target CLE config set
smw# cfgset create --clone p0 p0.proving

● Clone the active NIMS map
smw# cmap list | grep -i true
smw# cmap create --clone <grepped-map> p0.proving.map

● Set the new NIMS map active and update a test node to use new config set
smw# cmap setactive p0.proving.map
smw# cnode update -c p0.proving <test-node>

● Adjust your CLE config set AND/OR add your site Ansible play to new config set
smw# cfgset update -m interactive -l advanced p0.proving
smw# cp -pr myansibleplay /var/opt/cray/imps/config/sets/p0.proving/ansible/

● Test Ansible on node with or without rebooting it
● Switch back to production by updating the active NIMS map

smw# cmap setactive <grepped-map>
smw# xtbootsys --reboot <test-nodes>

CUG 2017 Copyright 2017 Cray Inc.
124

Ansible ansible_cfg_search

● Search Ansible plays in config set and image root to see which plays
use which configuration variables
ansible_cfg_search [-h] [-p PLAYBOOK] [-s CONFIG_SETTING]

[-e LOOKUP_EXPRESSION] [-q]
config_set image

● List the Ansible playbooks in config set and image root
smw# ansible_cfg_search -q p0 custom_compute_cle
/var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/allow_users.yaml
/var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/alps.yaml
…

/var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/set_hostname.yaml
...
/var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/sysenv.yaml
/var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/wlm_detect.yaml

CUG 2017 Copyright 2017 Cray Inc.
125

Ansible ansible_cfg_search
● Search one Ansible playbook for plays and variables in config set and

image root
smw# ansible_cfg_search -p set_hostname.yaml p0 custom_compute_cle
/var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/set_hostname.yaml:

- /var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/roles/set_hostname/tasks/main.yaml:
- /var/opt/cray/imps/config/sets/p0/config/cray_netroot_preload_config.yaml:

- cray_net.settings.hosts.data
- /var/opt/cray/imps/config/sets/global/config/cray_network_boot_packages_config.yaml:

- cray_net.settings.hosts.data
…

- /var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/set_hostname.yaml:
- /var/opt/cray/imps/config/sets/global/config/cray_network_boot_packages_config.yaml:

- cray_net.enabled
- cray_net.settings.service.data.cray_managed

…

CUG 2017 Copyright 2017 Cray Inc.
126

Ansible Limitations

CUG 2017

● Service configuration when “in_init”
● cray-ansible runs before systemd starts so that plays can influence which services will be

started at boot by systemd
● Because systemd not running, cannot use the Ansible 'service' module
● Because systemd not running, cannot use systemctl enable/disable
● Must make symbolic links

● /etc/systemd/system/multi-user.target.wants
● References are parsed even if skipped

● It is common for roles to use the set_fact module to update the data available for plays at
runtime

● This can lead to problems if the fact is referenced in some contexts later
● If a constraint is placed on the role that causes the set_fact to be skipped, and a later task

references the fact in a when clause, for instance, the fact will be undefined and cause the play
to fail even though the same constraint that skipped the set_fact will skip the failing task

● It is not always easy to tell whether a fact reference will be parsed by Ansible, but in cases
where it does occur using the Jinja filter “|default(true)” will avoid the error by providing a value

● Thorough testing on uninvolved nodes will help identify such issues

Copyright 2017 Cray Inc.
127

Ansible References

● Cray publication:
● XC™ Series Ansible Play Writing Guide (CLE 6.0.UPxx S-2582)

● Ansible web site:
● http://www.ansible.com/configuration-management

● Wikipedia:
● http://en.wikipedia.org/wiki/Ansible_%28software%29

● Source:
● https://github.com/ansible/ansible

● Documentation:
● http://docs.ansible.com/

● Books (many more are available)
● Ansible: Up & Running
● Ansible for DevOps
● Ansible Playbook Essentials
● Mastering Ansible

CUG 2017 Copyright 2017 Cray Inc.
128

Agenda

● Introduction to SMW/CLE system management
● New system management features since UP01
● Best practices for using Ansible
● Troubleshooting XC system booting problems
● Migrating SMW/CLE software from 7.2/5.2 to 8.0/6.0
● Intro to CMC/eLogin system management
● Migrating CIMS/CDL to CMC/eLogin
● CLE Boot Performance and Reliability
● Q & A

CUG 2017 Copyright 2017 Cray Inc.
129

Troubleshooting XC System Booting Problems

● SMW daemons, processes, and logs
● Anatomy of XC system boot
● Booting process from CLE node view
● Troubleshooting Commands
● SMW HA daemons
● SMW HA commands
● Troubleshooting Techniques
● DEBUG shell
● Further information:

● XC™ Series Boot Troubleshooting Guide (CLE 6.0.UPxx S-2565)

CUG 2017 Copyright 2017 Cray Inc.
130

SMW daemons

erd
sedc_manager

state_manager

bootmanager

xtnetwatch

erfsd

xtnlrd

xthwerrlogd

rm

xtpcimon
xtlextpe xthwerrlog

CUG 2017

nimsd

nid_mgr

xtpmd

xtpowerd

xtdiagd
xtsnmpd

xtremoted

atftpd

BC
erd

BC
erd

CC
erd

CC
erd

daemon started by rsms
daemon started for a boot session

other SMW daemon
command that interacts with the daemon its rectangle touches

dumpd xtconsole

xtconsumer

cfgset-cache dhcpd

diod

bnd
(boot node)

xtdbsyncd
(boot or SDB node)

Copyright 2017 Cray Inc.
131

SMW Logs

CUG 2017

● System-wide /var/opt/cray/log
● bootmanager: bm.out and bm.out.1 (previous)
● erd: event-YYYYMMDD
● nid_manager: nm.out and nm.out.1 (previous)
● nimsd: nimsd.out and nimsd.out.1 (previous)
● sedc_manager: sedc_manager.out and sedc_manager.out.1 (previous)
● state_manager: sm.out and sm.out.1 (previous)
● xtdiagd: xtdiagd.out and xtdiagd.out.1 (previous)
● xtpmd: pmd.out and pmd.out.1 (previous)
● xtpowerd: xtpowerd.out and xtpowerd.out.1 (previous)
● xtremoted: xtremoted.out and xtremote.out.1 (previous)
● xtsnmpd: xtsnmpd.out and xtnsnmpd.out.1 (previous)

Copyright 2017 Cray Inc.
132

SMW Logs

CUG 2017

● Boot session (started by xtbootsys)
● /var/opt/cray/log/session-ID
● /var/opt/cray/log/p0-current links to current session-ID

● xtbootsys log: bootinfo.session-ID
● xtconsole: console-YYYYMMDD
● xtconsumer: consumer-YYYYMMDD
● xthwerrlogd: hwerrlog.session
● xtnetwatch: netwatch-YYYYMMDD
● xtpcimon: pcimon-YYYYMMDD
● xtnlrd: nlrd.session-ID

Copyright 2017 Cray Inc.
133

SMW Logs

CUG 2017

● CC/BC
● On controller: /var/log
● On SMW: /var/opt/cray/log/controller

● cX-Y directory for each cabinet
● Directory for each CC and BC

● messages-YYYYMMDD
● bios-n[0,1,2,3]-YYYYMMDD

● Commands executed on SMW
● /var/opt/cray/log/xtdiscover – Only xtdiscover
● /var/opt/cray/log/commands – most HSS commands

Copyright 2017 Cray Inc.
134

systemd Log

CUG 2017

● Dealing with systemd (new in SLES 12)
● systemd forgoes traditional logging mechanisms and stores the following

messages in a custom database
● syslogd messages
● Kernel log messages
● Initial ram and early boot messages
● Messages written to stdout/stderr for all services

● journalctl is used to access this information
● Display all kernel messages and other available information

node# journalctl –a
● Display all messages, but augment log lines with explanation from message catalog

node# journalctl -ax
● Display updates as they happen

node# journalctl -f

Copyright 2017 Cray Inc.
135

Anatomy of XC System Boot

● Booting XC system with xtbootsys
crayadm@smw> xtbootsys -a auto.hostname.start

● xtbootsys runs several tasks before working on the tasks in the boot automation file
● Boot automation file initiates boot of nodes in a certain order

● Default for systems without DAL:
1. Boot + SDB (if SDB image small enough to PXE boot)
2. SDB (if SDB image too large to PXE boot)
3. Service + Compute

● Default for systems with DAL:
1. Boot + SDB (if SDB image small enough to PXE boot)
2. SDB (if SDB image too large to PXE boot)
3. Service
4. Compute

● Additional actions in boot automation file can run commands before or after any of the above steps
● bootinfo log file shows every task executed and any output from each task

● Once the boot is complete, a summary will be added to the bootinfo log file with the names and duration of al tasks
● bootinfo log

● /var/opt/cray/log/p0-current/bootinfo-YYYYMMDD
● When analyzing a failed boot, check the bootinfo file for that failed boot session

CUG 2017 Copyright 2017 Cray Inc.
136

bootinfo-YYYYMMDD Boot Time Statistics

CUG 2017

● TASK CONCURRENT DURATION
● initialization 0m0s
● xtcli_part_cfg_show 0m4s
● user_input 0m4s
● analyze_archive 1m12s
● xtcli_status_a 0m0s
● xtcli_status_lcb 0m0s
● verify_nodelists 0m0s
● clean_up_old_daemons 0m1s
● Internal 0m22s
● disable_flood_control 0m1s
● start_xtconsole 0m0s
● config_bcsysd 0m0s
● config_bcbwtd 0m0s
● xtbounce 3m53s

Timings are
representational
only. Sample
from a small
system without
KNL and without
DAL.

Copyright 2017 Cray Inc.
137

bootinfo-YYYYMMDD Boot Time Statistics

CUG 2017

● TASK CONCURRENT DURATION
● cable_check 0m1s
● xthwinv 0m2s
● xthwinv_X 0m1s
● xtsdbhwcache 0m1s
● xtclear_alert 0m0s
● xtclear_warn 0m1s
● route_setup 0m0s
● start_xtconsole_1 0m0s
● start_xtnetwatch 0m0s
● start_xtpcimon 0m0s
● start_dumpd 0m0s
● start_xthwerrlogd 0m0s
● start_xtnlrd 0m0s
● start_xtwatcher 0m0s
● crms_exec 0m4s

Timings are
representational
only. Sample
from a small
system without
KNL and without
DAL

Copyright 2017 Cray Inc.
138

bootinfo-YYYYMMDD Boot Time Statistics

CUG 2017

● TASK CONCURRENT DURATION
● crms_set_failed_option 0m0s
● crms_set_failed_timeout 0m0s
● boot_bootnode_sdbnode 0m22s
● wait_for_bootnode_sdbnode YES 4m32s
● extract_debug YES 0m6s
● extract_debug_1 YES 0m3s
● extract_debug_2 YES 0m5s
● extract_debug_3 YES 0m6s
● crms_set_failed_option_1 0m0s
● crms_set_failed_timeout_1 0m0s
● boot_all 1m4s
● wait_for_all 6m5s
● crms_exec_via_bootnode 0m1s
● gather_ko 0m4s
● gather_fstab 0m3s
● clean_up YES 0m1s
● enable_flood_control YES 0m1s
● Total 17m55s

Timings are
representational
only. Sample
from a small
system without
KNL and without
DAL

Copyright 2017 Cray Inc.
139

Booting Process from CLE Node View – Boot Image

● xtbounce triggers the node power on
● node runs node BIOS
● Successful completion of node BIOS leaves the message

"Wait4boot" on the console
● xtbootsys calls ”xtcli boot” for the node

● Nodes PXE booting (boot and sometimes SDB)
● The node requests an IP address from the SMW via DHCP
● The boot image is transferred via the TFTP over the SMW's eth3 to the

node's eth0 network connection
● Nodes HSN booting (all other nodes)

● bnd on the boot node will extract files from the boot image to transfer to the
node's memory

CUG 2017 Copyright 2017 Cray Inc.
140

Booting Process from CLE Node View - cray-ansible

• /init from the boot image executes
• /init calls cray-ansible in init_netroot_setup (ONLY

if netroot node)
• If this fails, then the node will drop into the DEBUG shell
• If it succeeds, then /init continues

• /init calls cray-ansible in the init phase
• If this fails, then the node will drop into the DEBUG shell
• If it succeeds, then /init continues

• /init finishes and transfers control to systemd
• systemd mounts file systems from /etc/fstab,

starts all enabled services, and so forth
• cray-ansible runs in the booted phase

• If it fails, then a cray-ansible failed message to console
• If it succeeds, then a cray-ansible succeeded and a boot

succeeded message to console

Node Image at Boot time

CUG 2017

kernel loaded

/init bootstrapping

cray-ansible in /init
(only netroot_setup
plays)

simple sync v2

LNet play

DVS play

netroot mount play

cray-ansible in /init

set_hostname

simple sync v2

Other plays

Linux boot (systemd)

cray-ansible in booted
multi-user

set_hostname

simple sync v2

Other plays

Copyright 2017 Cray Inc.
141

cray-ansible and Ansible Logs on a CLE Node

● /init calls cray-ansible in the init netroot setup phase (only if node
is using netroot)
● /var/opt/cray/log/ansible/sitelog-init-netroot_setup
● /var/opt/cray/log/ansible/file-changelog-init-netroot_setup
● /var/opt/cray/log/ansible/file-changelog-init-netroot_setup.yaml

● /init calls cray-ansible in the init phase
● /var/opt/cray/log/ansible/sitelog-init
● /var/opt/cray/log/ansible/file-changelog-init
● /var/opt/cray/log/ansible/file-changelog-init.yaml

● systemd runs cray-ansible in the booted phase
● /var/opt/cray/log/ansible/sitelog-booted
● /var/opt/cray/log/ansible/file-changelog-booted
● /var/opt/cray/log/ansible/file-changelog-booted.yaml

CUG 2017 Copyright 2017 Cray Inc.
142

Troubleshooting Commands – see Guide

● RSMS daemons
● diod daemon
● cray-cfgset-cache daemon
● DHCP and TFTP daemons
● Console messages
● xtcon
● xtalive
● stonith
● xtcablecheck
● xthwinv
● xtcli part_cfg
● xtcli status
● Changing node between service and

compute
● NIMS map (cmap)

● NIMS node information (cnode)
● Bootimages and image roots
● Tools to check network traffic
● Firewall/iptables
● Searching a config set
● Searching Ansible playbooks in config set

and image root
● Searching Ansible plays on a node
● Checking for warnings, alerts, reservations
● Checking for locks
● Checking for PCIe link errors
● Checking for hardware errors
● Checking for LCB and router errors

CUG 2017 Copyright 2017 Cray Inc.
143

SMW HA Daemons

CUG 2017

● SLE HA Pacemaker daemons
● pacemakerd – Pacemaker cluster resource manager
● cib: cluster information base daemon
● stonithd: STONITH daemon (reset or power down failed node)
● lrmd: local resource manager daemon
● attrd: attribute daemon
● pengine: policy engine daemon
● crmd: cluster resource manager daemon

● Logs
● /var/log/pacemaker.log
● /var/log/smwha.log

Copyright 2017 Cray Inc.
144

SMW HA Commands

CUG 2017

● Is HA cluster configured and healthy?
smw# /opt/cray/ha-smw/default/sbin/ha_health
Cluster State
--
Health State : Healthy
Active Node : minnie
Node-1 : mickey (online)
Node-2 : minnie (online)
Number of Resources : 33
Number of Resources Running : 33
Number of Resources Stopped : 0
Maintenance Mode : disabled
Stonith Mode : enabled

● Check status of cluster resources
smw# crm_mon -1r
● All services should be in ”Started” state and on the active node, except for stonith (one on each SMW)

● Check health of DRBD sync of PostgreSQL database between smw1 and smw2
smw# cat /proc/drbd

Copyright 2017 Cray Inc.
145

Troubleshooting Techniques

● XC™ Series Boot Troubleshooting Guide (CLE 6.0.UPxx S-2565)
● List of over 30 potential errors and where to look further

● xtbootsys related failures
● cray-ansible related failures
● Node mount failures
● Node network interface failures
● Content from Netroot, diags, and PE image root failures
● IDS failures

CUG 2017 Copyright 2017 Cray Inc.
146

Troubleshoot A Boot – Boot Flow and Exits

●

CUG 2017

cray-ansible (init)

systemd

cray-ansible (booted)

On failure
drop into DEBUG shell
analyze or fix problem
exit (runs cray-ansible again)

On failure
exit out of cray-ansible,
but other things started
by systemd may continue

success

success

On exit, rerun cray-ansible

Boot Succeeded

success

Boot failed

failed

Copyright 2017 Cray Inc.
147

Troubleshoot A Boot

● Detect Ansible failure in /init for a node
● Check the console log for the node

smw# grep FAILED /var/opt/cray/log/p0-current/console-*
cray-ansible: /etc/ansible/site.yaml completed in init – FAILED.

● Debugging Ansible failures in /init for a node
● Ansible failures in init always cause node to drop into DEBUG shell
● DEBUG shell can be accessed via xtcon from SMW

smw# xtcon c0-0c0s8n3
nid00035#

● Inspect ansible log, change config set and rerun cray-ansible, or other
corrective action

● Exiting from debug shell will cause cray-ansible to run again
nid00035# exit

● Boot will not proceed for this node until cray-ansible in init succeeds

CUG 2017 Copyright 2017 Cray Inc.
148

Troubleshoot A Boot

CUG 2017

● Full Ansible logs too verbose to send to SMW for each node so inspect on the node
● Does ssh succeed to login to the node?

● Look at Ansible logs
● Change config set data and rerun cray-ansible

● Does ssh fail to login to the node?
● Try connecting with xtcon

smw# xtcon c0-0c0s8n3
● Look at Ansible logs
● Change config set data and rerun cray-ansible

● Does xtcon fail to login to the node?
● Try rebooting the node (with a warm boot)

● Set DEBUG=true in kernel parameters in NIMS for the node
● Reboot node, connect to console with xtcon, step through /init

● Look at config set, network interface, etc.
● Check Ansible logs
● Change config set data and rerun cray-ansible

Copyright 2017 Cray Inc.
149

Troubleshoot A Boot

● Once on the node, logs are in /var/opt/cray/log/ansible
● First (init) phase

● sitelog-init has Ansible play output
● file-changelog-init shows each file changed by an Ansible play
● file-changelog-init.yaml shows each file changed by an Ansible play in YAML

● Second (booted) phase
● sitelog-booted has Ansible play output
● file-changelog-booted shows each file changed by an Ansible play
● file-changelog-booted.yaml shows each file changed by an Ansible play in YAML

● Ansible writes changelogs for most files changed by the Ansible
modules affecting files
● acl, assemble, blockinfile, copy, fetch, file, find, ini_file, lineinfile, patch,

replace, stat, synchronize, template, unarchive, xtattr
● See http://docs.ansible.com/ansible/list_of_files_modules.html

CUG 2017 Copyright 2017 Cray Inc.
150

Troubleshoot A Boot

CUG 2017

● sitelog files show output from each task in executed plays
2016-01-17 12:15:27,671 TASK: [cle_motd | task motd, release] ***
2016-01-17 12:15:27,671 changed: [localhost] => {"changed": true, "cmd": "grep RELEASE
/etc/opt/cray/release/cle-release | awk -F\\='{print $2}'", "delta": "0:00:00.002536", "end": "2016-01-17
12:15:27.471384", "rc": 0, "start": "2016-01-17 12:15:27.468848", "stderr": "", "stdout": "6.0.UP01",
"warnings": []}

● Location of failing task can be found in plays
boot# grep -Rn "task motd, release" /etc/ansible /etc/opt/cray/config/current/ansible
/etc/ansible/roles/cle_motd/tasks/motd.yaml:15:- name: task motd, release

● file-changelog files show Ansible phase then each file and which
play changed it
● file-changelog-init
Apr 05 2016 21:07:47 (init) template: file '/etc/nologin' changed by Ansible task file
'/etc/ansible/roles/early/tasks/nologin.yaml' with owner=root, group=root, mode=0775

● file-changelog-booted
Apr 05 2016 16:09:43 (booted) lineinfile: file '/etc/sysconfig/nfs' changed by Ansible task file
'/etc/ansible/roles/fs_share/tasks/nfs_shares.yaml' with owner=None, group=None, mode=None

Copyright 2017 Cray Inc.
151

Troubleshoot A Boot – Check Setting in Config Set

CUG 2017

● Use search to print out the entire config
● To narrow a search, use state and level filters
smw# cfgset search --level advanced --state set p0

● Use search to locate settings in a config set
smw# cfgset search --term myvalue CONFIGSET

● Search tips:
● To broaden a search, use multiple search terms (a logical OR)
● Unlike the create and update subcommands, the search

subcommand has a default value of all for the state filter

Copyright 2017 Cray Inc.
152

Troubleshoot A Boot – Check Setting in Config Set

CUG 2017

● Search for the terms c0-0c0s1n1 and lus/ in settings of any level in
config set p0:
smw# cfgset search --term c0-0c0s1n1 --term lus/ --level advanced p0
1 match for 'c0-0c0s1n1' from cray_scalable_services_config.yaml
#--
cray_scalable_services_data.settings.scalable_service.data.tier1: c0-0c0s0n1, c0-
0c0s1n1
1 match for 'lus/' from cray_node_health_config.yaml
#--
cray_node_health_.settings.filesys_plugins.data.Default Filesystem.path: /lus/case1
...(more matches not included in example)

● To output more information about the fields and values that match the
search term(s) with level, state, and default value
● smw# cfgset search --term myvalue –format full CONFIGSET

Copyright 2017 Cray Inc.
153

Troubleshoot A Boot – List Playbooks

CUG 2017

● List the Ansible playbooks in a config set and image root
smw# module load system-config
smw# ansible_cfg_search -q p0 custom_compute_cle
/var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/allow_users.yaml
/var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/alps.yaml
...
/var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/set_hostname.yaml
...
/var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/sysenv.yaml
/var/opt/cray/imps/image_roots/custom_compute_cle/etc/ansible/wlm_detect.yaml

Copyright 2017 Cray Inc.
154

Troubleshoot A Boot – Search Playbooks

CUG 2017

● Search the Ansible playbooks in a config set and
image root for the set_hostname.yaml playbook
smw# module load system-config
smw# ansible_cfg_search -p set_hostname.yaml p0 custom_compute_cle

● Search the Ansible playbooks to find which plays do
something with the setting
cray_alps.settings.common.data.xthostname
smw# module load system-config
smw# ansible_cfg_search p0 service_cle_6.0.UP01-build6.0.96_sles_12-
created20160614 -s cray_alps.settings.common.data.xthostname

Copyright 2017 Cray Inc.
155

DEBUG Shell

● /init script has breakpoints that enable a user to examine
various system values and files during the boot

● Check /init for the image root related to the node’s boot
image on the SMW in
/var/opt/cray/imps/image_roots/custom_compute_cle
${DEBUG} && echo "DEBUG SHELL: in setup_netroot; exit will init vars" > ${con_debug}
${DEBUG} && echo "DEBUG SHELL: in setup_netroot; exit will contruct netroot" > ${con_debug}
${DEBUG} && echo "DEBUG SHELL: prior to DVS lower mount; exit will resume" > ${con_debug}
${DEBUG} && echo "DEBUG SHELL: prior to chroot prep; exit will resume" > ${con_debug}
${DEBUG} && echo "DEBUG SHELL: post netroot preload debug; exit will resume" > ${con_debug}
${DEBUG} && echo "DEBUG SHELL: prior to mounting merge layer tmpfs" > ${con_debug}
${DEBUG} && echo "DEBUG SHELL: prior to chroot Ansible; exit will resume" > ${con_debug}

CUG 2017 Copyright 2017 Cray Inc.
156

DEBUG Shell

● Connect to console of node (in 1st window)
smw# xtcon c8-0c2s8n1

● Set DEBUG kernel parameter for a node (in 2nd window)
smw# cnode update -k DEBUG=true c8-0c2s8n1
smw# cnode list c8-0c2s8n1

● Reboot node (in 2nd window)
crayadm@smw> xtbootsys --reboot -r "testing init" c8-0c2s8n1

● Interact with DEBUG shell in 1st window
● Remove DEBUG kernel option when done

smw# cnode update -K DEBUG c8-0c2s8n1
smw# cnode list c8-0c2s8n1

CUG 2017 Copyright 2017 Cray Inc.
157

Agenda

● Introduction to SMW/CLE system management
● New system management features since UP01
● Best practices for using Ansible
● Troubleshooting XC system booting problems
● Migrating SMW/CLE software from 7.2/5.2 to 8.0/6.0
● Intro to CMC/eLogin system management
● Migrating CIMS/CDL to CMC/eLogin
● CLE Boot Performance and Reliability
● Q & A

CUG 2017 Copyright 2017 Cray Inc.
158

SMW/CLE Migration

CUG 2017

● SMW 8.0/CLE 6.0 requires a fresh install of software on the
SMW
● Leaves behind

● SLES11SP3
● bootroot and sharedroot filesystems
● xtopview for specialized /etc (default, class, node) views in sharedroot
● persistent /var filesystem for service nodes

● Changes/adds
● Based on SLES12 operating system
● New filesystem layout on SMW
● New filesystem layout on boot RAID
● LVM with BTRFS and XFS filesystems
● Persistent (nonvolatile) storage for nodes not just in /var
● Uses repositories for zypper/yum on SMW and CLE images

Copyright 2017 Cray Inc.
159

SMW/CLE Migration

CUG 2017

● Migration goal
● Minimize system downtime while preserving configuration and operational data

● Migration SMW used for preparation
● Additional physical SMW with additional boot RAID

● Scope
● SMW 7.2.UP04/CLE 5.2.UP04 migration to SMW 8.0.UP03/CLE 6.0.UP03
● XC series systems only—not XE/XK
● SMW HA system from SLEHA11.SP3.UP02 to SLEHA12.SP0.UP03

● Migration caveats
● Process to preserve DAL (Lustre) filesystem untested, but should not require reformatting
● DAL LMT database not migrated
● DataWarp Intel P3608 SSDs may need to be reformatted unless FN6121a was already applied
● DataWarp Fusion IO ioMemory3 (SX300) are supported, but not other versions from Fusion IO
● DataWarp Fusion IO ioMemory3 SSDs will be flashed to newer firmware for CLE 6.0.UP03 which is

incompatible with old CLE 5.2.UP04

Copyright 2017 Cray Inc.
160

SMW/CLE Migration – Migration Service Offering

CUG 2017

● Communication on Cray’s Migration Service offering will be
available through your Account Manager

● See Cray Field Notice (FN6149) for details
● Cray will open cases against each XC asset running CLE

5.2 to determine/track:
● Long-term plans (e.g. no migration to 6.0 or desired timeframe)
● Migration planning including hardware needs

● Necessary hardware required will be determined on a site-
by-site basis and will be covered under the Migration
Service Offering

Copyright 2017 Cray Inc.
161

SMW/CLE Migration – Process Phases

CUG 2017

● Training
● Planning
● Install migration SMW
● Prepare config data and images
● Preserve other data before shutdown
● Shutdown and switch

Copyright 2017 Cray Inc.
162

SMW/CLE Migration– Cray Training

● Cray training with lectures and hands-on experience in labs
● 4 day course on Cray XC Series System Administration with SMW 8.0/CLE

6.0 content
● 2 day course on eLogin

● Both online and instructor lead courses available to customers in
Chippewa Falls, Wisconsin, USA or at a customer site

● Sign up for classes and see pricing by starting at our Web site:
● cray.com à Support à Training

● Or this link: http://www.cray.com/support/training/schedule

● Contract Cray Training for scheduling and pricing:
● registrar@cray.com (or call: +1-715-726-4036)

CUG 2017 Copyright 2017 Cray Inc.
163

SMW/CLE Migration – Training

CUG 2017

● New system management topics highlighted in Migration
guide
● Cray Scalable Services
● Cray XC System Configuration
● Config Sets
● Config Set Caching
● Variable Names in the Configurator and Configuration Worksheets
● Node Groups
● Simple Sync
● Boot Automation Files
● Snapshots and Config Set Backups during a Migration
● Install Third-Party Software with a Custom Image Recipe

Copyright 2017 Cray Inc.
164

SMW/CLE Migration – Documentation

● CrayPort http://crayport.cray.com and CrayDoc https://pubs.cray.com
● What’s New for CLE 6.0 and SMW 8.0 (CLE 6.0 UPxx S-2573)
● XC™ Series Ansible Play Writing Guide (CLE 6.0.UPxx S-2582)
● XC™ Series Boot Troubleshooting Guide (CLE 6.0.UPxx S-2565)
● XC™ Series CLE 5.2 to CLE 6.0 Software Migration Overview (CLE 6.0.UP03 S-2574)
● XC™ Series CLE 5.2 to CLE 6.0 Software Migration Using a Physical SMW (CLE 6.0.UP03 S-2580)
● XC™ Series eLogin Administration Guide (CLE 6.0.UPxx S-2570)
● XC™ Series eLogin Installation Guide (CLE 6.0.UPxx S-2566)
● XC™ Series esLogin to eLogin Migration Guide (CLE 6.0.UP03 S-2584)
● XC™ Series SMW HA Installation Guide (CLE 6.0 UPxx S-xxx)
● XC™ Series SMW HA XC Administration Guide (CLE 6.0 UPxx S-0044)
● XC™ Series System Administration Guide (CLE 6.0.UPxx S-2393)
● XC™ Series System Configurator User Guide (CLE 6.0.UPxx S-2560)

CUG 2017 Copyright 2017 Cray Inc.
165

New commands in SMW 8.0/CLE 6.0

● IMPS commands
● recipe, pkgcoll, repo, image

● CMF
● cfgset, cray-ansible, ansible_cfg_search

● NIMS
● cmap, cnode

● General
● imgbuilder, snaputil, cnat, cnat-status

CUG 2017 Copyright 2017 Cray Inc.
166

SMW/CLE Migration - Planning

CUG 2017

● Cray Service will work with customer to plan hardware
considerations for migration
● Additional SMW and boot RAID
● Is SDB node Ethernet connected to SMW?
● How many tier2 nodes will be needed?
● Is the system SMW HA?
● Does the XC system have KNC nodes?

● Not supported with SMW 8.0/CLE 6.0

Copyright 2017 Cray Inc.
167

SMW/CLE Migration - Planning

CUG 2017

● Plan tier2 nodes
● Recommended ratio of clients to tier2 servers is 400 to 1
● Repurposed compute nodes (RCN) are best choice
● Distribute nodes throughout the system for resiliency in event of

hardware failure
● Fine print

● At least one server must be provided
● Minimum of two nodes on different blades for resiliency
● Never use these nodes as tier2

● KNL (KNights Landing) compute nodes as RCN
● Direct Attached Lustre (DAL) servers
● RSIP (Realm Specific IP) servers
● login nodes

Copyright 2017 Cray Inc.
168

SMW/CLE Migration – Migration SMW

CUG 2017

● Additional SMW and Boot RAID
● The CLE 6.0/SMW 8.0 software is installed on this SMW before

any of the other preparation work is done
● Much of the configuration can be done without being connected to

XC hardware

Copyright 2017 Cray Inc.
169

SMW/CLE Migration – Preparation

CUG 2017

● Prepare config data and images
● Archive SMW 7.2.UP04/CLE 5.2.UP04 configuration

● Save files and output from running probe commands
● Transform data to config set

● Translation tables for config worksheets
● Load and validate worksheets

● Manipulate images
● Choose image recipes to build
● Build image roots and boot images
● Assign kernel parameters to nodes
● Check NIMS data

● Identify and port site-local scripts

Copyright 2017 Cray Inc.
170

SMW/CLE Migration – Translation Tables

CUG 2017

Column in table Description
Setting/Field Name Name of setting in config service
Default Default value for the setting
Level required, basic, or advanced
Probe Suggested command to probe SMW 7.2/CLE 5.2

system and where it should be run

Files/Installer Context of where to find file (SMW, bootroot, default
shareroot, class sharedroot, or node sharedroot); the
path to file; variable within file
OR
A variable in SMWinstall.conf or CLEinstall.conf

Copyright 2017 Cray Inc.
171

SMW/CLE Migration – Preparation

CUG 2017

● No tools for SMW/CLE config translation
● All data transformation must be done by documented procedures

● Config set data entry for migration
● global config set – About 450 settings in 9 config services
● CLE config set – About 850 settings in 49 config services

● Plus 21 settings for each CLE node with a network interface
● 200 network nodes = 4200 settings

● Total settings – About 1300-5500

Copyright 2017 Cray Inc.
172

SMW/CLE Migration – Final Shutdown

CUG 2017

● Preserve other data before shutdown
● Run final accounting reports
● Save operational data
● Save site user data
● Drain WLM queues

Copyright 2017 Cray Inc.
173

SMW/CLE Migration – Shutdown and Switch

CUG 2017

● Additional SMW and boot RAID
● Shut down the CLE system
● (SMW HA only) Put the SMW HA cluster in maintenance mode
● Switch cabling to the migration SMW and boot RAID
● Discover XC system hardware and update firmware on components
● Complete CLE configuration with hardware connected
● Complete first boot of CLE nodes with new software
● Configure other SMW 8.0/CLE 6.0 features and services and install

additional software (including SMW HA)
● Restore any SMW 7.2/CLE 5.2 operational data (files, database

exports, site user data, and site-local scripts)

Copyright 2017 Cray Inc.
174

Agenda

● Introduction to SMW/CLE system management
● New system management features since UP01
● Best practices for using Ansible
● Troubleshooting XC system booting problems
● Migrating SMW/CLE software from 7.2/5.2 to 8.0/6.0

● Intro to CMC/eLogin system management
● Migrating CIMS/CDL to CMC/eLogin
● CLE Boot Performance and Reliability
● Q & A

CUG 2017 Copyright 2017 Cray Inc.
175

Intro to CMC/eLogin System Management

● What is CMC/eLogin?
● Key differences between CIMS/esLogin and CMC/eLogin
● System topology
● eLogin image management
● eLogin image configuration
● Cray System Management Software (CSMS)

● eLogin Node configuration
● eLogin Node inventory
● eLogin Node deployment
● Troubleshooting

CUG 2017 Copyright 2017 Cray Inc.
176

What is CMC/eLogin?

● CMC: Cray Management Controller
● Replaces CIMS/esMS server
● Manages eLogin nodes
● Uses Cray System Management Software (CSMS)

● Replaces Bright Cluster Manager software
● Built on OpenStack

● eLogin: Cray Development and Login server (CDL)
● Provides a login, job submission, and development environment for CLE 6.0.UP03
● Replaces esLogin CDL which supported CLE 5.x
● Available to users independent of the availability of THE CRAY® XC™ SERIES

CUG 2017 Copyright 2017 Cray Inc.
177

CMC/eLogin and CIMS/esLogin Compared

● Key Differences
CMC/eLogin CIMS/esLogin

Image
Management

• Prescriptively built on the SMW from CLE, eLogin,
and any customer required sources.

• Image is exported to the CMC for deployment to
eLogin nodes.

• ESL image ISO released by
Cray.

• Installed on the CIMS for
deployment to esLogin nodes.

Image
Configuration

• eLogin configuration is provided by the Cray CLE
Configuration Set created on the SMW.

• Configuration Set is pushed to CMC for use by eLogin
nodes.

• Bright Cluster Manager

Programming
Environment

• Shared Cray PE image synchronized to each eLogin
node from the CMC.

• Cray PE installed to the ESL
image on the CIMS.

System
Management

• Cray System Management Software • Bright Cluster Manager

CUG 2017 Copyright 2017 Cray Inc.
178

Boot Node

CMC/eLogin System Topology:
It is the same as CIMS/esLogin

SMW

Compute Node Gateway
Node

Cray
Management
Controller

eLogin Node

Cray XC

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node

eLogin Node
eLogin Node

eLogin Node
eLogin Node

eLogin Node

Lustre
Storage

Gateway
NodeGateway

NodeGateway
Node

Users and
Site

Services

System
Administrators

CUG 2017 Copyright 2017 Cray Inc.
179

eLogin Networking to the Cray XC

● 4 supported topologies
● Differ in connection to the Gateway and SDB nodes of the

THE CRAY® XC™ SERIES system

● Gateway Node connection
● Direct connection over private network
● Connect over the Site User network

● SDB node connection
● Routed via Gateway Node
● Direct connection over private network

CUG 2017 Copyright 2017 Cray Inc.
180

Gateway Nodes on a private network
SDB Node routed through Gateway Nodes

SMW

Cray
Management

Controller

Switch

Site
Admin

Net

IPMI
Net

Mgmt
Net

Site
User
Net

eLogin Node

Lustre
Storage

Cray XC

Sw
itch

LNet IB Switch

Users and
Site

Services

System
Administrators

SDB Node

Gateway
Node

LNet Node

Gateway
Node

LNet Node

eLogin Node
BMC

Routed
Connection

CUG 2017 Copyright 2017 Cray Inc.
181

Gateway and SDB Nodes on a private network

SMW
Switch

Site
Admin

Net

IPMI
Net

Mgmt
Net

Site
User
Net

eLogin Node

Lustre
Storage

Cray XC

Sw
itch

LNet IB Switch

Users and
Site

Services

System
Administrators

SDB Node

Gateway
Node

LNet Node

Gateway
Node

LNet Node

eLogin Node
BMC

Cray
Management

Controller

CUG 2017 Copyright 2017 Cray Inc.
182

Gateway Nodes on Site User Net
SDB Node routed through Gateway Nodes

SMW
Switch

Site
Admin

Net

IPMI
Net

Mgmt
Net

Site
User
Net

eLogin Node

Lustre
Storage

Cray XC

LNet IB Switch

Users and
Site

Services

System
Administrators

SDB Node

Gateway
Node

LNet Node

Gateway
Node

LNet Node

eLogin Node
BMC

Routed
Connection

Cray
Management

Controller

CUG 2017 Copyright 2017 Cray Inc.
183

Gateway Nodes on Site User Net
SDB Node on a private network

SMW
Switch

Site
Admin

Net

IPMI
Net

Mgmt
Net

Site
User
Net

eLogin Node

Lustre
Storage

Cray XC

Sw
itch

LNet IB Switch

Users and
Site

Services

System
Administrators

SDB Node

Gateway
Node

LNet Node

Gateway
Node

LNet Node

eLogin Node
BMC

Cray
Management

Controller

CUG 2017 Copyright 2017 Cray Inc.
184

System Topology:
SMW to Cray Management Controller (CMC) options

SMW

Cray
Management

Controller

Switch

Site
Admin

Net

IPMI
Net

Mgmt
Net

System
Administrators

SMW

Cray
Management

Controller

Switch

Site
Admin

Net

IPMI
Net

Mgmt
Net

System
Administrators

As peers on Site Admin Net CMC on private net behind SMW

CUG 2017 Copyright 2017 Cray Inc.
185

eLogin Image Management

● Same as Cray CLE images – IMPS

● Image Components
● SLES 12
● Lustre Client
● Cray eproxy (formerly eswrap)

● Allows a set of Cray XC and WLM commands to be executed from the eLogin
● Any customer required packages

● Cray Programming Environment (Cray PE)
● Separate from the eLogin OS image
● Same Cray PE as the Cray XC
● Synchronized to local persistent storage on the eLogin node

CUG 2017 Copyright 2017 Cray Inc.
186

eLogin Image Management:
Image Creation

● Images are built on the SMW
● Package repositories are under:

/var/opt/cray/repos
● All rpm dependencies are

resolved from these repositories

● Prescribed by Image
Recipes
● Images are rooted under:

/var/opt/cray/imps/image_roots
● eLogin recipes based on CLE

recipes plus eLogin specific
packages

● Recipes may be cloned and
modified

● Images must be exported to the
CMC for eLogin deployment

SMW

Update
Repo

Update
Repo

Update
RepoProductProduct

Product
RepoProductProduct

Product
ISO

Image
Image

Recipe
Recipe

Recipe
Recipe

187
CUG 2017 Copyright 2017 Cray Inc.

eLogin Image Management:
Image Export to the Cray Management Controller

● Images must be exported to the CMC any time they are changed

smw:~ # image export elogin_image_20170319 --format qcow2 \
-d glance:example-cmc:elogin_image_20170319

● The “elogin_image_20170319” image will be converted to qcow2 format
and exported to the glance image service on the CMC named “example-
cmc”

● The image will be registered in glance as “elogin_image_20170319”

● Raw image format is also supported
● For raw images, it is suggested to add ”.raw” to the end of the image name

CUG 2017 Copyright 2017 Cray Inc.
188

eLogin Image Management:
Image Export to the Cray Management Controller

● NOTE: Pushing the same image more than once
● You MUST login to the CMC and delete the existing image from glance or you will

have two images with the same name registered!

● cmc: # source /root/admin.openrc
cmc: # glance image-delete <image_name>

● In the case of images exported in qcow2 format, there are three images to delete
● <image_name>.qcow2
● <image_name>.initramfs
● <image_name>.kernel

CUG 2017 Copyright 2017 Cray Inc.
189

eLogin Image Configuration

● Same as Cray CLE images – Cray Management Framework (CMF)
● Configuration data is separate from the image
● eLogin configuration data is in the same configuration set as Cray CLE

● Configuration sets are created and maintained on the SMW
● Must be pushed to the CMC and registered any time they are changed
● smw|cmc:/var/opt/cray/imps/config/sets/<config_set_name>

● More than one configuration set can exist to support alternative
configurations
● Only one configuration set is active on a given eLogin node at a time

CUG 2017 Copyright 2017 Cray Inc.
190

eLogin Image Configuration

● Pushing configuration sets to the CMC
● Both the global and cle config sets must be pushed to the CMC

smw # cfgset push -d <cmc-name> global
smw # cfgset push -d <cmc-name> <config_set_name>

● Config set is filtered for eLogin and stored in an OpenStack Swift container for
deployment
● add_configset must be run any time the config set is modified

cmc # add_configset –c <config_set_name> -e
/etc/opt/cray/elogin/exclude/<exclude_list>

CUG 2017 Copyright 2017 Cray Inc.
191

eLogin Image Configuration

● add_configset default exclude list

worksheets
config/cray_sdb_config.yaml # sdb configuration
files/roles/common/etc/ssh # ssh keys
files/roles/common/root # ssh and nodehealth
#files/roles/munge # munge
files/roles/common/etc/opt/cray/xtremoted-agent
files/roles/merge_account_files # site provided user account info

CUG 2017 Copyright 2017 Cray Inc.
192

eLogin Image Configuration

● Config set on an eLogin node is at:

elogin:/etc/opt/cray/config/current
elogin:/etc/opt/cray/config/global

● /etc/opt/cray/config/current contains the following
subdirectories
● ansible, config, dist, files

● config subdirectory contains the configuration files

CUG 2017 Copyright 2017 Cray Inc.
193

Configuration Sets:
Services Shared with Cray CLE

● eLogin references several Cray CLE services:
● cray_local_users - local users configuration
● cray_time - settings for various aspects of time including ntp, timezone
● cray_user_settings - user environment settings
● cray_auth - user authentication settings - LDAP, NIS, etc.
● cray_ssh - SSH settings
● cray_lustre_client - Lustre Client settings
● cray_net - management, site, and LNet network settings
● cray_simple_sync - a generic method of distributing files to targeted locations

on the eLogin nodes

CUG 2017 Copyright 2017 Cray Inc.
194

Configuration Sets: eLogin Specific Services

● eLogin references the following eLogin specific
services:
● cray_elogin_lnet – Lustre Network (LNet) settings for eLogin
● cray_elogin_networking – eLogin postfix configuration
● cray_eswrap – settings for executing certain Cray XC and WLM commands

CUG 2017 Copyright 2017 Cray Inc.
195

Agenda: CMC/eLogin Overview

● Intro to CMC/eLogin System Management
● What is CMC/eLogin?
● Key differences between CIMS/esLogin and CMC/eLogin
● System topology
● eLogin image management
● eLogin image configuration
● Cray System Management Software (CSMS)

● eLogin Node configuration
● eLogin Node inventory
● eLogin Node deployment
● Troubleshooting

CUG 2017 Copyright 2017 Cray Inc.
196

Introduction to the Cray Management Controller
Cray System Management Software (CSMS)

● Overview
● Three main software components

● Base Operating System is CentOS 7
● Installed via Cray Bootable CentOS ISO image

● Cray System Management Software
● Installed via Cray System Management Software ISO image

● eLogin support software
● Installed via eLogin Installation ISO image

CUG 2017 Copyright 2017 Cray Inc.
197

Introduction to the Cray Management Controller
Cray System Management Software (CSMS)

● Leverages OpenStack services
● Keystone – Authentication between OpenStack services
● Nova – eLogin lifecycle management
● Ironic with Cray Fuel – eLogin Bare metal provisioning
● Glance - Image service
● Swift – Object storage (backs Glance) – storage for eLogin config set and other

config data
● Neutron – Networking service for CMC
● Heat – Orchestration – used for deploying eLogin nodes, calls Nova and Ironic

● Provides remote console and console logging
● eLogin syslogs are forwarded to the Cray Management Controller

CUG 2017 Copyright 2017 Cray Inc.
198

Managing eLogin Nodes: Image Registration

● eLogin images are registered on the CMC (Glance)
● Images can be in raw or qcow2 format

● “image export” command takes care of image registration from the SMW

● Local Disk partitioning is separate from the image
● eLogin nodes have two disk devices

● One for the eLogin image
● One for persistent storage – config set data and Cray PE

● Partitioning information is contained in the deploy_config_elogin.json file
● Registered in the Glance service
● Installed as part of the eLogin installation process
● Can set to verify partitioning, or clean and repartition on every deployment

CUG 2017 Copyright 2017 Cray Inc.
199

Managing eLogin Nodes: Cray PE

● Cray Programming Environment (Cray PE)
● Pushed to the CMC from the SMW
● Same exact Cray PE image that the XC is using!

smw # image push -d <cmc-name> <pe_compute_image>

● eLogin syncs Cray PE from the CMC server
● Differs from esLogin where Cray PE was installed directly to the esLogin image

which caused these images to grow very large
● Cray PE syncs to the persistent disk, not the eLogin image disk

CUG 2017 Copyright 2017 Cray Inc.
200

Boot Node

Managing eLogin Nodes: Image Flow

Login Image

SMW

Config
Set

Compute Image

PE Image

eLogin ImageLogin Image

Compute Image

PE Image

Config
Set

Cray
Management
Controller (CMC)

eLogin Image

PE Image

Config
Set

“image push” eLogin Node

Config
Set

eLogin Image

PE Image

Cray XC

eLogin Node

Config
Set

eLogin Image

PE Image

CUG 2017 Copyright 2017 Cray Inc.
201

Managing eLogin Nodes: Image Configuration

● Configuration performed locally on the node
● Config set is retrieved from the OpenStack Swift container by an ”action

script”
● Sites may add their own Ansible plays to the config set
● cray-ansible finds all Ansible plays and executes them
● Ansible plays are packaged with their application software

● eLogin plays get packaged with the eLogin software

● cray-ansible runs in the pre-pivot init phase of the
eLogin image boot process

CUG 2017 Copyright 2017 Cray Inc.
202

Managing eLogin Nodes: Extending Config

● Cray’s Configuration Management Framework (CMF)
allows additional configuration tasks
● Add site-specific tasks in concert with Cray-provided Ansible boot-time

execution

● As with CLE, site Ansible plays may perform the
following tasks on eLogin
● Start/stop services
● Change crontab entries
● Modify files
● Copy files

CUG 2017 Copyright 2017 Cray Inc.
203

Managing eLogin Nodes: Simple Sync
● Alternative method of installing files to eLogin nodes other than using a site

Ansible play
● Simple rsync of files from a root in the config set container to “/” on the eLogin node
● Files can be installed by hostname or by node_group membership

● To install a file to a specific eLogin node, place it under the following directory on the
CMC

/var/opt/cray/imps/config/sets/<config_set>/files/simple_sync/hostnames/<
host_name>/files/<path_to_file_on_elogin>

● To install a file to a group of eLogin nodes, place it under the following directory on the
CMC. The <node_group> must be created in the config set prior to being able to use it.

/var/opt/cray/imps/config/sets/<config_set>/files/simple_sync/nodegroups/<
node_group>/files/<path_to_file_on_elogin>

CUG 2017 Copyright 2017 Cray Inc.
204

Managing eLogin Nodes: Node Inventory

● Nodes are registered with CSMS using an inventory file
/etc/opt/cray/openstack/ansible/inventory.csv

● Template can be found at:
/etc/opt/cray/openstack/ansible/roles/ironic_enrollment/files/example_inventory.csv

● Node inventory example:
NODE_NAME, BMC_IP, MAC_ADDR, N_CPUs, ARCH, RAM_MB, DISK_GB, NODE_DESC
elogin1, 10.142.0.5, 14:fe:b5:ca:b7:00, 32, x86_64, 131072, 550, elogin1
elogin2, 10.142.0.6, e0:db:55:0a:25:a8, 32, x86_64, 131072, 550, elogin2
elogin3, 10.142.0.7, 78:2b:cb:33:4b:b7, 32, x86_64, 131072, 550, elogin3

CUG 2017 Copyright 2017 Cray Inc.
205

Managing eLogin Nodes: Node Inventory

● Register nodes with the csms_ironic_enrollment script

example-cmc # cd /etc/opt/cray/openstack/ansible/
example-cmc # ./csms_ironic_enrollment.sh

● Registers each node with the ironic service (bare-metal nodes)
● Assigns the node installer image to the node
● Creates a nova “flavor” named “ironic_flavor” matching the hardware configuration

● Nova is the scheduler for tenant instances (deployed nodes)
● Flavors define the minimum required hardware specifications

● Nodes must be connected to the IPMI and management networks
● Nodes must be powered off

CUG 2017 Copyright 2017 Cray Inc.
206

Managing eLogin Nodes: Node Inventory

● List registered eLogin nodes
example-cmc # ironic node-list
+--------------------------------------+---------+---------------+-------------+--------------------+-------------+
| UUID | Name | Instance UUID | Power State | Provisioning State | Maintenance |
+--------------------------------------+---------+---------------+-------------+--------------------+-------------+
692e40b2-ff8c-4842-b9bf-8c6957256b23	elogin1	None	power off	available	False
3c0a3cd6-eb76-4ab1-85e3-615d867a66a0	elogin2	None	power off	available	False
c0386c4d-9410-4113-a71b-2a770b6239df	elogin3	None	power off	available	False
+--------------------------------------+-------------------------+-------------+--------------------+-------------+

CUG 2017 Copyright 2017 Cray Inc.
207

Managing eLogin Nodes: Node Inventory

● List node “ports” (network interfaces) for elogin3
● This is the interface that elogin3 will boot over
● All other ports are configured by cray-ansible during deployment

example-cmc # ironic node-port-list elogin3
+--------------------------------------+-------------------+
| UUID | Address |
+--------------------------------------+-------------------+
| e23aff8f-25af-4b9d-89ff-a68f9ed54bf8 | 78:2b:cb:33:4b:b7 |
+--------------------------------------+-------------------+

CUG 2017 Copyright 2017 Cray Inc.
208

Managing eLogin Nodes: Nova Flavors

example-cmc # nova flavor-list
+--------------------------------------+---------------+-----------+------+-----------+-------+-------+-------------+-----------+
| ID | Name | Memory_MB | Disk | Ephemeral | Swap | VCPUs | RXTX_Factor | Is_Public |
+--------------------------------------+---------------+-----------+------+-----------+-------+-------+-------------+-----------+
| 7b26a552-d079-4635-a4a6-1bec1cd7b902 | ironic_flavor | 131072 | 550 | 0 | | 32 | 1.0 | True |
| aac33543-4d49-44c0-8e22-22a02537f2ee | eloginflavor | 65536 | 100 | 0 | 16384 | 16 | 1.0 | True |
+--------------------------------------+---------------+-----------+------+-----------+-------+-------+-------------+-----------+

CUG 2017 Copyright 2017 Cray Inc.
209

Managing eLogin Nodes: Node Deployment

● Heat Orchestration service used for node deployment
● Orchestrates node stack deployments
● Uses a template plus an environment file to deploy eLogin stacks

● Template file is common to all eLogin nodes
● Environment file is node specific

● Provides values for the heat stack template
● CMC location:

● /etc/opt/cray/openstack/heat/templates

CUG 2017 Copyright 2017 Cray Inc.
210

Managing eLogin Nodes: Node Deployment

● Heat stack template files for eLogin
● 2 templates provided

● elogin_template.yaml
● Dynamic management IP address assigned by the CMC (neutron)

● elogin_template_fixed_ip.yaml
● Static management IP address

CUG 2017 Copyright 2017 Cray Inc.
211

Managing eLogin Nodes: Node Deployment

● Heat environment template files for eLogin
● 2 environment templates to provide parameters to the stack templates

● Use the one matching the eLogin heat stack template chosen

● elogin-env.yaml.template
● For use with elogin_template.yaml

● elogin-env-fixed-ip.yaml.template
● For use with elogin_template_fixed_ip.yaml

CUG 2017 Copyright 2017 Cray Inc.
212

Managing eLogin Nodes: Node Deployment

● Heat environment template file for eLogin
cat elogin-env-fixed-ip.yaml.template

An example env.yaml file to use with the Heat templates when a fixed
management IP address is desired.
Copyright 2016 Cray Inc. All Rights Reserved.

parameters:
image_id: elogin_image.qcow2
host_name: elogin1
fixed_ip: 10.142.0.100
instance_flavor: eloginflavor
cray_config_set: p0
cims_host_name: example-cmc
ironic_id: 7baa31f0-07c8-42e9-8743-ae5f147f78c3
actions_list: copy_p0

CUG 2017 Copyright 2017 Cray Inc.
213

Managing eLogin Nodes: Node Deployment

● Deploy script for eLogin
● Copy deploy_elogin.sh.template to deploy_<elogin_name>.sh
● Edit with appropriate settings – TEMPLATE_FILE, ENV_FILE, STACK_NAME

cat deploy_elogin1.sh
#!/bin/bash
#
A template eLogin deploy script.
Copyright 2015 Cray Inc. All Rights Reserved.
Edit these values to the correct values for the node to be deployed
Use full paths only
TEMPLATE_FILE=/etc/opt/cray/openstack/heat/templates/elogin-env-fixed-ip.yaml
ENV_FILE=/etc/opt/cray/openstack/heat/templates/elogin1-env.yaml
STACK_NAME=elogin1

source ~/admin.openrc
heat stack-create -f $TEMPLATE_FILE -e $ENV_FILE $STACK_NAME

CUG 2017 Copyright 2017 Cray Inc.
214

Managing eLogin Nodes: Node Deployment
Checking heat, nova and ironic data

● Deploy elogin1 by running deploy_elogin1.sh

./deploy_elogin1.sh
heat stack-list
+--------------------------------------+------------+-----------------+----------------------+
| id | stack_name | stack_status | creation_time |
+--------------------------------------+------------+-----------------+----------------------+
| 956e7974-7557-4091-b749-2833827718f3 | elogin1 | CREATE_COMPLETE | 2016-03-01T22:45:33Z |
+--------------------------------------+------------+-----------------+----------------------+
nova list
+--------------------------------------+---------+--------+------------+-------------+-------------------------+
| ID | Name | Status | Task State | Power State | Networks |
+--------------------------------------+---------+--------+------------+-------------+-------------------------+
| d72227dc-bfd6-4c60-988b-b152a7bd821a | elogin1 | ACTIVE | - | Running | management=10.142.0.176 |
+--------------------------------------+---------+--------+------------+-------------+-------------------------+
ironic node-list
+--------------------------------------+---------+--------------------------------------+-------------+--------------------+-------------+
| UUID | Name | Instance UUID | Power State | Provisioning State | Maintenance |
+--------------------------------------+---------+--------------------------------------+-------------+--------------------+-------------+
| 50698545-ce51-41b3-b873-a3d2dbaf8d79 | elogin1 | d72227dc-bfd6-4c60-988b-b152a7bd821a | power on | active | False |
+--------------------------------------+---------+--------------------------------------+-------------+--------------------+-------------+

CUG 2017 Copyright 2017 Cray Inc.
215

Managing eLogin Nodes: Node Deployment

● Link between nova and ironic

./deploy_elogin1.sh
heat stack-list
+--------------------------------------+------------+-----------------+----------------------+
| id | stack_name | stack_status | creation_time |
+--------------------------------------+------------+-----------------+----------------------+
| 956e7974-7557-4091-b749-2833827718f3 | elogin1 | CREATE_COMPLETE | 2016-03-01T22:45:33Z |
+--------------------------------------+------------+-----------------+----------------------+
nova list
+--------------------------------------+---------+--------+------------+-------------+-------------------------+
| ID | Name | Status | Task State | Power State | Networks |
+--------------------------------------+---------+--------+------------+-------------+-------------------------+
| d72227dc-bfd6-4c60-988b-b152a7bd821a | elogin1 | ACTIVE | - | Running | management=10.142.0.176 |
+--------------------------------------+---------+--------+------------+-------------+-------------------------+
ironic node-list
+--------------------------------------+---------+--------------------------------------+-------------+--------------------+-------------+
| UUID | Name | Instance UUID | Power State | Provisioning State | Maintenance |
+--------------------------------------+---------+--------------------------------------+-------------+--------------------+-------------+
| 50698545-ce51-41b3-b873-a3d2dbaf8d79 | elogin1 | d72227dc-bfd6-4c60-988b-b152a7bd821a | power on | active | False |
+--------------------------------------+---------+--------------------------------------+-------------+--------------------+-------------+

CUG 2017 Copyright 2017 Cray Inc.
216

Managing eLogin Nodes: Node Deployment
Useful heat stack commands

● heat stack-list
● Lists all heat stacks

● heat stack-show <stack_name>
● Displays information about the prescribed software stack

● heat stack-delete <stack_name>
● Tears down the software stack and powers off the node

CUG 2017 Copyright 2017 Cray Inc.
217

Managing eLogin Nodes: Node Console

● Remote console can be accessed by the ironic_conman
command
ironic_conman <hostname>

● Console traffic is logged to /var/log/conman on the CMC
● Logs are named by ironic node UUID

● ironic-c0386c4d-9410-4113-a71b-2a770b6239df.log

CUG 2017 Copyright 2017 Cray Inc.
218

Managing eLogin Nodes: Deploy Process

● Node deployment first boots a common deploy image
● Heat calls Nova which looks to see if your eLogin node is available for

deployment
● Nova tells Ironic to power on the eLogin node
● eLogin node PXE boots a common deployment image

● Cray Fuel driver checks local disk partitioning and repartitions to match that
described in the deploy_config_elogin.json file

● Mounts the local disk and rsyncs the eLogin image to the node
● Config Set is retrieved by the action script
● Reboots the node from the eLogin image on the local disk
● Heat and Nova are now done

CUG 2017 Copyright 2017 Cray Inc.
219

Managing eLogin Nodes: Boot Process

● Node boots into a dracut pre-init environment
● cray-ansible is run to configure the node
● Non-root users are not allowed to login during this time
● Cray PE is synchronized to persistent storage on the eLogin node

● First sync can be long (all data transferred)
● Subsequent syncs are image diffs only

● Sync progress may be monitored on the eLogin node
elogin # tail -f /var/opt/cray/persistent/pe_sync.log

CUG 2017 Copyright 2017 Cray Inc.
220

Boot Node

Introduction to eLogin: Node Deploy Flow

Login Image

SMW

Config
Set

Compute Image

PE Image

eLogin ImageLogin Image

Compute Image

PE Image

Config
Set

Cray
Management
Controller (CMC)

eLogin Image

PE Image

Config
Set

“image push” eLogin Node

Config
Set

eLogin Image

PE Image

Cray XC

eLogin Node

Config
Set

eLogin Image

PE Image

CUG 2017 Copyright 2017 Cray Inc.
221

Managing eLogin Nodes: Node Shutdown

● Shutdown with ’heat stack-delete <stack_name>’
● Tears down the stack
● Powers off the node
● Removes the nova instance
● Removes the heat stack

heat stack-delete elogin1
● It is important to use this method when shutting down eLogin

nodes
● Reboot nodes with ‘nova reboot <hostname>’

CUG 2017 Copyright 2017 Cray Inc.
222

Managing eLogin Nodes: Things to Know

● CSMS will enforce the power state of the node
● Manually powering “on” a node that is set to “power off” in CSMS (ironic)

will result in the node being powered off. The reverse is also true.
● Set the node to “maintenance mode” in ironic to avoid this enforcement

● eLogin images must be exported to the CMC after being
created or edited on the SMW

● Config Sets must be pushed to the CMC after being
created or edited on the SMW
● “add_configset” must also be run after a config set is pushed
● An action script must exist in glance for each config set

CUG 2017 Copyright 2017 Cray Inc.
223

Managing eLogin Nodes: Things to Know

● Changing eLogin hardware requires updating the
inventory.csv file and the elogin-env.yaml file
● Copy original inventory.csv file to inventory.csv.back
● Delete all entries except for the hardware being updated
● Run csms_ironic_enrollment.sh
● Update the environment template for this node with the new

ironic node UUID

CUG 2017 Copyright 2017 Cray Inc.
224

Managing eLogin Nodes: Troubleshooting

● cray_dumpsys
● Gathers data to help debug Cray System Management Software (CSMS)

problems
● Dumps the state of the OpenStack services, various configuration and log

files plus background information about the system
● Files are compressed and the results are stored in /var/tmp/
● By default, only recent logs are dumped

● Use --all-logs option to dump all rotated logs
● Use --days option to dump logs up to a certain number of days

CUG 2017 Copyright 2017 Cray Inc.
225

Managing eLogin Nodes: Troubleshooting

● cray_dumpsys eLogin plugin
● Includes information from eLogin nodes in the cray_dumpsys report
● Edit /etc/cray_tools/cray_tools.conf

● Add elogin to the list of enabled plugins, and a space-separated list of
eLogin node names in the elogin.nodes option.

● To override the configured node list, use the cray_dumpsys option
--extra-option elogin.nodes="elogin1 elogin2"

CUG 2017 Copyright 2017 Cray Inc.
226

Managing eLogin Nodes: Troubleshooting
cray_tools.conf example enabling eLogin plugin

[cray_dumpsys]
List of enabled Cray dumpsys plugins.
plugins =

process,
networking,
memory,
openvswitch,
mysql,
openstack_cinder,
openstack_horizon,
openstack_keystone,
openstack_neutron,
openstack_nova,
openstack_swift,

newtplugin,
elogin

List of Cray dumpsys plugin options.
options =

openstack_cinder.log=off,
openstack_horizon.log=off,
openstack_keystone.log=off,
openstack_nova.cmds=on,
openstack_nova.log=off,
openstack_swift.log=off,
elogin.nodes="elogin1 elogin2"

CUG 2017 Copyright 2017 Cray Inc.
227

Managing eLogin Nodes: Troubleshooting

● Logs
● /var/log/messages

● OpenStack Logs (on the CMC node)
● /var/log/cinder – block storage service
● /var/log/glance – image service
● /var/log/heat – orchestration service
● /var/log/ironic – bare metal provisioning service
● /var/log/keystone – identity and authentication service
● /var/log/neutron – networking service
● /var/log/nova – node scheduling service
● /var/log/swift – object storage service (backs glance in CSMS)

● Ansible Install Logs (on the eLogin node)
● /var/opt/cray/log/ansible/ansible-init
● /var/opt/cray/log/ansible/ansible-booted

CUG 2017 Copyright 2017 Cray Inc.
228

Managing eLogin Nodes: Troubleshooting
Diagnostics: Heat Stacks (1 of 2)
● Heat Stacks

● heat stacks are used for deploying eLogin nodes
example-cmc # heat stack-show elogin1
+----------------------+--+
| Property | Value |
+----------------------+--+
capabilities	[]
creation_time	2015-06-11T20:52:39Z
description	Simple deploy template with parameters
disable_rollback	True
id	4452df3e-46f1-4345-8b61-c489bbbc863f
links	http://172.30.50.129:8004/v1/acc067874bfd45dcbce9f44d1516910a/stacks/elogin1/4452df3e-46f1-4345-8b61-c489bbbc863f (self)
notification_topics	[]
outputs	[
	{
	"output_value": {
	"management": [
	"10.142.0.156"
]
	},
	"description": "IP assigned to the instance",
	"output_key": "instance_ip"
	}
]

CUG 2017 Copyright 2017 Cray Inc.
229

Managing eLogin Nodes: Troubleshooting
Diagnostics: Heat Stacks (2 of 2)

● Heat Stacks
example-cmc # heat stack-show elogin
| parameters | { |

| | "network_id": "management", |

| | "OS::stack_id": "4452df3e-46f1-4345-8b61-c489bbbc863f", |

| | "OS::stack_name": "elogin1", |

| | "cray_config_set": “p0-elogin", |

| | "key_name": "default", |

| | "instance_flavor": "eloginflavor", |

| | "cray_cims_ip": "10.142.0.1", |

| | "image_id": "elogin1.qcow2", |

| | "host_name": "elogin1" |

| | } |

| parent | None |

| stack_name | elogin1 |

| stack_owner | admin |

| stack_status | CREATE_COMPLETE |

| stack_status_reason | Stack CREATE completed successfully |

| template_description | Simple deploy template with parameters |

| timeout_mins | None |

| updated_time | None |

+----------------------+--+

  

CUG 2017 Copyright 2017 Cray Inc.
230

Managing eLogin Nodes: Troubleshooting
Diagnostics: Nova (1 of 2)

● Nova (active servers)
● Use nova show to look for details about the eLogin in question

example-cmc # nova show elogin1
+--------------------------------------+--+
| Property | Value |
+--------------------------------------+--+
OS-DCF:diskConfig	MANUAL
OS-EXT-AZ:availability_zone	nova
OS-EXT-SRV-ATTR:host	csms
OS-EXT-SRV-ATTR:hypervisor_hostname	e63ffc33-029f-44ac-8808-c55909f85f2f
OS-EXT-SRV-ATTR:instance_name	instance-00000050
OS-EXT-STS:power_state	1
OS-EXT-STS:task_state	-
OS-EXT-STS:vm_state	active
OS-SRV-USG:launched_at	2015-06-11T21:01:16.000000
OS-SRV-USG:terminated_at	-
accessIPv4	
accessIPv6	
config_drive	
created	2015-06-11T20:52:40Z
  

CUG 2017 Copyright 2017 Cray Inc.
231

Managing eLogin Nodes: Troubleshooting
Diagnostics: Nova (2 of 2)

● Nova (active servers)
● Use nova show to look for details about the eLogin in question

hostId	9e184dc6993ac9954652611f13f3faaaa797b5ff1625869be0edeb80
id	ac6384e2-4ca0-421f-9e6e-4c9e138f8785
image	elogin1.qcow2 (1cc535c0-9f71-446a-8f4e-66aacc2617fe)
key_name	default
management network	10.142.0.156
metadata	{"cray_config_set": “p0-elogin", "cray_cims_ip": "10.142.0.1",
	"cray_cims_rsync_password": "daf5ba09-6be4-4e50-bf43-7ba54394aca4",
	"cray_cims_rsync_username": "elogin"}
name	elogin1
os-extended-volumes:volumes_attached	[]
progress	0
security_groups	default
status	ACTIVE
tenant_id	acc067874bfd45dcbce9f44d1516910a
updated	2015-06-11T21:01:16Z
user_id	762d33ecbeb64356a933e27bce688579
+--------------------------------------+---+
  

CUG 2017 Copyright 2017 Cray Inc.
232

Managing eLogin Nodes: Troubleshooting
Diagnostics: Ironic
example-cmc # ironic node-show elogin3
+------------------------+--+
| Property | Value |
+------------------------+--+
target_power_state	None
extra	{u'description': u'elogin3'}
last_error	None
updated_at	2016-03-31T21:18:16+00:00
maintenance_reason	None
provision_state	available
uuid	c0386c4d-9410-4113-a71b-2a770b6239df
console_enabled	True
target_provision_state	None
maintenance	False
inspection_started_at	None
inspection_finished_at	None
power_state	power off
driver	fuel_rsync_ipmi

CUG 2017 Copyright 2017 Cray Inc.
233

Managing eLogin Nodes: Troubleshooting
Diagnostics: Ironic
reservation	None
properties	{u'memory_mb': 131072, u'cpu_arch': u'x86_64', u'local_gb': 550,
	u'cpus': 32}
instance_uuid	None
name	elogin3
driver_info	{u'ipmi_password': u'******', u'ipmi_address': u'10.142.0.7',
	u'deploy_ramdisk': u'e59491e5-d4da-4956-99c8-be662f6ea8c7',
	u'deploy_kernel': u'60c99670-7512-4372-8102-84d94bdb5b50',
	u'ipmi_username': u'root'}
created_at	2016-03-17T18:59:18+00:00
driver_internal_info	{u'clean_steps': None, u'is_whole_disk_image': False}
chassis_uuid	
instance_info	{}
+------------------------+--+

CUG 2017 Copyright 2017 Cray Inc.
234

Managing eLogin Nodes: Troubleshooting

● There are multiple places where there may be pressure
on the file system on the management server
● Images may fill up space in /var/lib/glance

● Remove these using Glance commands only
● Images may fill up space in /var/lib/tftpboot

● These are removed automatically following a successful deployment
● If they remain, remove manually

● PE, config sets and repositories may fill up space in subdirectories of
/var/opt/cray
● Remove manually

CUG 2017 Copyright 2017 Cray Inc.
235

Managing eLogin Nodes: Troubleshooting

● The eLogin node is partitioned into two disk devices:
● /dev/sda contains the OS, and other data that can be rewritten

● If an image is re-deployed, all data on sda will be overwritten
● There should be no space concerns.

● /dev/sdb is configured as persistent storage for the node
● Config sets, PE, and some job submission details for workload

managers are stored here
● If the partition is destroyed, all config set data is resynchronized upon

reboot. Administrators can safely delete data here.

CUG 2017 Copyright 2017 Cray Inc.
236

Managing eLogin Nodes: Troubleshooting

● Problem: Lack of disk space on the management server to store the glance images used to boot.
● Signature: A 'heat stack-create' fails. 'heat stack-show' displays "No valid host was found".
● Log messages: From /var/log/nova/nova-conductor.log

2015-06-16 11:37:34.171 5202 ERROR nova.scheduler.utils [req-d7f3e9fa-f87f-44e0-b615-b288f3de02cd
None] [instance: 43de8ff4-d746-49e6-9226-2a3c159552db] Error from last host: example-cmc (node
e63ffc33-029f-44ac-8808-c55909f85f2f): [u'Traceback (most recent call last):\n', u' File
"/usr/lib/python2.7/site-packages/nova/compute/manager.py", line 2053, in
_do_build_and_run_instance\n filter_properties)\n', u' File "/usr/lib/python2.7/site-
packages/nova/compute/manager.py", line 2184, in
_build_and_run_instance\n instance_uuid=instance.uuid, reason=six.text_type(e))\n',
u"RescheduledException: Build of instance 43de8ff4-d746-49e6-9226-2a3c159552db was re-scheduled:
Failed to provision instance 43de8ff4-d746-49e6-9226-2a3c159552db: Failed to deploy. Error: Disk
volume where '/var/lib/ironic/master_images/tmpr4qVSW' is located doesn't have enough disk space.
Required 3646 MiB, only 784 MiB available space present.\n"]

● Action: Free up space for the file system that provides /var/lib/tftpboot/, which is where ironic copies glance images
prior to deploy. Perhaps there are leftover ISO files in /root/isos/ that can be deleted.

CUG 2017 Copyright 2017 Cray Inc.
237

Managing eLogin Nodes: Troubleshooting

● Problem: Inability to communicate with a BMC prevents the admin from performing any
operations on the ironic node as well as the corresponding nova server and heat stack.
There may be other ways to get into this same state.

● Signature: A 'heat stack-delete' fails with a "Provision state still 'deleting’" message.
● Log messages: From /var/log/heat-engine.log:

2015-06-19 08:01:20.911 1743 TRACE heat.engine.resource Error: Server
elogin1 delete failed: (500) Error destroying the instance on node
e79e85cd-57f5-4fcd-ba43-14ccea0375e7. Provision state still 'deleting'.

● Action: Determine why the BMC fails to respond and address that issue.
● Use 'ironic node-set-provision-state $UUID delete' to clear the Provisioning State.
● Use 'nova reset-state $SERVER' to clear the server state. At this point, you should be able to delete the heat

stack.

CUG 2017 Copyright 2017 Cray Inc.
238

Recap of CMC/eLogin

● eLogin differences over the previous esLogin product.

● Prescriptive image builds based on the same image recipes used for CLE nodes

● Package collections are shared between CLE and eLogin images

● Software releases with CLE

● Cray Programming Environment is separate from the base eLogin image
● Exactly the same Cray PE image as used on the XC

● Managed by the new Cray System Management Software

CUG 2017 Copyright 2017 Cray Inc.
239

Agenda

● Introduction to SMW/CLE system management
● New system management features since UP01
● Best practices for using Ansible
● Troubleshooting XC system booting problems
● Migrating SMW/CLE software from 7.2/5.2 to 8.0/6.0
● Intro to CMC/eLogin system management

● Migrating CIMS/CDL to CMC/eLogin
● CLE Boot Performance and Reliability
● Q & A

CUG 2017 Copyright 2017 Cray Inc.
240

Migrating CIMS/CDL to CMC/eLogin

● esLogin to eLogin Migration Overview
● Restrictions/Limitations
● Migration Process

● Gathering configuration data
● eLogin Migration tool

● Installing the CMC
● Testing eLogin deployment and operation

CUG 2017 Copyright 2017 Cray Inc.
241

esLogin to eLogin Migration Overview

● What is being migrated?
● The CIMS is being migrated to a CMC
● esLogin nodes are being migrated to eLogin nodes
● Configuration data will be gathered from the CIMS and esLogin nodes to assist in migration

● Management server (CMC) is a fresh installation
● OS changes from SLES 11 to CentOS 7
● Management software changes from Bright Cluster Manager to CSMS

● esLogin images are replaced by prescriptively built eLogin images
● Requires the SMW to be migrated to SMW 8.0.UP03/CLE 6.0.UP03

● eLogin images and config sets are created on the SMW
● OS changes from SLES 11 to SLES 12

● Cray Service has a Migration toolkit
● Toolkit contains a data gathering tool, test config set, and test eLogin image

CUG 2017 Copyright 2017 Cray Inc.
242

Restrictions/Limitations

● Only esLogin nodes will be migrated
● Other external service nodes (data movers, visualization

servers, CLFS, etc.) will NOT be migrated

● CIMS/esMS servers managing more than esLogin nodes will
NOT be migrated
● CIMS/esMS servers are required for continued management of

the non-esLogin nodes
● New CMC server hardware is required to manage eLogin nodes

in these environments

CUG 2017 Copyright 2017 Cray Inc.
243

Restrictions/Limitations

● High Availability CMC configuration is not available
● Sites with HA CIMS/esMS will become a single CMC configuration

● Multiple management networks are not available
● Sites using separate management networks for isolating esLogin

node groups must manage eLogin nodes on a single
management network

CUG 2017 Copyright 2017 Cray Inc.
244

Migration Process: Gathering Configuration Data

● Migration tool collects configuration data
● Bright Cluster Manager database
● CIMS/esMS server
● esLogin nodes

● For systems with a CIMS/esMS
● The migration tool executes on the active CIMS/esMS

● For systems without a CIMS/esMS
● The migration tool executes on each esLogin node

● Data will be saved to another server for later use
● The CIMS/esMS will be reinstalled and all CIMS/esMS data will be

lost

CUG 2017 Copyright 2017 Cray Inc.
245

Migration Process

● Disconnect the esLogins from the CIMS/esMS
● Allows the esLogins to continue operation while the CIMS/esMS is

repurposed as a CMC.
● Minimizes esLogin downtime to the time it takes to deploy an

eLogin node

CUG 2017 Copyright 2017 Cray Inc.
246

Migration Process: Migration Tool

● Generates sections of the following config set worksheets
● cray_net
● cray_node_groups
● cray_eswrap
● cray_lustre_client
● cray_elogin_networking
● cray_elogin_lnet

● These sections must be merged into the worksheets generated
on the SMW for THE CRAY® XC™ SERIES system

CUG 2017 Copyright 2017 Cray Inc.
247

Migration Process: Migration Tool

● Generates the CSMS inventory.csv file for node enrollment

● Gathers data for use in configuring CSMS
● Network information
● User account information
● RPM list

● CIMS/esMS and esLogin images
● Other configuration data

CUG 2017 Copyright 2017 Cray Inc.
248

Migration Process: Migration Tool

● Files gathered from CIMS and esLogin
● /etc/hosts
● /etc/bash.bashrc.local
● /etc/csh.cshrc.local
● /etc/resolv.conf
● /etc/ldap.conf
● /etc/openldap/ldap.conf
● /etc/nsswitch.conf
● /etc/ntp.conf
● /etc/ssh/*
● /etc/ssl/*
● /etc/hosts.allow
● /etc/hosts.deny
● /etc/passwd

● /etc/shadow
● /etc/security/access.conf
● /etc/aliases
● /etc/fstab
● /etc/group
● /etc/rsyslog.conf
● /etc/pam.d/*
● /etc/sysctl/*
● /etc/sysconfig/*
● /etc/yp.conf
● /etc/modprobe.d/cray-lnd.conf

● (esLogin only)
● /etc/modprobe.d/cray-lnet.conf

● (esLogin only)

CUG 2017 Copyright 2017 Cray Inc.
249

Migration Process: Installation and Testing

● Install and configure the CMC using standard eLogin installation documentation
● Previously gathered data is used to help with configuration

● Configure the test config set for eLogin nodes
● For initial testing without a SMW, a minimal config set is available for sanity checking

● Enroll the eLogin nodes
● This requires the eLogin nodes be powered off and connected to the CMC IPMI and

management networks
● For initial testing, just one eLogin node could be used

● Deploy and boot the default test image
● For initial testing without a SMW, a default test image is available

CUG 2017 Copyright 2017 Cray Inc.
250

Migration Process: Post SMW migration

● Install eLogin support on the SMW
● Instructions are in the eLogin installation guide

● Build the production eLogin image on the SMW
● Requires a SMW supporting CLE 6.0.UP03
● Instructions are in the eLogin installation guide

● Create the production config set
● Requires a SMW supporting CLE 6.0.UP03
● Instructions are in the eLogin installation guide

● Deploy and boot the eLogin nodes using the production image and config set
● Instructions are in the eLogin installation guide

● Verify eLogin operation
● Ensure the eLogin functions normally

CUG 2017 Copyright 2017 Cray Inc.
251

Agenda

● Introduction to SMW/CLE system management
● New system management features since UP01
● Best practices for using Ansible
● Troubleshooting XC system booting problems
● Migrating SMW/CLE software from 7.2/5.2 to 8.0/6.0
● Intro to CMC/eLogin system management
● Migrating CIMS/CDL to CMC/eLogin

● CLE Boot Performance and Reliability
● Q & A

CUG 2017 Copyright 2017 Cray Inc.
252

CLE Boot Performance and Reliability

● Introduction
● Time to boot – component analysis
● Measuring boot performance
● Boot performance and reliability improvements

● Config set caching
● Netroot preload
● Ansible filtering
● Fact collection tweaks
● Sparse looping adjustments
● Boot profiler
● Greater boot concurrency support
● ARP table initialization
● PE ldconfig caching
● ntpd improvements
● Node groups optimization
● DVS read only optimizations

CUG 2017 Copyright 2017 Cray Inc.
253

Background

● Changing deployment models introduces additional cost
and complexity

● Cray, Inc. wants to have performant products that can scale
to all customer needs, now and in the future

● Product offerings are expanding to offer hardware
architectures with more cores that run at slower speeds

● Proactively making CLE faster now reaps immediate
benefits later

● Newer distribution software can provide better user
experience, when leveraged correctly

● Boot performance is a marker for overall system
responsiveness

CUG 2017 Copyright 2017 Cray Inc.
254

CLE Boot Performance Project Charter

● Reduce overall downtime during install, updates, and node reboots
● Develop best practices for configuration, hardware resource

allocation and feature development direction to achieve best scale
● Provide tooling for measurement of overall boot performance
● Prioritize faster component boots for nodes which are booted more

frequently
● Reduce overall variability in deployment to increase overall reliability

and reproducibility of behavior
● Optimize for configurations most common with customers
● Partner with customers to better understand scalability concerns
● Predict scale requirements ahead of time

CUG 2017 Copyright 2017 Cray Inc.
255

Most Common Site Configurations

● Prefers netroot enabled images instead of tmpfs
images
● Larger images offer greater amount of content
● Smaller memory footprint
● Network filesystems are slower than filesystems in local memory

● Adds in a WLM of their choice
● Desires integration with external filesystem
● Enables one or more authentication systems
● Relatively homogenous compute hardware

configuration

CUG 2017 Copyright 2017 Cray Inc.
256

Time To Boot Gross Overview

● Two primary avenues to
better boot performance

● Cannot reduce number of
chunks to less than two

● Computes are most
important target for
improvement
● Rebooted More Frequently
● Largest scale requirements

● Improving slowest node in
‘chunk’ provides greatest
benefit

CUG 2017

Number of
xtbootsys
'chunks'

X

Average Time to Boot Slowest Node in
Chunk

Number of
Tasks

Avg Speed per
taskX

Copyright 2017 Cray Inc.
257

Time To Boot Gross Overview

Number of
xtbootsys
'chunks'

X

Average Time to Boot Chunk

Time to Boot a CLE Node

Number of
Tasks

Avg Speed per
taskX

Time to Provision Image to Hardware

PXE Boot Image

HSN Boot Image

initramfs size HSN Xfer Rate/

+

CUG 2017 Copyright 2017 Cray Inc.
258

Xtbootsys ‘chunk’

● Typical deployments boot_ in 4 chunks
● Boot, SDB, Service, Compute

● Two types of booting
● PXE Booting

● Limited to boot, sdb, and backup boot & sdb
● HSN Booting

● Requires BND on a booted boot node
● Each ‘chunk’ of HSN boot requires image fanout

● boot_* events
● Each ’chunk’ waits for completion of all nodes within chunk

● wait_for_* events
● Actual CLE Time to boot

CUG 2017 Copyright 2017 Cray Inc.
259

Time to Boot Single CLE Node (simplified)

● 5 primary phases
● Netroot setup phase for netroot

nodes only
● Largely affected by

performance of underlying
filesystem

● Affected by larger amounts
of data within cfgset fields

● DAL nodes have a SysVInit
Phase instead of SystemD

CUG 2017

Node /init

Ansible Init Phase

Ansible Netroot Setup
Phase

Ansible Booted Phase

SystemD Service Startup

Ti
m

e
Copyright 2017 Cray Inc.

260

CLE Node Boot as a function of configuration load
(x86-64 Netroot Compute, up03)

CUG 2017

Init
14%

SystemD
8%

Ansible Init
25%

Ansible Booted
41%

Ansible Netroot
Setup
12%

Single Compute

Init
10%

SystemD
3%

Ansible Init
21%

Ansible
Booted

50%

Ansible
Netroot Setup

16%

~1000 Computes

Copyright 2017 Cray Inc.
261

Intel® Xeon Phi™ 7250 (KNL) Boot Performance

● KNL nodes must be rebooted in order to switch between
memory modes

● Only one core is effectively used for the majority of
configuration process
● Slower individual core clock speeds affect serial configuration tasks

● Excels at systemd service startup (as effective as x86
service initialization)

● Ansible tends to run significantly slower
● Unloaded ansible-booted phase 4-6x slower than x86
● Memory mode does not appear to be significant contributor to boot

speed

CUG 2017 Copyright 2017 Cray Inc.
262

Intel® Xeon Phi™ 7250 (KNL) CLE Boot Breakdown

CUG 2017

Init
14%

SystemD
8%

Ansible Init
25%

Ansible Booted
41%

Ansible Netroot
Setup
12%

Single x86 Compute

Init
6%

SystemD
1%

Ansible Init
42%

Ansible
Booted

49%

Ansible
Netroot Setup

2%

Single KNL

Copyright 2017 Cray Inc.
263

Why Does Ansible Take So Much Time?

● Ansible is optimized for remote
configuration
● Normally done through central host
● Not optimized for self/localhost configuration

● Ansible drives file operations for each
task
● Each task is designed to run against a remote
● CLE tasks simply specify the target host as

‘localhost’

CUG 2017 Copyright 2017 Cray Inc.
264

Why Does Ansible Take So Much Time? (pt2)

● Ansible is written in python, python import operations walk, stat
and open files for library resolution
● Zhao, Davis, Antypas, Yao, Lee, Butler, CUG 2012; Canon, Jacobson, CUG

2016
● Modules append content to PATH and PYTHONPATH for release switching

● CLE
● PE

● Ansible is single threaded/single process, and does not take
advantage of multiple cores

● Ansible conditional looping is inefficient
● Task ‘when’ clause is evaluated for each iteration of ‘with_items’

● Skipped tasks are not free
● Disabling playbooks still cost time to parse and exercise

CUG 2017 Copyright 2017 Cray Inc.
265

Why Does Ansible Take So Much Time? (pt3)

● Playbooks start services within ansible-init or ansible-booted
● Requirements are provided to playbooks too late in some cases
● Faster to enable services during init phase and let systemd start them

● Distributed configuration can become overloaded (UP01 and
earlier)
● Parsing YAML (multiple times) is expensive compared to JSON or INI formats
● File operations in and out of cfgset transferred over IDS fanout (9p/diod

network).
● Silent corruption possible when very stressed

● Ansible collects ’facts’ multiple times per run
● Out of the box facts for querying volume label information is slow

CUG 2017 Copyright 2017 Cray Inc.
266

What happens when I/O is saturated?

● Time to boot increases
● Global increase in time to completion of ansible tasks
● Relatively unchanged performance of systemd and init processing

● Systemd operations can fail
● systemctl related options timeout after 25 seconds
● Typically within ansible booted phase, however occasionally in

other services which reload other services
● Affects overall system responsiveness, job launch

performance

CUG 2017 Copyright 2017 Cray Inc.
267

Legacy SysVInit Service Infrastructure

● CLE 6 is based on two primary upstream distributions:
● SLES 12
● CentOS 6.5 (DAL)

● SLES 12 Nodes leverage systemd as a native service
management paradigm

● CentOS 6.5 still uses SysVInit services
● Existing CLE services cannot easily integrate with systemd

infrastructure
● Service initialization ‘notify’ support

● Additional Ansible logic must be written to be conditional in
order to cover both
● Skipped tasks are not free! Even when we don’t have DAL nodes.

CUG 2017 Copyright 2017 Cray Inc.
268

Reliability and Repeatability

● Variability decreases reliability and repeatability
● Services are configured slightly different even when cfgset remains

the same
● Use of random client/server selection
● Injection of random waits/timeouts

● Services internally load balance non-deterministically
● First come, first balanced

● Variability creates variability
● Often tied to timing of events
● High variability exposes more edge cases
● Variability increases overall time to boot ‘chunk’

● Low repeatability hinders debuggability

CUG 2017 Copyright 2017 Cray Inc.
269

Service Failures Introduce Delays

● Ansible Booted waits for
clean state
● Single node service failure

prolongs entire boot chunk
● NTP cleanly started
● /etc/fstab mounts made

available
● Slow to boot services

increase critical-chain
length

CUG 2017

Boot
Node

Compute
Compute
Compute
Compute
Compute
Compute
Compute
Compute
Compute
Compute
Compute
Compute
Compute
Compute
Compute
Compute

UDP

Copyright 2017 Cray Inc.
270

Why are we booting in 4 ‘chunks’?

● PXE Boot Size Limitation of ~500Mb
● WLMs often install additional content into the SDB image, which

increases overall image size beyond 500Mb
● Client/Server Ordering Issues

● Exports before mounts
● Services before clients

● WLM Integration can be challenging
● MOM nodes
● Licensing/external connectivity (RSIP)

CUG 2017 Copyright 2017 Cray Inc.
271

Measuring Boot Performance

● Requirements
● Need a way to quickly and reliably provide root cause of slowest

setup operations to the whole of the boot
● Needs to be run on both SMW and CLE Node
● Needs to be able to summarize events on both

● Some information only available on CLE nodes
● Capture records to file for historical comparison
● Provided initially as a developer diagnostic tool

● Eventual support in CLE product
● May not artificially increase time to boot during measurement

● Bootchart
● Post-mortem timing information from logs

CUG 2017 Copyright 2017 Cray Inc.
272

Bootchart UP01 (60 seconds of tmpfs boot)

CUG 2017 Copyright 2017 Cray Inc.
273

Currrent TaskNode Booted!

Bootchart UP01 tmpfs compute (animated)

CUG 2017 Copyright 2017 Cray Inc.
274

Boot Profiler

● CLI on top of a ‘boot profiler’ API
● Runs from SMW or XC node

● No support yet for eLogin nodes
● Modeled after ’systemd-analyze blame’
● Allows SMW to “introspect” slow nodes

● Currently only supports serial introspection
● SSH Proxying through boot node
● Requires Passwordless SSH (root)

● ’—blame’ allows for wider breadth of introspection

CUG 2017 Copyright 2017 Cray Inc.
275

Event Classification

● Singleton Event
● Duration

● From A to B
● Total seconds self-report

● Sparce Events
● Represents period of time between two events that have reported

● Parent Events
● Comprised by one or more child events
● Serial Event

● All children are run in one after the other
● Duration defined as summation of all child events

● Parallel Event
● An event where all children are run in parallel
● Duration defined as longest running child event

CUG 2017 Copyright 2017 Cray Inc.
276

Available Option Set

CUG 2017 Copyright 2017 Cray Inc.
277

Demo on Virtual SMW

● Commands Used in Demo:
● From SMW:

● bootprofiler –blame 20 p0-current
● bootprofiler –blame 3 –passwordless p0-current

● From CLE Node:
● bootprofiler –blame 5

CUG 2017 Copyright 2017 Cray Inc.
278

Reducing Required Number of Xtbootsys Chunks

● ‘sres’ – distributed semaphore
● Command line tool
● Works in either server or client capacities
● Advertises available functionality over a unique TCP port

● Allows asynchronous fulfillment of requirements during
boot

● Node services are required to wait for their underlying
dependencies to be met before progressing

● Notable uses
● DVS Client/Server
● NFS Export/Mount
● LiveUpdates Advertisement

CUG 2017 Copyright 2017 Cray Inc.
279

Reducing Required Number of Xtbootsys Chunks
(pt 2)

● Combined boot of ‘service’ and ‘compute’ (up03)
● Leverages distributed semaphore controlled park and wait for

DVS Mounts, Netroot, NFS/Export
● Simultaneous boot of boot, sdb, backup boot, backup

SDB (up02-up03)
● Limited by PXE image size limitation
● Possible to dynamically install additional content during boot with

LiveUpdates in order to get under PXE size limitation
● DAL system may require xtbootsys commands or

manual automation

CUG 2017 Copyright 2017 Cray Inc.
280

Making Ansible Faster

● Address upstream issue requiring multiple fact
collection passes (1.9.2) (up02)

● Remove unused facts which probe local attached
volume label information

● Creation and leverage of Ansible filters reduces ‘no-op’
looping

● Use Node Group filters to determine when and how a
task should configure (up02)
● Significantly reduces looping/set fact behavior

CUG 2017 Copyright 2017 Cray Inc.
281

Making Ansible Faster (pt2)

● Move common setup behavior to facts (up03)
● Reduces total number of tasks run

● Split playbook packaging to be node type specific
(up02)
● Computes no longer no-op service only plays
● Allows better ways of integrating playbooks common to XC and

eLogin

CUG 2017 Copyright 2017 Cray Inc.
282

Increased Reliability through decreased variability

● Services which use random selection now use a
hashing function
● Seeded against node identity information
● Ansible filters (not random filter) cray_hashselect

● Progressive, low-initial latency timeout/retry in
services
● Keeps behavior of clients closer synchronized
● Nodes complete task earlier when services are under extra load
● Decreases cache thrashing behavior

CUG 2017 Copyright 2017 Cray Inc.
283

Netroot Overview

CUG 2017

Boot Node
Tier2 Node

Tier2 Node
Tier2 Node

Tier2 Node
Tier2 Node

Tier2 Node
Tier2 Node

Compute

Tier2 Node
Tier2 Node

Tier2 Node
Compute

Tier2 Node
Tier2 Node

Tier2 Node
Compute

Tier2 Node
Tier2 Node

Tier2 Node
Compute

Tier2 Node
Tier2 Node

Tier2 Node
Compute

Tier2 Node
Tier2 Node

Tier2 Node
Compute

Tier2 Node
Tier2 Node

Tier2 Node
Compute

Tier2 Node
Tier2 Node

Tier2 Node
Compute

NFSv4
DVS

1:400

SMW
image
push

Compute

DVS RO Netroot Projection

tmpfs RW Filesystem

Overlayfs Merge RW Filesystem

Copyright 2017 Cray Inc.
284

Netroot Preload (up01)

CUG 2017

Compute

DVS RO Netroot Projection

tmpfs RW Filesystem

Overlayfs Merge RW Filesystem

IDS RO Cfgsets Preload
Patterns

copy up

Copyright 2017 Cray Inc.
285

Netroot Preload Behavior

● Provided preload packaged pattern file with XC
● Different preload patterns for computes login nodes
● Generated using DVS request patterns from logged files

● Files critical to boot sequence
● Files opened most frequently
● Agnostic to configuration where possible
● Avoid files which will be promoted naturally during write configuration

● Only alleviates load associated with readpages, open & close operations
● Does not preload directories
● Listdir, getattr, stat requests still honored by the underlying mount

● Consumes ~100Mb per compute (up01-up03); ~50Mb (up04)
● Generating your own preload file:

● XC™ Series DVS Administration Guide CLE6.0up03 s-0005
● https://pubs.cray.com xctm-series-dvs-administration-guide-cle-60up03-s-0005

CUG 2017 Copyright 2017 Cray Inc.
286

Boot FS Traffic Behavior

CUG 2017

0

5000

10000

15000

20000

25000

30000

35000

RQ_READPAGES_RQ RQ_READLINK RQ_OPEN RQ_READDIR RQ_CLOSE

Netroot Preload Impact on DVS Requests

No Preload Preload

Copyright 2017 Cray Inc.
287

Image Binding: PE’s ldconfig (up03)

● Cost of running ldconfig prohibitively long
● Impacts tmpfs and netroot images

● Largest impact on netroot computes
● Reduce overall time of setup by booting once and

preserving ld.so.cache
● Instructions within /var/opt/cray/pe/ldconfig_cache_command

● Version of ld.so.cache saved is unique to PE image
identity and CLE image identity

● New versions of PE or CLE require new save of
ldconfig

CUG 2017 Copyright 2017 Cray Inc.
288

Config Set Caching (up01)

● SMW service ‘cray-cfgset-cache’
● After change, generates new cache after 4

seconds of inactivity
● Uses kernel inotify watch descriptors

● Allows for compression of entire cfgsets for
distribution to client nodes

● Integrity of distribution/checksums
● Nodes have ‘last known good’ cfgset local

copy
● Speeds up YAML parsing operations
● Checksums allow quick stale cfgset detection
● Faster transfer of content from cfgset to node

● Simple Sync
● Dist/key transfer

CUG 2017

4 Seconds
without change
"Grace Window"

C
fg

se
t C

ha
ng

e
In

tr
od

uc
ed

C
fg

se
t S

qu
as

hf
s

C
ac

he
 In

iti
at

ed

N
ew

 C
fg

se
t C

ac
he

 A
va

ila
bl

e

Time till
squash and
checksum
completion

Copyright 2017 Cray Inc.
289

Faster Service Initialization

● HSN ARP table initialization handled by rca_arpd service
(up03)
● Previously was handled using individual calls to arpd -a for each

node in system
● LLM uses full tiering fanout for message aggregation (up01)
● NTP Fanout using all members of tier1 and tier2 (up03)

● Low rate of failure introduced significant boot staggering when used
with distribution defaults

● Greater Resilience
● Added peer configuration
● Fewer single points of failure

CUG 2017 Copyright 2017 Cray Inc.
290

CLE NTP UP02 to UP03

Boot Progression

HSS BIOS
Time Set

Kernel reads
time from

fpga buffer

Ansible Booted PhaseSystemd StartupAnsible Init Phase

Initial CLE Time Correction
ntpdate <server>
(Backgrounded)

ntpd drift correction
ntpd systemd service

ntpd drift correction
ntpd systemd service

11 min Retry

CUG 2017

Boot Progression

HSS BIOS
Time Set

Kernel reads
time from

fpga buffer

Ansible Booted
Phase

Systemd StartupAnsible Init
Phase

Initial CLE Time
Correction

ntpd one-shot
ntpd drift correction
ntpd systemd service

ntpd drift
correction

(no-op)

UP02

UP03

Copyright 2017 Cray Inc.
291

Results: XC mixed x86/KNL Full System Netroot
Cold Boot Times, ~1000 computes (minutes)

CUG 2017

UP01 UP02 UP03

UP03.PS12

Copyright 2017 Cray Inc.
292

What is CLE 6.0UP03 PS12?

● Fixes how DVS Servers
manage RO NFS client mounts

● Inode cache invalidated,
forcing all traffic to be re-
requested from the boot node

● Tier2 nodes must have RO NFS
mount to boot node
● cray_simple_shares

/var/opt/cray/imps/ filesystem

CUG 2017

RAID

Boot Node

Btrfs
Mount

NFS
Mount

Tier2 Node

DVS
Mount

Tier3 Node

UP03

opens
closes

readpages

RAID

Boot Node

Btrfs
Mount

NFS
Mount

Tier2 Node

DVS
Mount

Tier3 Node

UP03.PS12

opens
closes

readpages

cache miss

Copyright 2017 Cray Inc.
293

Scaling Characteristics of tmpfs

CUG 2017

0

10

20

30

40

50

60

70

80

90

Init Time Netroot Setup Ansible Init SystemD Ansible Booted Total Time

Time Spent in Phase (seconds)
CLE6.0UP03 x86 Computes

1 tempfs 52 tempfs

Copyright 2017 Cray Inc.
294

Xeon vs. KNL, Netroot, Low Load

CUG 2017

0

50

100

150

200

250

300

350

400

450

500

Init Time Netroot Setup Ansible Init SystemD Ansible Booted Total Time

Time Spent in Phase, x86 Xeons and KNL (seconds)
UP03.PS12

52 Netroot x86 32 Netroot KNL

347 Seconds -

Copyright 2017 Cray Inc.
295

KNL Netroot at Scale

CUG 2017

0

100

200

300

400

500

600

700

800

Init Time Netroot Setup Ansible Init SystemD Ansible Booted Total Time

Time Spent In Phase (seconds)
CLE6.0UP03.PS12, KNL Computes

32 Netroot KNL 3200 Netroot KNL

245 Seconds -

Copyright 2017 Cray Inc.
296

Scaling Characteristics of x86 Netroot Computes

CUG 2017

0

50

100

150

200

250

300

Init Time Netroot Setup Ansible Init SystemD Ansible Booted Total Time

Time Spent in Phase (seconds)
CLE 6.0UP03.PS12

x86 Netroot Computes

52 x86 260 x86 988 x86

115 Seconds -

Copyright 2017 Cray Inc.
297

What’s Coming in UP04?

● SquashFS for Netroot, PE, Diags Images
● Performance

● Reduce size of image transfer
● Allow client nodes to resolve listdir, getattr, getxattr locally
● Improvements outside of booting

● Reduce overall size of image on boot node volume group
● Focuses on improving t1:t2 ratio performance by reducing number

of operations bootnode NFS server must honor
● Most significant benefit on larger XC systems

CUG 2017 Copyright 2017 Cray Inc.
298

Why You Should Care About Squashfs Images

CUG 2017

0

50000

100000

150000

200000

250000

300000

UP03.PS12 Warmboot NFS Operation Count
as a function of Compute Number

UP03 1 Compute UP03 2 Computes UP03 3 Computes UP03 4 Computes

Copyright 2017 Cray Inc.
299

Why You Should Care About Squashfs Images (pt2)

CUG 2017

0

50000

100000

150000

200000

250000

300000

access close getattr getfh lookup open putfh read readlink server rpc
stats

Server NFS
v4

Operations

Warmboot NFS Operations as a function of Number of Computes

UP03 1 Compute UP03 2 Computes UP03 3 Computes UP03 4 Computes

UP04 1 Compute UP04 2 Computes UP04 3 Computes UP04 4 Computes

Copyright 2017 Cray Inc.
300

Squashfs Images Changes Fundamentals of Load
Requests

CUG 2017

● CLE 6.0UP03PS12
● 160,000 per tier2
● 19,000 per client
● 160,000*tier2+19,000*client

● CLE 6.0UP04
● 3,735 per tier2
● 35 per client
● 3,735*tier2+35*client

● 10,000 compute system
● Recommended 400:1 ratio
● UP03PS12: 198,320,000
● UP04: 443,375
● 447 fold reduction

RAID
Btrfs
Mount

NFS
Mount

Tier2 Node

DVS
Mount

Tier3 Node

UP03.PS12 opens
closes

readpages

RAID

Boot Node

Btrfs
Mount

NFS
Mount

Tier2 Node

DVS

Tier3 Netroot Node

UP04

Squashfs tmpfs

listdir
stat

getattr
putfh
getfh

readpages
opens
closes

readpages

Boot Node

listdir
stat

getattr
putfh
getfh

Copyright 2017 Cray Inc.
301

Beyond UP04 (uncommitted short list of ideas)

● t1:t2 ratio analysis for extreme scale
● Primary bottleneck for large XC systems
● Boot performance data from partnering

sites
● Additional ansible filtering and

modules
● Allows faster handling of large cfgset data

structures
● Simplifies and speed up ansible roles

common to multiple deployments
● Make sres windowing behavior

configurable
● All-in-one jinja2 templates for service

configuration
● Does not allow for easy site-additions to

configuration

● Removes upstream defaults
● Heavier reliance on systemd drop-ins
● Better leverage of ansible

● Traditional push mode for reconfiguration,
inventory management

● Cray Ansible Modules
● Decrease role of custom /init where

possible
● More systemd native services
● BND Fanout Improvement

● Reduction in netroot initrd sizes
● Parallelization of fanout

● NIMS Speed Improvement

CUG 2017 Copyright 2017 Cray Inc.
302

Summary

● Primary speedup efforts target compute nodes
● KNL serial performance is particularly noticeable when

running Ansible
● UP03.PS12 DVS patch has large overall impact to boot time
● Netroot performance is directly related to boot performance;

largest bottleneck is at the boot node NFS server
● Configuration behavior is more consistent between

deployments in newer releases
● Greater flexibility for booting multiple kinds of nodes

simultaneously
● More speed improvements on the horizon

CUG 2017 Copyright 2017 Cray Inc.
303

Special Thanks

● Customer ‘Boot-a-thon’ sites

● Crayons
● Richard Halkyard
● Jane Kagan
● Kelly Mark
● Michael Primm
● Dean Roe

CUG 2017 Copyright 2017 Cray Inc.
304

Agenda

● Introduction to SMW/CLE system management
● New system management features since UP01
● Best practices for using Ansible
● Troubleshooting XC system booting problems
● Migrating SMW/CLE software from 7.2/5.2 to 8.0/6.0
● Intro to CMC/eLogin system management
● Migrating CIMS/CDL to CMC/eLogin
● CLE Boot Performance and Reliability

● Q & A

CUG 2017 Copyright 2017 Cray Inc.
305

BOFs at CUG 2017

CUG 2017

● XC System Management Usability BOF
● Tuesday, May 9, 4:40pm-5:30pm
● BoF 10C, Salon 3

● eLogin Usability and Best Practices BOF
● Wednesday, May 10, 5:10pm-6:20pm
● BoF 20B, Salon 2

Copyright 2017 Cray Inc.
306

Legal Disclaimer
Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual
property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release.
Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and
any use of Cray Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate
performance of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or
configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design,
SONEXION, and URIKA. The following are trademarks of Cray Inc.: APPRENTICE2, CHAPEL, CLUSTER CONNECT,
CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, REVEAL,THREADSTORM. The following system family marks,
and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered
trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

CUG 2017 Copyright 2017 Cray Inc.
307

Q&A
Jeff Keopp keopp@cray.com
Joel Landsteiner jsl@cray.com
Harold Longley htg@cray.com

