
Analytics and Machine Learning
on Cray XC and Intel Systems
Michael Ringenburg and Kristyn Maschhoff
(Cray)
Lisa Gerhardt, Rollin Thomas, and Richard
Canon (NERSC)
Jing Huang and Vivek Rane (Intel)

Overall Agenda

● Session I: 1:00-2:30
● Apache Spark (Michael Ringenburg, Cray)
● Anaconda Python and Dask Distributed (Michael Ringenburg, Cray)

● CUG Break: 2:30-3:00
● Session II: 3:00-4:30

● R (Kristyn Maschhoff, Cray)
● Cray Graph Engine (Kristyn Maschhoff, Cray)

● CUG Track Change: 4:30-4:40
● Session III: 4:40-6:20

● TensorFlow (Jing Huang and Vivek Rane, Intel)

Copyright 2017 Cray Inc.
2

CUG 2017

Training Accounts

● NERSC has provided temporary training accounts on Cori
for tutorial attendees.
● You should have received a slip of paper with your username and

password when you signed the user agreement
● Login: ssh <username>@cori.nersc.gov
● Allocation via slurm:

● Haswell nodes: salloc --reservation=CUG2C -N 5 -p regular -C haswell -t
60 -A ntrain

● KNL nodes: salloc --reservation=CUG2C -N 1 -p regular -C knl -t 60 -A
ntrain

● 150 Haswell and 30 KNL nodes total available in this reservation –
please don’t exceed your fair share

Copyright 2017 Cray Inc.
3

CUG 2017

Tutorial: Spark on Cray XC Systems
Michael Ringenburg, mikeri@cray.com
Principal Engineer, Analytics R&D, Cray Inc

Agenda

● Introduction to Spark
● History and Background
● Computation and Communication Model

● Spark on the XC40
● Installation and Configuration
● Local storage

● Running Spark on Cori
● Questions?

Copyright 2017 Cray Inc.
5

CUG 2017

In the beginning, there was Hadoop MapReduce…

● MapReduce: simplified parallel programming model
● All computations broken into two parts

● Embarassingly parallel map phase: apply single operation to every key,value-pair,
produce new set of key,value-pairs

● Combining reduce phase: Group all values with identical key, performing combining
operation to get final value for key

● Can perform multiple iterations for computations that require
● I/O intensive

● Map writes to local storage. Data shuffled to reducer’s local storage, reduce reads.
● Additional I/O between iterations in multi-iteration algorithms (map reads from HDFS,

reduce writes to HDFS)
● Effective model for many data analytics tasks

● HDFS distributed file system (locality aware – move compute to data)
● YARN cluster resource manager

Copyright 2017 Cray Inc.
6

CUG 2017

Example: K-Means Clustering with MapReduce

● Initially: Write out random cluster
centers

● Map:
● Read in cluster centers
● For each data point, compute nearest cluster

center and write <key: nearest cluster, value:
data point>

● Reduce:
● For each cluster center (key) compute

average of datapoints
● Write out this value as new cluster center

● Repeat until convergence (clusters
don’t change)

Copyright 2017 Cray Inc.
7

Assign
points to
clusters

Recompute
centers

Disk Disk

Repeat

CUG 2017

MapReduce Problems

● Gated on IO bandwidth, possibly interconnect as well
● Must write and read between map and reduce phases
● Multiple iterations must write results in next time (e.g., new cluster

centers)
● No ability to persist reused data
● Must re-factor all computations as map then reduce

(rinse and repeat?)

Copyright 2017 Cray Inc.
8

CUG 2017

What is Spark?

● Newer (2014) analytics framework
● Originally from Berkeley AMPLab/BDAS stack, now Apache project
● Native APIs in Scala. Java, Python, and R APIs available as well.
● Many view as successor to Hadoop MapReduce. Compatible with

much of Hadoop Ecosystem.
● Aims to address some shortcomings of Hadoop

MapReduce
● More programming flexibility – not constrained to one map, one

reduce, write, repeat.
● Many operations can be pipelined into a single in-memory task
● Can "persist" intermediate data rather than regenerating every

stage

Copyright 2017 Cray Inc.
9

CUG 2017

Spark Execution Model

● Master-slave parallelism
● Driver (master)

● Executes main
● Distributes work to executors

● Resilient Distributed Dataset (RDD)
● Spark's original data abstraction
● Partitioned amongst executors
● Fault-tolerant via lineage
● Dataframes/Datasets extend this abstraction

● Executors (slaves)
● Lazily execute tasks (local operations on

partitions of the RDD)
● Global all-to-all shuffles for data exchange
● Rely on local disks for spilling data that's too

large, and storing shuffle data

Driver
main()

…
Executor

Task

Task

Node 1

Executor

Task

Task

Executor

Task

Task

Node N

Executor

Task

Task

Node 0

= Java Virtual Machine Instance

= TCP Socket-based communication

Local disk(s)

Local disk(s)

Copyright 2017 Cray Inc.
10

CUG 2017

Spark Communication
Model (Shuffles)

● All data exchanges
between executors
implemented via shuffle
● Senders (“mappers”) send

data to block managers; block
managers write to disks, tell
scheduler how much destined
for each reducer

● Barrier until all mappers
complete shuffle writes

● Receivers (“reducers”)
request data from block
managers that have data for
them; block managers read
and send

Map task
thread

Block
manager

Disk

Reduce
task

thread
TCP

Spark
Scheduler

Shuffle write

Shuffle read

Meta data

Copyright 2017 Cray Inc.
11

CUG 2017

RDDs (and DataFrames/DataSets)

● RDDs are original data abstraction of Spark
● DataFrames add structure to RDDs: named columns
● DataSets add strong typing to columns of DataFrames (Scala and

Java only)
● Both build on the basic idea of RDDs

● DataFrames were originally called SchemaRDDs

● RDD data structure contains a description of the data,
partitioning, and computation, but not the actual data
… why?
● Lazy evaluation

Copyright 2017 Cray Inc.
12

CUG 2017

Lazy Evaluation and DAGs

● Spark is lazily evaluated
● Spark operations are only executed when and if needed
● Needed operations: produce a result for driver, or produce a

parent of needed operation (recursive)
● Spark DAG (Directed Acyclic Graph)

● Calls to transformation APIs (operations that produce a new
RDD/DataFrame from one or more parents) just add a new node
to the DAG, indicating data dependencies (parents) and
transformation operation

● Action APIs (operations that return data) trigger execution of
necessary DAG elements

● Example shortly…

Copyright 2017 Cray Inc.
13

CUG 2017

Tasks, Stages, and Pipelining

● If an RDD partition's dependencies are on a single other RDD
partition (or on co-partitioned data), the operations can be
pipelined into a single task
● Co-partitioned: all of the parent RDD partitions are co-located with child

RDD partitions that need them
● Pipelined: Operations can occur as soon as the local parent data is ready

(no synchronization)
● Task: A pipelined set of operations
● Stage: Execution of same task on all partitions

● Every stage ends with a shuffle, an output, or returning data back
to the driver.
● Global barrier between stages. All senders complete shuffle write before

receivers request data (shuffle read)

Copyright 2017 Cray Inc.
14

CUG 2017

Spark Programming Model: Example

val arr1M = Array.range(1,1000001)
val rdd1M = sc.parallelize(arr1M, 40)
val evens = rdd1M.filter(

a => (a%2) == 0
)

evens.take(5)

>>> Array[Int] = Array(2, 4, 6, 8, 10)

Create array of
{1, 2, …, 1,000,000}

Partition array into a 40-
partition RDD (can also

create from file). Executors
will execute tasks on

parititions, so this is also
the maximum parallelism.

Spark transformation
(Create new RDD from old

RDD/RDDs)

Spark action
(return result to driver)

Lazy Evaluation: No computation until result requested

com
pute

Copyright 2017 Cray Inc.
15

CUG 2017

Example: Line-by-line

val arr1M = Array.range(1,1000001)

Driver:
{1, …, 1,000,000}

Executor 0: Executor 1: Executor 2: Executor 3:

Conceptually …

Copyright 2017 Cray Inc.
16

CUG 2017

Example: Line-by-line

val rdd1M = sc.parallelize(arr1M, 8)

Driver:
{1, …, 1,000,000}

Executor 0:
{1 … 125000}

{500001 … 625000}

Executor 1:
{125001 … 250000}
{625001 … 750000}

Executor 2:
{250001 … 375000}
(750001 … 875000}

Executor 3:
{375001 … 500000}
(875001…1000000}

Conceptually …

Copyright 2017 Cray Inc.
17

CUG 2017

Example: Line-by-line

val evens = rdd1M.filter(a => a%2==0)

Driver:
{1, …, 1,000,000}

Executor 0:
{2,4, … 125000}

{500002,500004 …}

Executor 1:
{125002, 125004 …}
{625002, 625004 …}

Executor 2:
{250000,250002 …}
(750002,750004 …}

Executor 3:
{375002,375004 …}
(875002,875004 …}

Conceptually …

Copyright 2017 Cray Inc.
18

CUG 2017

Example: Line-by-line

evens.take(5)

Driver:
{1, …, 1,000,000}

{2, 4, 6, 8, 10}

Executor 0:
{2,4, … 125000}

{500002,500004 …}

Executor 1:
{125002, 125004 …}
{625002, 625004 …}

Executor 2:
{250000,250002 …}
(750002,750004 …}

Executor 3:
{375002,375004 …}
(875002,875004 …}

Conceptually …

Copyright 2017 Cray Inc.
19

CUG 2017

Example: Line-by-line

val arr1M = Array.range(1,1000001)

Executor 0: Executor 1: Executor 2: Executor 3:

Reality: Lazy Evaluation
Driver:

{1, …, 1,000,000}

Copyright 2017 Cray Inc.
20

CUG 2017

Example: Line-by-line

val rdd1M = sc.parallelize(arr1M, 8)

Executor 0: Executor 1: Executor 2: Executor 3:

Input: Arr1M
RDD Partition 0

RDD Partition 7
DAG (Directed
Acyclic Graph)
schedule

…

Driver:
{1, …, 1,000,000}

Copyright 2017 Cray Inc.
21

Reality: Lazy Evaluation

CUG 2017

Example: Line-by-line

val evens = rdd1M.filter(a => a%2==0)

Executor 0: Executor 1: Executor 2: Executor 3:

Input: Arr1M
RDD Partition 0

RDD Partition 7

FilteredRDD 0

FilteredRDD 7
DAG (Directed
Acyclic Graph)
schedule

… …

Driver:
{1, …, 1,000,000}

Copyright 2017 Cray Inc.
22

Reality: Lazy Evaluation

CUG 2017

Example: Line-by-line

evens.take(5)

Executor 0: Executor 1: Executor 2: Executor 3:

Input: Arr1M
RDD Partition 0

RDD Partition 7

FilteredRDD 0

FilteredRDD 7
DAG (Directed
Acyclic Graph)
schedule

… … Take Result:
RETURNS DATA

Driver:
{1, …, 1,000,000}

Copyright 2017 Cray Inc.
23

Reality: Lazy Evaluation

CUG 2017

Example: Line-by-line

evens.take(5)

Executor 0:
{1 … 125000}

Executor 1: Executor 2: Executor 3:

Input: Arr1M
RDD Partition 0

RDD Partition 7

FilteredRDD 0

FilteredRDD 7

Start computing!

DAG (Directed
Acyclic Graph)
schedule

… … Take Result:
RETURNS DATA

Driver:
{1, …, 1,000,000}

Copyright 2017 Cray Inc.
24

Reality: Lazy Evaluation

CUG 2017

Example: Line-by-line

evens.take(5)

Executor 0:
{2,4, … 125000}

Executor 1: Executor 2: Executor 3:

Input: Arr1M
RDD Partition 0

RDD Partition 7

… FilteredRDD 0

FilteredRDD 7

… Take Result:
RETURNS DATA

DAG (Directed
Acyclic Graph)
schedule

Driver:
{1, …, 1,000,000}

Copyright 2017 Cray Inc.
25

Reality: Lazy Evaluation

CUG 2017

Example: Line-by-line

evens.take(5)

Executor 0:
{2,4, … 125000}

Executor 1: Executor 2: Executor 3:

Input: Arr1M
RDD Partition 0

RDD Partition 7

FilteredRDD 0

FilteredRDD 7

Driver:
{1, …, 1,000,000}

{2, 4, 6, 8, 10}

DAG (Directed
Acyclic Graph)
schedule

… … Take Result:
RETURNS DATA

Copyright 2017 Cray Inc.
26

Reality: Lazy Evaluation

CUG 2017

Wait a second …

● How did Spark know that take() would only require data
from one partition?
● What if filter() left fewer than 5 elements in the first partition?

Copyright 2017 Cray Inc.
27

CUG 2017

Wait a second …

● How did Spark know that take() would only require data
from one partition?
● What if filter() left fewer than 5 elements in the first partition?

● Answer … It didn't.
● Take is typically used to fetch a small initial piece of the data
● Spark guesses that it will all be available in the first partition
● If not, tries the first four partitions …
● Then the first 16 …
● Etc…

Copyright 2017 Cray Inc.
28

CUG 2017

Modified example

● Imagine we want to perform a number of actions on (i.e.,
return different data about) our filtered RDD.

● For each action, Spark computes all the DAG steps…

val arr1M = Array.range(1,1000001)
val rdd1M = sc.parallelize(arr1M, 8)
val evens = rdd1M.filter(a => (a%2) == 0)
val firstFiveEvens = evens.take(5)
// How many evens?
val totalEvens = evens.count()
// Sum of evens
val evenSum = evens.reduce((a,b) => a+b)

Count returns the
total size of an RDD

Reduce performs a
reduction over the
dataset, combining
elements with the
argument function.

Copyright 2017 Cray Inc.
29

CUG 2017

Modified example

● Problem: This means recomputing the filtered "evens" RDD
three times – inefficient.

val arr1M = Array.range(1,1000001)
val rdd1M = sc.parallelize(arr1M, 8)
val evens = rdd1M.filter(a => (a%2) == 0)
val firstFiveEvens = evens.take(5)
// How many evens?
val totalEvens = evens.count()
// Sum of evens
val evenSum = evens.reduce((a,b) => a+b)

Count returns the
total size of an RDD

Reduce performs a
reduction over the
dataset, combining
elements with the
argument function.

Copyright 2017 Cray Inc.
30

CUG 2017

Modified example

● Problem: This means recomputing the filtered "evens" RDD
three times – inefficient.

● Solution: Persist the RDD!*

val arr1M = Array.range(1,1000001)
val rdd1M = sc.parallelize(arr1M, 8)
val evens = rdd1M.filter(a => (a%2) == 0)
evens.persist() // or cache()
val firstFiveEvens = evens.take(5)
// How many evens?
val totalEvens = evens.count()
// Sum of evens
val evenSum = evens.reduce((a,b) => a+b)

Persist tells Spark to keep
the data in memory even
after it is done with the

action. Allows future actions
to reuse without recomputing.
Cache is synonym for default
storage level (memory). Can

also persist on disk, etc.

*Relies on immutability of val

Copyright 2017 Cray Inc.
31

CUG 2017

Multi-stage Spark Example: Word Count
val lines = sc.textFile("mytext")
val words = lines.flatMap (

line => line.split(" ")
)

val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey()
val wordCounts = groupedWords.map(

t => (t._1, t._2.sum)
)

val counts = wordCounts.collect()

flatMap maps one
value to (possibly)

many, instead of one-
to-one like map

groupByKey combines all
key-value pairs with the

same key (k, v1), …,
(k,vn) into a single key-

value pair (k, (v1, …, vn)).

Collect returns all
elements to the driver

Load file

• Let's like at a simple example: computing the number of
times each word occurs

• Load a text file
• Split it into words
• Group same words together (all-to-all communication)
• Count each word

Copyright 2017 Cray Inc.
32

CUG 2017

More efficient: replace
group and sum with

reduceByKey

val lines = sc.textFile("mytext")
val words = lines.flatMap (

line => line.split(" ")
)

val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey()
val wordCounts = groupedWords.map(

t => (t._1, t._2.sum)
)

val counts = wordCounts.collect()

The Spark DAG

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Copyright 2017 Cray Inc.
33

Collect

Execute!

CUG 2017

Execution

"fox jumps
over"

"the brown
dog"

"the quick
brown"

Copyright 2017 Cray Inc.
34

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect

CUG 2017

Execution

"fox jumps
over"

"the brown
dog"

(the, 1)
(brown, 1)
(dog, 1)

"the quick
brown"

(the, 1)
(quick, 1)
(brown, 1)

(fox, 1)
(jumps, 1)
(over, 1)

Copyright 2017 Cray Inc.
35

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect

CUG 2017

Execution

"fox jumps
over"

"the brown
dog"

(the, 1)
(brown, 1)
(dog, 1)

"the quick
brown"

(the, 1)
(quick, 1)
(brown, 1)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 1), (quick,
1), (brown, 1)

(fox, 1), (jumps,
1), (over, 1)

(the, 1), (brown,
1), (dog, 1)

Write shuffle data to local file system

Barrier

Copyright 2017 Cray Inc.
36

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect

CUG 2017

Execution

"the quick
brown"

"fox jumps
over"

"the brown
dog"

(quick, (1))
(brown, (1, 1))

(fox, (1))
(jumps, (1))
(over, (1))

(the, (1, 1))
(dog, (1))

(the, 1), (quick,
1), (brown, 1)

(fox, 1), (jumps,
1), (over, 1)

(the, 1), (brown,
1), (dog, 1)

Fetch shuffle data from remote file systems

Copyright 2017 Cray Inc.
37

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect

CUG 2017

Execution

"the quick
brown"

"fox jumps
over"

"the brown
dog"

(quick, 1)
(brown, 2)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 2)
(dog, 1)

(the, 1), (quick,
1), (brown, 1)

(fox, 1), (jumps,
1), (over, 1)

(the, 1), (brown,
1), (dog, 1)

Copyright 2017 Cray Inc.
38

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect

CUG 2017

Execution

"the quick
brown"

"fox jumps
over"

"the brown
dog"

(quick, 1)
(brown, 2)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 2)
(dog, 1)

(the, 1), (quick,
1), (brown, 1)

(fox, 1), (jumps,
1), (over, 1)

(the, 1), (brown,
1), (dog, 1)

Copyright 2017 Cray Inc.
39

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect

CUG 2017

Execution

"the quick
brown"

"fox jumps
over"

"the brown
dog"

(quick, 1)
(brown, 2)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 2)
(dog, 1)

(the, 1), (quick,
1), (brown, 1)

(fox, 1), (jumps,
1), (over, 1)

(the, 1), (brown,
1), (dog, 1)

Copyright 2017 Cray Inc.
40

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Take(5)

CUG 2017

Copyright 2017 Cray Inc.
41

Spark on Cray XC

CUG 2017

Spark on XC: Setup options
● Cluster Compatibility Mode (CCM) option

● Set up and launch standalone Spark cluster in CCM mode, run interactively
from mom node, or submit batch script

● Exact details vary based on CLE version and workload manager
● An example recipe can be found in:

“Experiences Running and Optimizing the Berkeley Data Analytics Stack on Cray
Platforms”, Maschhoff and Ringenburg, CUG 2015

● Shifter option
● Shifter containerizer (think “Docker for XC”) developed at NERSC
● Acquire node allocation

● Run master image on one node
● Interactive image on another (or login)
● Worker images on rest

● Cray’s analytics on XC product (in beta testing) uses this approach
● Challenge: Lack of local storage for Spark shuffles and spills

Copyright 2017 Cray Inc.
42

CUG 2017

Reminder: Spark Shuffle –
Standard Implementation

● Senders (“mappers”) send data
to block managers; block
managers write to local disks,
tell driver how much destined for
each reducer

● Barrier until all mappers
complete shuffle writes

● Receivers (“reducers”) request
data from block managers that
have data for them; block
managers read from local disk
and send

● Key assumption: large, fast local
block storage device(s) available
on executor nodes

Map task
thread

Block
manager

Disk

Reduce
task

thread

Driver
(scheduler,
block and

shuffle trackers)

Shuffle write

Shuffle read

Meta data

Node

Copyright 2017 Cray Inc.
43

CUG 2017

Shuffle on XC – Version 1

● Problems: No local disk on standard XC40
● First try: Write to lustre instead

● Biggest Issue: Poor file access pattern for lustre (lots of small files, constant
opens/closes). Creates a major bottleneck on Lustre Metadata Server (MDS).

● Issue 2: Unnecessary extra traffic through network

Map task
thread

Block
managerLustre

Reduce
task

thread

Copyright 2017 Cray Inc.
44

CUG 2017

Shuffle on XC – Version 2

● Second try: Write to RAMDisk
● Much faster, but …
● Issues: Limited to lessor of: 50% of node DRAM or unused DRAM; Fills up

quickly; takes away memory that could otherwise be allocated to Spark
● Spark behaves unpredictably when it's local scratch space fills up (failures not

always simple to diagnose)

Map task
thread

Block
managerRAMDisk

Reduce
task

thread

Copyright 2017 Cray Inc.
45

CUG 2017

Shuffle on XC – Version 3

● Third try: Write to RAMDisk and Lustre
● Set local directories to RAMdisk and lustre (can be list)
● Initially fast and keeps working when RAMDisk full
● Issues: Slow once RAMDisk fills; Round robin between directories (no bias

towards faster RAM)

Map task
thread

Block
managerRAMDisk

Reduce
task

thread
TCP

Lustre

Copyright 2017 Cray Inc.
46

CUG 2017

Shuffle on XC – Version 3

● Third try: Write to RAMDisk and Lustre
● Set local directories to RAMdisk and lustre (can be list)
● Initially fast and keeps working when RAMDisk full
● Issues: Slow once RAMDisk fills; Round robin between directories (no bias

towards faster RAM), but can specify multiple RAM directories

Map task
thread

Block
managerRAMDisk

Reduce
task

thread
TCP

Lustre

Copyright 2017 Cray Inc.
47

CUG 2017

Shuffle on XC – with Shifter PerNodeCache

● Shifter implementation: Per-node loopback file system
● NERSC’s Shifter containerization (in Cray CLE6) provides optional loopback-mounted per-node temporary

filesystem
● Local to each node – fully cacheable
● Backed by a single sparse file on Lustre – greatly reduced MDS load, plenty of capacity, doesn’t waste space
● Performance comparable to RAMDisk, without capacity constraints (Chaimov et al, CUG ‘16)

● Cray’s Analytics on XC project (in beta) will ship as a Shifter image, and use this approach

Map task
thread

Block
manager

Sparse,
cacheable

“local”
filesystem

Reduce
task

thread
TCP

Copyright 2017 Cray Inc.
48

Lustre
File

CUG 2017

Other Spark Configurations

● Many config parameters … some of the more relevant:
● spark.shuffle.compress: Defaults to true. Controls whether

shuffle data is compressed. In many cases with fast interconnect,
compression and decompression overhead can cost more than
the transmission time savings. However, can still be helpful if
limited shuffle scratch space.

● spark.locality.wait: Defaults to 3 (seconds). How long to wait for
available resources on a node with data locality before trying to
execute tasks on another node. Worth playing around with -
decrease if seeing a lot of idle executors. Increase if seeing poor
locality. (Can check both in history server.) Do not set to 0!

Copyright 2017 Cray Inc.
49

CUG 2017

Spark Performance on XC: HiBench

Copyright 2017 Cray Inc.
50

0	
20	
40	
60	
80	
100	
120	

Sca
laK
me
an
s	

Sca
laP
ag
era
nk
	

Sca
laS
lee
p	

Sca
laS
ort
	

Sca
laT
era
so
rt	

Sca
laW

ord
co
un

Sca
laB
ay
es	

El
ap

se
d	
?m

e	
(s
)	

Performance	of	HiBench	on	XC40	vs	Urika-XA	
Huge	Scale:	48	nodes,	12	cores/node		

XC40		

Urika-XA		

● Intel HiBench
● Originally MapReduce, Spark

added in version 4
● Compared performance

with Urika XA system
● XA: FDR Infiniband, XC40:

Aries
● Both: 32 core Haswell nodes
● XA: 128 GB/node, XC40: 256

GB/node (problems fit in
memory on both)

● Similar performace on
Kmeans, PageRank, Sleep

● XC40 faster for Sort,
TeraSort, Wordcount,
Bayes

CUG 2017

Spark Performance on XC: GraphX

Copyright 2017 Cray Inc.
51

● GraphX PageRank
● 20 iterations on

Twitter dataset
● Interconnect

sensitive
● GX has slightly

higher latency and
lower peak TCP
bandwidth than XC
due to buffer chip

693

391

183
137

0

100

200

300

400

500

600

700

800

Amazon EC2 (10 GbE) Urika XA (FDR IB) Urika GX (Aries +
Buffer)

XC 30 (Aries)

Se
co

nd
s

Spark GraphX PageRank

CUG 2017

Spark on KNL

● Cray and Intel have recently started a collaboration to
investigate and improve Spark on KNL performance
● Java and Spark currently run
● Performance vs Skylake varies from 20% slower to >4x slower
● “Typical” benchmarks at larger sizes ~3x slower than a dual-

socket Skylake node
● Still early … just starting to benchmark and profile.

● Looking at issues, profiling, attempting to identify causes and
potential solutions.

Copyright 2017 Cray Inc.
52

CUG 2017

Early findings and tips

● Lots of skinny executors work better than fewer fatter executors
● On Xeon-based nodes this is not necessarily the case – fat often works

nearly as well or occasionally better
● On KNL, though, often find best results with 1-2 cores per executor

● Make sure to adjust executor memory appropriately – all about memory/core
● E.g., 64 executors with 1 core and 2GB each, rather than 1 executor with 64 cores

and 128 GB
● Skinny executors have better memory locality
● Skinny executors also have less JVM overhead
● JVM has issues scaling to many threads, e.g., https://issues.scala-

lang.org/browse/SI-9823 (cache thrashing with isInstanceOf)
● Hyperthreading generally not helpful for Spark (on either Xeon or

Xeon Phi)

Copyright 2017 Cray Inc.
53

CUG 2017

Early findings and tips

● Limit GC parallelism from JVM
● E.g., -XX:+UseParallelOldGC -XX:ParallelGCThreads=<N>,

where N ≤ available threads/# executors
● Especially important with lots of skinny JVMs

● Otherwise each JVM will try to grab 5/8 total threads

● MCDRAM configured as cache works best with Spark
● Seeing ~43% of accesses coming from MCDRAM, ~11% directly

from DDR
● Currently no ability in JVM to take advantage of MCDRAM in flat

mode

Copyright 2017 Cray Inc.
54

CUG 2017

Running Preinstalled Spark on Cori

● Login to your training accounts
● Allocate Haswells, e.g.,

● salloc --reservation=CUG2C -N 5 -p regular -C haswell -t 60 -A ntrain
● module load spark
● start-all.sh
● Scala shell: spark-shell
● Python shell: pyspark
● Submit spark application: spark-submit
● When done: stop-all.sh

Copyright 2017 Cray Inc.
55

CUG 2017

WordCount demo

● spark-shell --executor-cores 12
● val lines =

sc.textFile("/global/cscratch1/sd/mikeri/enron_mail/words.*.json.gz")
● val words = lines.flatMap (line => line.split(" "))
● val wordKV = words.map(s => (s, 1))
● val wordCounts = wordKV.reduceByKey((a, b) => a+b)
● wordCounts.persist()
● wordCounts.count()
● wordCounts.take(5)
● val sorted=wordCounts.sortBy(-_._2)
● sorted.take(5)

Copyright 2017 Cray Inc.
56

CUG 2017

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property
rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and
other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal
codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray
Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and
URIKA. The following are trademarks of Cray Inc.: APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, REVEAL, THREADSTORM. The following system family marks, and associated model number
marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense
from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are
the property of their respective owners.

Copyright 2017 Cray Inc.
57

CUG 2017

Q&A
Michael Ringenburg
<mikeri@cray.com>

Tutorial: Anaconda Python and Dask
Michael Ringenburg, mikeri@cray.com
Principal Engineer, Analytics R&D, Cray Inc

Install Anaconda

● Run the following in your home directory:
● wget https://repo.continuum.io/archive/Anaconda3-4.3.1-

Linux-x86_64.sh
● chmod +x ./Anaconda3-4.3.1-Linux-x86_64.sh
● ./Anaconda3-4.3.1-Linux-x86_64.sh
● Follow the prompts

● On cori, it is preinstalled for you:
● module load python/3.5-anaconda (or 2.7-anaconda)
● conda config --add envs_dirs $HOME/.conda_env

● Cray’s analytics on XC product (in beta) includes anaconda
in the analytics shifter container

CUG 2017 Copyright 2017 Cray Inc.
60

Using the Conda environment manager
● Create a new conda environment with conda create

● E.g., create an environment with Python 3.5 and biopython:
conda create --name bio biopython python=3.5

● Activate your environment:
source activate bio
(bio) mikeri@cori07:~>

● Python 3.5 with biopython will now be your default python:
(bio) mikeri@cori07:~> python
Python 3.5.3 |Continuum Analytics, Inc.| (default, Mar 6 2017, 11:58:13)
>>> import Bio
>>> from Bio.Seq import Seq
>>> my_seq = Seq('CATGTAGACTAG')
>>> my_seq.translate()
Seq('HVD*', HasStopCodon(ExtendedIUPACProtein(), '*'))

Copyright 2017 Cray Inc.
61

CUG 2017

More Conda commands

● Deactivate an environement: source deactivate
● Get rid of an environment: conda remove
● Clone an environment: conda clone
● List environments: conda info --envs
● Find available packages: conda search
● List packages: conda list
● Add package to current environment: conda install
● More in docs: https://conda.io/docs/index.html

Copyright 2017 Cray Inc.
62

CUG 2017

Using Anaconda with PySpark

● Start up Spark cluster (see previous slides)
● Activate your conda environment

source activate bio
● Set PYSPARK_PYTHON to point to environment python

export PYSPARK_PYTHON=$CONDA_PREFIX/bin/python
● Run pyspark

pyspark
>>> import Bio

Copyright 2017 Cray Inc.
63

CUG 2017

Using PySpark and Anaconda to Complement a Set
of Orchid Genomes

● In pyspark
● import Bio
● from Bio import SeqIO
● sequences = [seq_record.seq for seq_record in

SeqIO.parse("/global/cscratch1/sd/mikeri/ls_orchid.fasta",
"fasta")]

● seqRDD = sc.parallelize(sequences, 100)
● complementRDD = seqRDD.map(lambda seq: seq.complement())
● seqRDD.take(2)
● complementRDD.take(2)
● complementRDD.count()
● seqRDD.count()

Copyright 2017 Cray Inc.
64

CUG 2017

Copyright 2017 Cray Inc.
65

Anaconda and PySpark on XC Demo

CUG 2017

Setting up a dask.distributed Cluster, continued

● Add $HOME/anaconda3/bin to PATH, or load Cori anaconda
3.5 module

● Set up a dask distributed environment
● conda create --name mydask dask distributed

● Get allocation
● salloc -N 4 -t 30 -C haswell

● Activate dask distributed
● source activate mydask

● Start scheduler
● (If necessary export LC_ALL=en_US.UTF-8)
● dask-scheduler --scheduler-file $HOME/.dask_sched &

CUG 2017 Copyright 2017 Cray Inc.
66

Setting up a dask.distributed Cluster, continued

● Start workers on each node
● echo $SLURM_NODELIST

● nid00[620-623]
● which dask-worker

● /global/homes/m/mikeri/.conda_env/mydask/bin/dask-worker
● ssh -o StrictHostKeyChecking=no -p 22 nid00621 LC_ALL=en_US.UTF-8

/global/homes/m/mikeri/.conda_env/mydask/bin/dask-worker
--scheduler-file $HOME/.dask_sched --nthreads 0 --nprocs 1 --host
nid00621 &

● Cray’s Analytics on XC product will include an option to
automatically set up a Dask Distributed scheduler and workers
in your containers

Copyright 2017 Cray Inc.
67

CUG 2017

Using dask.distributed for word count

● Word count using Dask bag and distributed scheduler
● from dask import bag as db
● from distributed import Client, progress
● client = Client(scheduler_file='/global/homes/m/mikeri/.dask_sched')
● client.scheduler_info()
● email =

db.read_text('/global/cscratch1/sd/mikeri/enron_mail/mailbag.*.json.gz')
● emailwords = email.str.split().concat()
● words = client.persist(emailwords)
● wordcount = words.frequencies().topk(300, lambda x: x[1])
● wc_future = client.compute(wordcount)
● progress(wc_future)
● result = client.gather(wc_future)
● result

Copyright 2017 Cray Inc.
68

CUG 2017

Revised word count

● Reuse persisted words bag
● wordcount2 = words.filter(lambda s: len(s) > 3 and

s.isalpha()).map(lambda s:
s.upper()).frequencies().topk(300, lambda x: x[1])

● wc2_future = client.compute(wordcount2)
● progress(wc2_future)
● result = client.gather(wc2_future)
● result

Copyright 2017 Cray Inc.
69

CUG 2017

Copyright 2017 Cray Inc.
70

Demo: dask.distributed on XC

CUG 2017

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property
rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and
other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal
codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray
Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and
URIKA. The following are trademarks of Cray Inc.: APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, REVEAL, THREADSTORM. The following system family marks, and associated model number
marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense
from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are
the property of their respective owners.

CUG 2017 Copyright 2017 Cray Inc.
71

Q&A
Michael Ringenburg
<mikeri@cray.com>

Things to try during break

● salloc for 5 Haswell nodes on Cori:
● salloc --reservation=CUG2C -N 5 -p regular -C haswell -t 60 -A ntrain

● Spark
● module load spark
● start-all.sh
● Run spark commands, e.g.: spark-shell, pyspark, spark-submit
● Enron words dataset: /global/cscratch1/sd/mikeri/enron_mail/words.*.json.gz
● When done: stop-all.sh

● Anaconda
● module load python/3.5-anaconda (or 2.7-anaconda)
● conda config --add envs_dirs $HOME/.conda_env
● Try a biopython environment:

● conda create --name bio biopython python=3.5
● source activate bio
● Orchid Dataset: /global/cscratch1/sd/mikeri/ls_orchid.fasta

CUG 2017 Copyright 2017 Cray Inc.
73

Analytics on XC
Setting up an R Environment

What is R?

CUG 2017 Copyright 2017 Cray Inc.

● R project for Statistical Computing
● https://www.r-project.org
● Environment for statistical computing and graphics
● “GNU S”
● Freely available – but note most R packages have licenses

● (GPL-2, GPL-3, MIT, Apache, etc.)
● Latest Version R 3.4.0 (You Stupid Darkness)

● R version 3.4.0 (2017-04-21) -- "You Stupid Darkness"

● CRAN - The Comprehensive R Archive Network
● https://cran.r-project.org
● Network of ftp and web servers that store identical, up-to-date, versions of code

and documentation for R
● R manuals

● https://cran.r-project.org/doc/manuals/

75

What we plan to cover in the tutorial

● Setting up an R environment on XC
● Update on R support on XC built with Cray libsci

● module load cray-R
● Currently support R-3.3.3

● Build Instructions:
● Build R using gcc/gfortran
● Build R using Intel C++ and Fortran Compilers + MKL
● Build R using gcc/gfortran + MKL

● Using Anaconda to manage R packages and multiple R
versions (environments)

● Setting up a R cluster using “parallel” package
● Setting up a pdbR environment (pdbMPI)

CUG 2017 Copyright 2017 Cray Inc.
76

Setting up an R environment on XC

● Base R Install
● Easiest way to install on XC is to build from source

● Allows one to build optimized versions which use optimized math libraries
(Cray libsci, Intel MKL)

● Download most recent version from CRAN
● R-3.4.0.tar.gz
● wget https://cran.r-project.org/src/base/R-3/R-3.4.0.tar.gz

● CRAN repository also provides precompiled binaries
● Linux, OS X, Windows

● Anaconda R
● Quite useful for managing R packages and multiple R environments on XC
● List of R language packages available for install from conda is located at

http://repo.continuum.io/pkgs/r/

CUG 2017 Copyright 2017 Cray Inc.
77

Simple R build from source using gcc/gfortran

> module load gcc
> wget https://cran.r-project.org/src/base/R-3/R-3.4.0.tar.gz
> (Note: other mirror sites work as well, for example
> wget http://cran.rstudio.com/src/base/R-3/R-3.4.0.tar.gz
> tar -xzf R-3.4.0.tar.gz
> cd R-3.4.0/

> ./configure --prefix=/lus/scratch/kristyn/R/R-3.4.0/R-3.4.0
> make
> make check; make install
> cd /lus/scratch/kristyn/R/R-3.4.0/bin
> ./R
> file R

> (R: POSIX shell script, ASCII text executable)
> file exec/R

> (exec/R: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux
3.0.0

CUG 2017 Copyright 2017 Cray Inc.
78

Installed Packages – Base Install
> installed.packages()[,c("Version","License")]

CUG 2017 Copyright 2017 Cray Inc.

Version License

methods "3.4.0" "Part of R 3.4.0"
mgcv "1.8-17" "GPL (>= 2)"
nlme "3.1-131" "GPL (>= 2) | file LICENCE"
nnet "7.3-12" "GPL-2 | GPL-3"
parallel "3.4.0" "Part of R 3.4.0"
rpart "4.1-11" "GPL-2 | GPL-3"
spatial "7.3-11" "GPL-2 | GPL-3"
splines "3.4.0" "Part of R 3.4.0"
stats "3.4.0" "Part of R 3.4.0"
stats4 "3.4.0" "Part of R 3.4.0"
survival "2.41-3" "LGPL (>= 2)"
tcltk "3.4.0" "Part of R 3.4.0"
tools "3.4.0" "Part of R 3.4.0"
utils "3.4.0" "Part of R 3.4.0"

Version License
base "3.4.0" "Part of R 3.4.0"
boot "1.3-19" "Unlimited"
class "7.3-14" "GPL-2 | GPL-3"
cluster "2.0.6" "GPL (>= 2)"
codetools "0.2-15" "GPL"
compiler "3.4.0" "Part of R 3.4.0"
datasets "3.4.0" "Part of R 3.4.0"
foreign "0.8-67" "GPL (>= 2)"
graphics "3.4.0" "Part of R 3.4.0"
grDevices "3.4.0" "Part of R 3.4.0"
grid "3.4.0" "Part of R 3.4.0"
KernSmooth "2.23-15" "Unlimited"
lattice "0.20-35" "GPL (>= 2)"
MASS "7.3-47" "GPL-2 | GPL-3"
Matrix "1.2-9" "GPL (>= 2) | file LICENCE"

79

Build of R using gcc/gfortran + Cray libsci

● Cray is providing a cray-R/3.3.3 rpm that is scheduled for release
in May, built with gcc/6.1.0
● module load cray-R

● Example build recipe: (for those needing additional customization)
> module load gcc
> wget https://cran.r-project.org/src/base/R-3/R-3.4.0.tar.gz
> tar -xzf R-3.4.0.tar.gz
> cd R-3.4.0/
> ./configure --build=x86_64-suse-linux --prefix=%{install_dir} --with-blas="-

fopenmp -L/opt/cray/pe/libsci/16.11.1/GNU/5.1/x86_64/lib -lsci_gnu_51_mp"
--with-lapack

> make
> make install

CUG 2017 Copyright 2017 Cray Inc.
80

Build R using Intel C++ and Fortran Compilers + MKL

> module swap PrgEnv-cray PrgEnv-intel
> wget https://cran.r-project.org/src/base/R-3/R-3.4.0.tar.gz
> tar -xzf R-3.4.0.tar.gz

> setenv CC icc
> setenv CXX icpc
> setenv AR xiar
> setenv LD xild

> setenv CFLAGS “-03 –ipo –qopenmp –xHost”
> setenv CXXFLAGS “-03 –ipo –qopenmp –xHost”
> setenv MKL “-lmkl_gf_lp64 -lmkl_intel_thread -lmkl_core -liomp5 -lpthread”

> ./configure --prefix=/lus/scratch/kristyn/R/R-3.4.0/R-3.4.0 CC="icc -mkl" CXX="icpc -mkl" FC="ifort -mkl" F77="ifort -mkl" FPICFLAGS="-
fPIC" AR=xiar LD=xild --with-x=no --with-blas=-lmkl --with-lapack=-lmkl

> make
> make install
> cd /lus/scratch/kristyn/R/R-3.4.0/bin

https://software.intel.com/en-us/articles/build-r-301-with-intel-c-compiler-and-intel-mkl-on-linux

CUG 2017 Copyright 2017 Cray Inc.
81

Simple build using gcc/gfortran + MKL

> module load PrgEnv-intel
> module load gcc

> setenv CC gcc
> setenv F77 gfortran
> setenv AR xiar
> setenv LD xild
> setenv MKL “-lmkl_gf_lp64 -lmkl_intel_thread -lmkl_core -liomp5 -lpthread”

> ./configure --prefix=/lus/scratch/kristyn/R/R-3.4.0/R-3.4.0 --with-blas="$MKL" --with-lapack
> make
> make install
> cd /lus/scratch/kristyn/R/R-3.4.0/bin
> ./R

https://cran.r-project.org/doc/manuals/r-release/R-admin.html#MKL

CUG 2017 Copyright 2017 Cray Inc.
82

Build R + MKL build notes

Default is to build shared libraries:
Useful to print out shared library dependencies to verify MKL is being used

> ldd exec/R
linux-vdso.so.1 (0x00007ffc247ed000)
libmkl_gf_lp64.so =>
/opt/intel/compilers_and_libraries_2017.1.132/linux/mkl/lib/intel64_lin/libmkl_gf_lp64.so
(0x00007f47f09da000)
libmkl_intel_thread.so =>
/opt/intel/compilers_and_libraries_2017.1.132/linux/mkl/lib/intel64_lin/libmkl_intel_thread.so
(0x00007f47eefcc000)
libmkl_core.so => /opt/intel/compilers_and_libraries_2017.1.132/linux/mkl/lib/intel64_lin/libmkl_core.so
(0x00007f47ed525000)
libiomp5.so => /opt/intel/compilers_and_libraries_2017.1.132/linux/compiler/lib/intel64/libiomp5.so
(0x00007f47ed182000)

Can also specify to build static binary by using --enable-static when running ./configure

CUG 2017 Copyright 2017 Cray Inc.
83

Set up simple modulefile

● Create a modulefiles directory
● /lus/scratch/kristyn/modulefiles/R

● module use /lus/scratch/kristyn/modulefiles
● module load R/R-3.4.0

where the file R-3.4.0 contains

#%Module2.0
##
module load java
module load gcc

set R_VERSION R-3.4.0
set R_PATH /lus/scratch/kristyn/R/$R_VERSION/

prepend-path PATH $R_PATH/bin
prepend-path LD_LIBRARY_PATH $R_PATH/lib64/R/library
prepend-path MANPATH $R_PATH/share/man

CUG 2017 Copyright 2017 Cray Inc.
84

R/3.3.2 installed on Cori

module load R/3.3.2

kristyn@cori01:~> module display R/3.3.2

/usr/common/software/modulefiles/R/3.3.2:

conflict R
module-whatis R is a free software environment for statistical computing and graphics.

Built with Intel MKL support.
prepend-path PATH /global/common/cori/software/R/3.3.2/bin
prepend-path LD_LIBRARY_PATH /global/common/cori/software/R/3.3.2/lib64:

/global/common/cori/software/R/3.3.2/lib64/R/lib

CUG 2017 Copyright 2017 Cray Inc.
85

Installing R Packages from CRAN

● Bring up R on login node and install needed packages
● Need external access to download packages
● In general, most tested, and most reliable compiler for R packages are the

GNU compilers (gcc, gfortran)
● Note, if using a site-installed version, any additional installed packages will be

saved to a location in your home directory
● ~/R/x86_64-suse-linux-gnu-library/3.3

> R packages we will be using for the tutorial
> install.packages(“foreach”)
> install.packages(“doParallel”)
> install.packages(“rlecuyer”)
> install.packages(“randomForest”)
> install.packages(“SPARQL”)

CUG 2017 Copyright 2017 Cray Inc.
86

Managing R using Anaconda

● Anaconda R
● Quite useful for managing R packages and multiple R environments on XC
● List of R language packages available for install from conda is located at http://repo.continuum.io/pkgs/r/
● R Essentials bundle includes about 100 of the most popular packages for R

> conda create --name myR -c r r-essentials
> source activate myR

● Also can specify specific versions of R

> conda create --name myR_3.2.2 -c r r=3.2.2

● When using an older version of R I found it works better to create the conda environment first, activate
this, then install the allowing packages, allowing conda to manage the package version dependencies

> source activate myR_3.2.2
> conda install -c r r-essentails r-xml

CUG 2017 Copyright 2017 Cray Inc.
87

Running R using CCM
> salloc -N 4 --partition=ccm_queue

> # Determine nid allocations
> echo “$SLURM_NODELIST” or env | grep SLURM

> SLURM_NODELIST=nid0000[4-7]

> # load R module
> module use /lus/scratch/R/modulefiles
> module load R/R-3.4.0

> # Log into head node and propagate environment
> module load ccm
> ccmlogin –V

> # Start up R on head node
> R

Note: CCM may not be available on all XC systems. This is a site-configuration.
Cori no longer has CCM running, but is set up so one can use ssh between nodes within a job.

See /global/cscratch1/sd/kristyn/CUG2017/R/README for additional details.

CUG 2017 Copyright 2017 Cray Inc.
88

R using “parallel” package using CCM mode
Setting up a simple parallel socket cluster

“parallel” package
https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf

> library(parallel)
> machineVec <- c(rep("nid00004",4), rep("nid00005",4), rep("nid00006",4), rep("nid00007",4))

> machineVec
> [1] "nid00004" "nid00004" "nid00004" "nid00004" "nid00005" "nid00005"
> [7] "nid00005" "nid00005" "nid00006" "nid00006" "nid00006" "nid00006"
> [13] "nid00007" "nid00007" "nid00007" "nid00007"
> cl <- makeCluster(machineVec)
> cl
> socket cluster with 16 nodes on hosts 'nid00004', 'nid00005', 'nid00006', 'nid00007’

> help(makeCluster)

> stopCluster(cl)

CUG 2017 Copyright 2017 Cray Inc.
89

Simple Parallel Socket Cluster

● Basic functionality
● Runs 'Rscript' on the specified host(s) to set up a worker process

which listens on a socket for expressions to evaluate, and returns the
results (as serialized objects).

● Commonly used R packages which then build upon the
“parallel” package
● “foreach” package

● Provides looping construct
● “doParallel” package

● Provides mechanism needed to execute foreach loops in parallel
● https://cran.r-project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf

CUG 2017 Copyright 2017 Cray Inc.
90

Example datasets

> # Base install of R already includes several datasets
> # To look at the datasets available in loaded packages
> data()

> # load the iris dataset
> data(iris)
> head(iris)

> # Many R packages also contain additional datasets
> install.package(‘rattle’)
> data(wine, package='rattle')

> # Also can import data directly
> # Here read.table reads a file in table format and creates a dataframe from it
> url <- 'https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv'
> whitewine <- read.table(url,header=TRUE,sep=“;”)
> head(whitewine)

CUG 2017 Copyright 2017 Cray Inc.
91

Example Code: using foreach and doParallel
> library(parallel)
> library(foreach)
> library(doParallel)
> machineVec <- c(rep("nid00004",4), rep("nid00005",4), rep("nid00006",4), rep("nid00007",4))

> cl <- makeCluster(machineVec)
> # To use the "foreach", we need to register the cluster with
> registerDoParallel(cl)
> getDoParWorkers()

> # sequential execution
> system.time(foreach(i=1:100000) %do% sum(tanh(1:i)))
> # parallel execution
> system.time(foreach(i=1:10000) %dopar% sum(tanh(1:i)))

> mcoptions <- list(preschedule=FALSE, set.seed=FALSE, cores=4)
> system.time(foreach(i=1:100000,.options.multicore=mcoptions) %dopar% sum(tanh(1:i)))

CUG 2017 Copyright 2017 Cray Inc.
92

Example Code: randomForest

> # Parallel execution of randomForest
> x <- matrix(runif(500), 100)
> y <- gl(2, 50)
>
> library(randomForest)
>
> rf <- foreach(ntree=rep(25000, 6), .combine=combine,

.multicombine=TRUE, .packages='randomForest')
%dopar% { randomForest(x, y, ntree=ntree)}

CUG 2017 Copyright 2017 Cray Inc.
93

Programming with Big Data in R (pbdR)

CUG 2017 Copyright 2017 Cray Inc.

● Set of highly scalable R packages for
distributed computing in data science
● http://r-pbd.org/

● George Ostrouchov, Wei-Chen Chen, Drew
Schmidt, Pragneshkumar Patel

● Winner of the Oak Ridge National
Laboratory 2016 Significant Event Award
for "Harnessing HPC Capability at OLCF
with the R Language for Deep Data Science

94

Installing pdbMPI package

● If not already installed, install rlecuyer package
● wget https://cran.r-project.org/src/contrib/rlecuyer_0.3-4.tar.gz
● R CMD INSTALL --no-test-load rlecuyer_0.3-4.tar.gz

● Install pdbMPI package
● wget https://cran.r-project.org/src/contrib/pbdMPI_0.3-3.tar.gz
● R CMD INSTALL pbdMPI_0.3-3.tar.gz --configure-args="--with-

mpi=/opt/cray/pe/mpt/default/gni/mpich-gnu/51/ --disable-opa --
with-Rmpi-type=MPICH2" --no-test-load

CUG 2017 Copyright 2017 Cray Inc.
95

pdbMPI: run “Hello World”

Create file mpi_hello_world.r

load the package
suppressMessages(library(pbdMPI, quietly = TRUE))

initialize the MPI communicators
init()

Hello world
message <- paste("Hello from rank", comm.rank(), "of", comm.size())
comm.print(message, all.rank=TRUE, quiet=TRUE)

shut down the communicators and exit
finalize()

> srun -N 4 Rscript mpi_hello_world.r

CUG 2017 Copyright 2017 Cray Inc.
96

pbdMPi – beyond “Hello World”

● HPSC Cookbook – Wei-Chen Chen
● https://snoweye.github.io/hpsc/cookbook.html

● In addition there are several tutorials available with
source code available for download

● Tutorials 1 and 2 both use the Iris dataset already
available with base R install

CUG 2017 Copyright 2017 Cray Inc.
97

Parallel (SPMD) pi Example (from HPSC)

File name: ex_pi_spmd.r
Run: srun -N 2 Rscript --vanilla ex_pi_spmd.r

Load pbdMPI and initial the communicator.
library(pbdMPI, quiet = TRUE)
init()
.comm.size <- comm.size()
.comm.rank <- comm.rank()

Compute pi.
n <- 1000
totalcpu <- .comm.size
id <- .comm.rank + 1
mypi <- 4*sum(1/(1+((seq(id,n,totalcpu)-.5)/n)^2))/n # The example from Rmpi.
mypi <- reduce(mypi, op = "sum")

Output from RANK 0 since mpi.reduce(...) will dump only to 0 by default.
comm.print(mypi)
finalize()

CUG 2017 Copyright 2017 Cray Inc.
98

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property
rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and
other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal
codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray
Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and
URIKA. The following are trademarks of Cray Inc.: APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, REVEAL, THREADSTORM. The following system family marks, and associated model number
marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense
from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are
the property of their respective owners.

CUG 2017 Copyright 2017 Cray Inc.
99

Q&A
Kristi Maschhoff

kristyn@cray.com

Analytics on XC
Graph Analytics using CGE

Cray Graph Engine: Overview

● The Cray Graph Engine CGE
● An analytic in-memory graph database – capable of both basic graph

pattern search (using SPARQL) and linear-algebraic search (graph
theoretic using CGE-BGF)

● Built for “vertical scaling” based on parallel and distributed computing
principles- competitors are all horizontally scaled

● Can handle 1000x the size of competing in-memory graph databases
● Can handle complex data (e.g. hot-spot vertices, long-diameter, etc.)
● At least a 10x speed-up on query retrieval times and can be 100x

faster on massive graph-theoretic workloads (50 GBs+ - 512 TBs)
● Brings interactivity to graph-based discovery over triple stores, disk-

based graph databases and graph-analytic toolkits.

CUG 2017 Copyright 2017 Cray Inc.
102

Cray Graph Engine: Updates and Features
● Multi-Architecture Support

● CGE is available on the Urika-GX and the XC platforms.
● Strong Scaling becomes a key differentiator

● Bigger datasets => more nodes => better performance
● Integration with Spark (new)

● Interface to data sources
● Support for end-end analytic workflow realization

● Integration with Python/Jupyter Notebooks
● Connect to SPARQL endpoint using sparqlwrapper or sparql-client packages
● CGE Python API – utilizes the CGE Java API

● Start up server, run queries, updates, checkpoint, shut down
● Integration with R

● SPARQL package – connect to SPARQL endpoint, run queries, updates

● Don’t miss Rob Vesse’s talk on Thursday!
● Thursday, Technical Session 27B
● “Quantifying Performance of CGE: A Unifed Scalable Pattern Mining and Search System”

CUG 2017 Copyright 2017 Cray Inc.
103

Graph analysis workloads

CUG 2017 Copyright 2017 Cray Inc.

● Two main workloads
● Pattern matching
● Whole graph analysis

● Typical systems only
good at one

● CGE excels at both

104

What we plan to cover in the tutorial

● Background on CGE
● Pattern matching, whole-graph analysis
● Benchmarking results demonstrating CGE scaling on XC

● Hands-on exercises
● Build and start up a database (cge-launcher)
● Run queries

● Using the cge-cli command line
● Using the CGE Web UI

● Integration with R and Python
● Connecting to the CGE SPARQL endpoint

● Using R SPARQL package
● Using Python SPARQLwrapper package

CUG 2017 Copyright 2017 Cray Inc.
105

A Graph-pattern matching workload

CUG 2017 Copyright 2017 Cray Inc.

● Given a pattern of interest
find all instances thereof…

106

What SPARQL Can Do

● Subgraph isomorphism on specific, fixed patterns

“LUBM Query 9”
SELECT ?X, ?Y, ?Z
WHERE
{ ?X rdf:type ub:Student .
?Y rdf:type ub:Faculty .
?Z rdf:type ub:Course .
?X ub:advisor ?Y .
?Y ub:teacherOf ?Z .
?X ub:takesCourse ?Z}

● Plus lots of useful database features: filter, group, update…

CUG 2017 Copyright 2017 Cray Inc.

faculty

course

advisor

takesCourse

student

107

A Graph-theoretic Workload

CUG 2017 Copyright 2017 Cray Inc.

● What is the ranking of the targeted vertex?

● What's the shortest route from A to B?

108

Built-in Graph Functions (BGFs)

● RDF and SPARQL are graph-oriented, but SPARQL is limited
in its ability to express graph processing

● We augmented SPARQL with a capability of calling library
graph algorithms

● You can go from SPARQL to a graph algorithm and back to
SPARQL for further refinement

● The whole is greater than the sum of its parts.

CUG 2017 Copyright 2017 Cray Inc.
109

Cray Graph Engine: Benchmarks

Copyright 2017 Cray Inc.

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Str
ict
	qu

er
y	t
im

e	(
se
co
nd

s)

Query

Strong	Scaling	on:	LUBM200K

128x16

256x16

512x16

1

10

100

1000

cit-patents soc-LiveJournal1 com-friendster

St
ric
t	Q

ue
ry
	ti
m
e	(
se
co
nd

s)

Dataset

Strong	Scaling:	Pagerank	(SPARQL	w/	BGF	extension)

32	nodes

64	nodes

128	nodes

256	nodes

512	nodes

● Evidence of Strong Scaling
Graph	Pattern	Search Graph-Theoretic	Algorithms

More	nodes	=>	Better	performance

CUG 2017
110

Cray Graph Engine: Benchmarks

Copyright 2017 Cray Inc.

● Comparison to Spark+GraphX
Graph	Pattern	Search Graph-Theoretic	Algorithms

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
tr
ic
t	
q
u
e
ry
	t
im

e
	(
m
s)

Query

LUBM25K	CGE	vs.	Spark	GraphX	Performance
128	Nodes	XC-40

CGE

GraphX

Nearly	a	100x	performance speed-up	over	GraphX....

CUG 2017
111

1

10

100

1000

Spark(GraphX Python+SPARQL SPARQL+(BGF

se
co
nd

s

Programming(Model

Performance(Comparison:(CGE(vs.(Spark(GraphX
PageRank

liveJournal1(64p

liveJournal1(128p

liveJournal1(256p

Cray Graph Engine: Benchmarks

Copyright 2017 Cray Inc.

● Architecture Portability

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

St
ric
t	q

ue
ry
	ti
m
e	(
se
co
nd

s)

Query

CGE	Performance:	Urika-GX	vs	XC40
LUBM25K	on	32	nodes

Urika-GX

XC-40

Porting	does	not	affect	performance

CUG 2017
112

CGE User Interface Model

● Database owner
launches the
database server

● Users interact via
their preferred
interface
● Command Line
● Web Browser
● SPARQL Tools &

APIs
● CLI may be used

for scripted
workflows

Copyright 2017 Cray Inc. CUG 2017
113

Building and launching

● cge-launch is used to build databases:

● cge-launch is a script that takes care of resource allocation for the user!

● After a successful build, the database directory will contain:

dataset.nt
rules.txt
dbQuads
string_table_chars
string_table_chars.index
graph.info

CUG 2017 Copyright 2017 Cray Inc.
114

cge-launch –N 8 –I 16 –o /mnt/lustre/myresults –d
/mnt/lustre/mydata –l logfile

The database port

Copyright 2017 Cray Inc.

● A TCP port used for communication with this server
instance:

cge-launch –N 8 –I 16 –p 3750 …

● The default is 3750

● Changing this port allows multiple versions

CUG 2017
115

The database directory

Copyright 2017 Cray Inc.

● The database directory, typically:

/mnt/lustre/user/datasets/lubm0

● Is the start of a directory tree containing all checkpoints,
and potentially authorized_keys

● It can be moved, archived and returned (!)

● Multiple users can access it, with permissions

CUG 2017
116

The Command Line Interface (CLI)

Copyright 2017 Cray Inc.

● The CLI is used for most interactions with the
server, and has many options…

● cge-cli help (or cge-cli help checkpoint)
will give verbose information on options

● Designed for scripted control, querying and
updates with database server

● Communications are secure SSH

cge-cli –db-port 3750 query myquery.rq

CUG 2017
117

Most common options

Copyright 2017 Cray Inc.

query – submits SPARQL queries

update – submits SPARUL updates

sparql – submits both queries and updates

checkpoint – creates a database checkpoint

echo – check status of server

CUG 2017
118

Main Query Interface

Copyright 2017 Cray Inc. CUG 2017
119

Copyright 2017 Cray Inc. CUG 2017
120

Copyright 2017 Cray Inc. CUG 2017
121

Hands on Exercises: Running CGE on Cori

● See README for instructions and exercises
● /global/cscratch1/sd/kristyn/CUG2017/CGE/README

● To use CGE Web UI, need to set up ssh tunneling
● Current cge-launch script for XC depends on xtprocadmin,

● Only available on internal Cori MOM nodes cmom02 and cmom05, need to ssh to these nodes from login node
● Create tunnel from my laptop to internal cmom02 node on Cori

● Use a random port number (8022) to connect to ssh port 22
● ssh –L localhost:8022:cmom02:22 cori.nersc.gov

● Then ssh directly into cmom02, choosing another random port number (15000) for CGE fe
● ssh –p 8022 –L localhost:15000:localhost:15000 localhost

● Set up database directory on Lustre
● Make sure Lustre striping is set

● lfs setstripe –c 16 –stripe-size 16m .
● Needed files: dataset.nt, graph.info, rules.txt

● Set up query_results directory on Lustre
● Make sure Lustre stripiing is set

● Be sure to set passwordless ssh
● ssh-keygen
● cat id_dsa.pub >> authorized_keys

CUG 2017 Copyright 2017 Cray Inc.
122

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property
rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and
other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal
codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray
Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and
URIKA. The following are trademarks of Cray Inc.: APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, REVEAL, THREADSTORM. The following system family marks, and associated model number
marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense
from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are
the property of their respective owners.

CUG 2017 Copyright 2017 Cray Inc.
123

Q&A
Kristi Maschhoff

kristyn@cray.com

Back-Up Slides

(in case WiFi connectivity is poor)

SPARQL isn’t So Hot at…

● Breadth-first search
● Connected components
● Community detection
● …anything else that entails an indefinite-length search of the graph

● With one fairly unimportant exception: “property paths”

CUG 2017 Copyright 2017 Cray Inc.

?x (A* | B*) / C ?y

A A C
x y

126

Real-world Example:
Find Communities Among Botnets

Copyright 2017 Cray Inc.

PREFIX cray: <http://cray.com/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
CONSTRUCT {
?ip1 ?nInstances ?ip2

} WHERE {
SELECT ?ip1 ?ip2 (COUNT(?ip2) as ?nInstances)
WHERE {
?uid <http://cs.org/p/hasOrigAddr> ?ip1 .
?uid <http://cs.org/p/hasRespAddr> ?ip2 .
?uid <http://cs.org/p/hasOrigPort> ?port1URI .
?uid <http://cs.org/p/hasRespPort> ?port2URI .

BIND(xsd:integer(strafter(str(?port1URI),"http://cs.org/port#")) AS ?port1)
BIND(xsd:integer(strafter(str(?port2URI),"http://cs.org/port#")) AS ?port2)

FILTER(?port1 >= 2000 && ?port2 >= 2000 && !sameTerm(?ip1, ?ip2))
} GROUP BY ?ip1 ?ip2

}
NOW RUN COMMUNITY DETECTION ON THAT GRAPH!

pick out communication pairs

get their port IDs

pull the integers from their port IDs
(<http://cs.org/port#742>)

pick out the port IDs >= 2000, that botnets use

group all the distinct pairs…

…and count them

build a graph, using the counts as weights

CUG 2017
127

How We Extended SPARQL

● INVOKE is paired with SPARQL’s existing CONSTRUCT
operator
CONSTRUCT {
?ip1 ?nInstances ?ip2
WHERE {
…}
INVOKE <http://cray.com/graphAlgorithm.community> (…)

● We extended SPARQL so that you can nest a
CONSTRUCT/INVOKE pair.

● A new PRODUCING clause maps results back into SPARQL
PRODUCING ?vtx ?communID

CUG 2017 Copyright 2017 Cray Inc.
128

Botnets Revisited

Copyright 2017 Cray Inc.

PREFIX cray: <http://cray.com/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
CONSTRUCT {
?ip1 ?nInstances ?ip2

} WHERE {
SELECT ?ip1 ?ip2 (COUNT(?ip2) as ?nInstances)
WHERE {
?uid <http://cs.org/p/hasOrigAddr> ?ip1 .
?uid <http://cs.org/p/hasRespAddr> ?ip2 .
?uid <http://cs.org/p/hasOrigPort> ?port1URI .
?uid <http://cs.org/p/hasRespPort> ?port2URI .

BIND(xsd:integer(strafter(str(?port1URI),"http://cs.org/port#")) AS ?port1)
BIND(xsd:integer(strafter(str(?port2URI),"http://cs.org/port#")) AS ?port2)

FILTER(?port1 >= 2000 && ?port2 >= 2000 && !sameTerm(?ip1, ?ip2))
} GROUP BY ?ip1 ?ip2

}
INVOKE <http://cray.com/graphAlgorithm.community> ()
PRODUCING ?vtx ?communID

CUG 2017
129

Applications for Available Algorithms

● Search / neighborhood identification and extraction
● Pattern-matching / subgraph isomorphism: (Core functionality)
● Cybersecurity application: Context and search, data exfiltration, beaconing, attack identification

● Community detection
● Modularity:
● Relaxed clique
● Cybersecurity application: Botnet detection and server hierarchy mapping

● Path finding
● Shortest path, S-T connectivity
● Cybersecurity application: Identify likely paths for information flow between nodes

● Key node / edge identification
● Betweenness centrality
● Cybersecurity application: find the vulnerable points in network configurations

● Anomaly identification and clustering
● Cybersecurity application: Unknown-unknown identification
● Cybersecurity application: BadRank: finds likely worst actors by association with known bad actors, a la PageRank

CUG 2017 Copyright 2017 Cray Inc.
130

