allinea

High performance tools to debug, profile, and analyze your applications

Tools and Methodology for Ensuring HPC
Programs Correctness and Performance

Beau Paisley
bpaisley@allinea.com A

g R

allinea allinea allinea allin€ea
FORGE DDT MAP REPORTS

About Allinea

* Over 15 years of business focused on parallel
programming development tools

« Strong R&D investment to drive innovation in
changing landscape

« Committed to giving great support to the HPC
community

allinea

Where to find Allinea’s tools

‘ Over 65% of Top 100 HPC systems }

* From small to very large tools provision

[8 of the Top 10 HPC systems

\

« Up to 700,000 core tools usage

{ Future leadership systems }

 Millions of cores usage

allinea

Allinea: Industry Standard Tools for HPC

/""\I

OAK . —
IDCE: S Argonne - Los Alamos Notiona
—— AT T R —— lﬂbﬂ'ﬂtﬂ'ﬁ
University of Calfomia = A :
DO ATERS ' W Lawrence Livemore <« « <] [Exeptional srvic i
e el | the national interest

National Laboratory BERKELEY LAB

A J0LICH

ROLLS
=, ONERA
Schlumberger HBENCH T e et
Q st apogy Wi rls @

KL ABEREERR lr.l-

NCHC / BRI ARER RS TR

National Center for High-performance Computing

wl,tijlginljl
wdiere@and hundreds more)

allinea

SJIic CHJ]

Performance in a Nutshell r.9

allinea
FORGE

* Algorithmic Issues

 Balance and Shared Bottlenecks

* The Memory Wall

» Use of Processor Capabillity

allinea

Performance Improvement Workflow

Get a realistic test
case
» Performance on real data

matters

» Keep the test case for
reference and re-use

Profile your code

» Add “-g” flag to your
compilation
* Run with a profiler

Look for the significant

» Which part/phase of the
code dominates time?

* |s there any unexpected
significant time use?

What is the nature of
the problem?

« Compute? 1/0? MPI?
Thread synchronization?

* Display the metrics that
show the problem best

Apply brain to solve

* MPI — can you balance the
work better?

« Compute — is memory time
dominant — can you improve
layout?

Think of the future

* Try larger process or thread
counts to watch for
scalability problems

» Keep the profile (.map file)
for future comparison

allinea

PERFORMANCE ROADMAP

Improving the efficiency of your parallel software holds the key to solving more complex research problems faster.
This pragmatic, step by step guide will help you to identify and focus on bottlenecks and optimizations one at a time
with an emphasis on measuring and understanding before rewriting.

ANALYZE BEFORE YOU OPTIMIZE

s Measure all performance aspects
* You can't fix what you can’t see
« Prefer real workloads over artificial tests

TOOLS FOR SUCCESS:
* Allinea Performance Reports does this quickly and easily

EXAMINE I/O

Does the application spend significant time in I/0?
Common Problems:

* Checkpointing too often

* Many small reads and writes

* Datain home directory instead of scratch

* Multiple nodes using filesystem at the same time

TOOLS FOR SUCCESS:
* Allinea Forge highlights lines of code spending a long time in I/O
* Trace and debug suspicious or slow access patterns using Allinea Forge

BALANCE WORKLOAD

i
i
13

Spending a lot of time in low-bandwidth communication and synchronization?

Common Problems:

¢ Dataset too small to run efficiently at this scale
¢ |/O contention causing late sender

* Bugin work partitioning code

TOOLS FOR SUCCESS:

* Performance Reports detects balance issues

¢ Allinea Forge identifies slow communication calls and processes

« Dive into partitioning code with integrated debugger in Allinea Forge

IMPROVE MEMORY ACCESS PATTERNS
Many real codes are memory-bound; is this one?

COMMON PROBLEMS

¢ |Initializing memory on one core but using it on another

* Arrays of structures causing inefficient cache utilization

* Caching results when recomputation is cheaper

TOOLS FOR SUCCESS:
* Allinea Forge shows lines of code bottlenecked by memory access times
* Trace allocation and use of hot data structures in Allinea Forge debugger

REVIEW COMMUNICATION

Lots of time in medium/high-bandwidth communication?
COMMON PROBLEMS

« Short high frequency messages are very sensitive to latency
* Too many synchronizations

* No overlap between communication and computation

TOOLS FOR SUCCESS:
* Allinea Performance Reports tracks communication performance
* Allinea Forge shows which communication calls are slow and why

(5)

USE MULTIPLE CORES

Using processes for physical cores, threads for logical cores?
COMMON PROBLEMS

* Implicit thread barriers inside tight loops

* Significant core idle time due to workload imbalance

* Threads migrating between cores at runtime

TOOLS FOR SUCCESS:
* Allinea Performance Reports shows synchronization overhead and
core utilization

VECTORIZE / OFFLOAD HOT LOOPS

High floating point usage but getting low vectorization score?
COMMON PROBLEMS

* Expecting compilers to perform magic or using the wrong compiler flags

* Numerically-intensive loops with hard to vectorize patterns
* Using routines that have faster vendor-provided equivalents in highly-
optimized math libraries

TOOLS FOR SUCCESS:

* Allinea Performance Reports shows numerical intensity and level of vectorization

* Allinea Forge highlights synchronization-heavy code and implicit barriers

(6

* Allinea Forge shows hot loops, unvectorized code and GPU performance

=alhinea

| FINISH |

The Uncomfortable Truth about Applications

” Optimized for modern l

allinea

I:O RGE Hey, at least it compiles _

allinea allinea
DDT MAP

allinea

Obtaining Program Correctness in a Nutshell

Interactive multi-process and multi-
thread debugging at any scale

J

\

Support common architectures and co-
processors

J

Offline debugging for large runs and non-|
deterministic bugs

J

Support for integration to regression test)

J

allinea

Debugging at Scale Requires Powerful Visual
Representations

Fle Edit View Control

Tools Window Help

Jofw E@ = REELEE] ! AA-D~

”Focus on current: ¢ Process ¢ Thread ||_ Step Threads Together ”JJ ‘ ﬁ -
OO0
Project Files g x & wave_openmp.c [| Locals Current Line(s) | Current Stack
h (CUrITK) ¢ [8 months ago 216 B (3 = 1; j <= npoints; j+%) 2| |current Line(s) & X
8 months ago -
Application Code 8 months ago) Variable Name IVBIue
/ 8 months ago (first +-oldwval —— Ox7ffff4b7a01C
Y Sources g ﬁsgt:z :gs +-values —0x7ffffdb7a010
LIS - 8 months ago
do_math(int i} : void 8 months ago }
get_datalveid) : void 8 months ago]
init_line{void) : void 8 months ago
main(int arge, char *=a |8 _months ago &
output_master({void) : v 22?
output_workers{void) : | [ESCEEREEEE == oF . _
reduce print(const cha |3 nonths ago ¥ '
time_mpi_start : void 8 months ago
time_mpi_stop : void 8 months ago iterations;
=l update(int left, int right [months ago 3
External Code 2 months ago 234
8 months ago 5B
8 months ago 3
8 months ago
8 months ago
8 manthe =En =] 1] | _’I
1R el [Type: none selected
Input/Output | Breakpoints | Watchpoints Stacks | Tracepoints | Tracepoint output | Logbook Evaluate = 22

Stacks & X | Expression |Value |

| Threads e 2 Tnewval ——Ox7fffab7a010

1 El main (wave openmp.c:354) 1 oldval —— Ox7ffffab7a010
+-values —0x7ffffab7a010

3

allinea
DDT

Ready

allinea

Enable Debugging Across a Range of Architectures

allinea

Enable Large Scale Debugging and Regression Testing with
Offline Debugging

[report logbook x

[file:///home/bpaisley/demo/ddt/cstartmpi/report.html

=

%

debugging /homel/bpaisley/demol/ddt/icstartmpilcstartmpi.exe

Messages Tracepoinis Memory Leaks Qutput
Messages
[+] Expand All [-] Collapse All
|Type| Time |Processes Message

1 \i} 0:00.000|0-3 Launching program /home/bpaisley/demo/ddt/cstartmpi/cstartmpi.exe
at Wed May 6 11:34:30 2015
Executable modified on Mon Apr 27 13:22:13 2015

2 \i) 0:01.649|0-3 Startup complete.

3 0:01.655 | nfa Select process group All

4 [7] 10:01.656|0-3 Add tracepoint for cstartmpi.c:109
Vars: X, y

5 0:01.658 | nfa Add Expression to Evaluate: my_rank

6 0:01.658 | n/a Add Expression to Evaluate: tables

7 Additional Information

» Stacks
p» Current Stack
v Locals
Name Value
argc 1
argv ax7fffffffds48
beingwWatched 32767
bigArray
dest 2]

allinea

Overview of Allinea Tools

Demand for software
efficiency

Performance
Reports

Open Interfaces
(eg. JSON APIs)

Measure

|

Pull for MAP to develop :
performance fix 1

|

|

3

Demand for developer
efficiency

v

Continuous Integration

Demand for performance
optimization

a

MAP

Profile and
Optimize

a

\ 4

v

Leads to DDT to Version Control

understand and fix

Leads to MAP to

-€d Debug, optimize, edit,
optimize performance

commit, build, repeat...

v

A

Demand for debugging

DDT

Debug

allinea

Analyze and tune application performance

mpirun -n 8 CloverLeaf_reficlover_leaf ey

8 processes, 1 node (4 physical, 8 logical cores per node)
kaze
Fri Oct 31 15:42:41 2014

A single-page report on :
application performance for BUNSE [Sm—
users and administrators

Summary: clover_leaf is CPU-bound in this configuration
|dentify configuration crU woos I e e e

problems and resource

bottlenecks immediately

9.4% Time spent in MPI calls. High values are usually bad.
MP| 19.4 - This is low; this code may benefit from increasing the process count.

Time spent in filesystem /0. High values are usually bad.
This is very low; however single-process I/0 often causes large MPI wail times.

/O 01% |

This application run was CPU-bound. A breakdown of this time and advice for investigating further is in the CPU section below.
As little time is spent in MPI calls, this code may also benefit from running at larger scales.

Track mission-critical cPU

A breakdown of the 80.6% CPU time: A breakdown of the 19.4% MPI time:

performance over time and R L

OpenMP regions Time in point-to-point calls

afte r S St m r d S Scalar numeric ops 42.4% [l Effective process collective rate 1.68 kBis |
y ‘ ’ l I E l e Vector numericops ~ 4.0% | Effective process point-to-point rate 24.5 MB/s [I
Memory accesses 53.6% [l Most of the time is spent in point-to-point calls with a low transfer rate.
This can be caused by inefficient message sizes, such as many small
The per-core performance is memory-bound. Use a profiler to identify messages, or by imbalanced workloads causing processes to wait.
time-consuming loops and check their cache performance. The collective transfer rate is very low. This suggests load imbalance is

Little time is spent in vectorized instructions. Check the campiler's causing synchonization overhead; use an MPI profiler to investigate

E n S u e key ap p I i C ati O n S ru n vectorization advice to see why key loops could not be vectorized. further.
at fu” Speed On a neW :'geakdownoflheaJ%IIOtime: OpenMP

A breakdown of the 99.6% time in OpenMP regions:
Time in reads 0.0% Computation 100.0% [N

cluster or architecture

[] Synchronization 0.0% |
Effective process read rate 0.00 bytes/s | Physical core utilization 200.09% [N
Effective nracess write rate 611 kB/s I Involuntary context switches per second 30 |

allinea

Vectorization, MPI, I/0, memory, energy... ajinea

allinea

PERFORMANCE

REPORTS

mplexec -1 4 Mwave_c 8000
ﬁ cesses, 1 node (4 physical, 8 logical cores per node)
17.00:27 2014 |

a"inea 30 seconds (1 minute) s
PERFORMANCE
REPORT: 2.1 Ghz CPU trequency

Summary: wave_c is CPU-bound in this configuration

CPU sasw _ Time spent runring sppication cade. High vahies are sually pood.
C This Is high; chick the CPU performanca section for cpimization advice.
. o . Time spentin MP1 calls. High v Iy bad,
MPI 114% This is wery low, thes code may Bensfit 1o incréasing Ihe rocess court
/o oo Time spentin flesysiem 0. High values are usually bad
0 % This is negligible; there's na noed (o investigate IO performance.
This application run was 1. A bireakdown of this time and advice for investigating fuaher is in the CFU section below

A very litle time fs spent in VP! calls, this code may also benefit from running at larger scales.

CPU MPI

A breakdown of the 47 5% CPU time: A breakdown of the 11.4% MPI time:

Threads

A breakdowm of the 0 0% 0 time: A breakdown of how muliple threats were used:

Time in reads) Computation %
Time i writes aom Synchvonizaion ose

Efeciive process read raie 000 byiesis Physical core whzailon v -
Eficcive process wie raie. 000 bytesis Inecluntary comse swiehes per second

Mo time is spent n 110 operations. There's nothing to ogtimize heret o massaraale time is spent n malifreaced code.
Memory

Per-process memory usage may also affect scaling: A breakedown of how the ttal £ J energy was spent

cou %

heceleraiors w
Pesk pawee w —
Van power w

PERFORMANCE

REPORTS

CPU

A breakdown of the 55.5% CPU time;
100.0% [E

Scalar numeric ops 22.4% N

Single-core code

Vector humeric ops 0.0%

Memory accesses 776% R

The per-core performance is memory-bound. Use a profiler to identify
time-consuming loops and check their cache performance.

No time is spent in vectorized instructions. Check the compiler's
vectorization advice to see why key loops could not be vectorized.

Memory

Per-process memory usage may also affect scaling:
Mean process memory usage 49.7 ME [N
Peak process memory usage 53.6 MBE [N

Peak node memory usage 240% W

The peak node memory usage is very low. You may be able to reduce

the amount of allocation time used by running with fewer MP| processes
and more data on each process.

allinea

oA Allinea MAP — The Profiler

allinea
FORGE

File Edit View Window Help

Small data files

Profiled: wave openmp on 1 process, 4 cores (4 per process) Started:

ri Nov 7 10:26:34 2014 Runtime: 30s
Application activity

Hide Metrics...
CPU floating-point (%)
o - 70

(145avg)

Memory usage (kB)
44663 - 72221

(68,908 avg)

10:26:34-10:27:04 (29.9755): Main thread compute 14 %, OpenMP 21 %, Overhead 64 %, Sleeping % | CPU floating-point 14.5 %; Memary usage 68,908 kB;
t wave_openmp.c [|

Metrics | Select All
) =l
points; i+41
values[l;
[T newvalljl;
. —
return iterations;
|
Input/Output | Project Files Stacks | OpenMP Regions |
Stacks g X
Time © [MpI__[overhead | Function(s) on line Source Pasition
B & wave openmp [program]
& # main wave_openmp.c:324
Eupdate iterations = update(left, right);
41.0% || {11 INNIN (1NN 110 > va 1 = n ;
. . 37.49% [[ILNNNT 00 OEL D0 A % update._omp_fn.0.constprop.1 #pragma omp parallel shared{newval, oldval, value
16.2% [T 111 - oldvall3] = values[3il;
O recompiliation el UL famp in fina
0.5% | |
0.1%]|

wave_openmp.c:213

wave_openmp.
#pragma orp parallel shared(newval, oldval, value

wave_openmp.c:213

[Alinea Ultimate map-smoketestscripts5.0 0a3f65bct767 Nov 7 2014 4

allinea

allinea
MAP

Ad apt!ve frigumepr:?:y
sam pl INg decreﬁfnees over

Same scalable

Scalable infrastructure
as Allinea DDT
Instruction Categorizes
: instructions
analysis S

Core-time not

Thread :
ere thread-time
profiling profiling

Part of Forge
tool suite

Integrated

How Allinea MAP is different

Data never
grows too
much

Merges sample
data at end of
job

Knows where
processor
spends time

Identifies lost
compute time

Zoom and drill
into profile

A
X

allinea
FORGE

Run for as
long as you
want

Handles very
high core
counts, fast

Shows
vectorization
and memory

bandwidth

Detects
OpenMP
issues

Profiling
within your
code

allinea

allinea 2 > @
MAP Why MAP... allinea
FORGE

 Easy to use
 Fast, with low overhead
« Time-based indexing of data

« Extensive metrics, e.g., (I/O, memory, floating-point operations, line-
level granularity)

 Customized views into the data

« Extensible with API that can be used to capture custom
measurements

* High accuracy
* Professional, responsive support

allinea

e

gé%'g Allinea DDT — The Debugger Blg¥ea

 Who had a rogue behavior ?

Run
— Merges stacks from processes and threads

with Allinea tools

* Where did it happen? Identify
— leaps to source aproblem
Gather info
» How did it happen? W,fl‘gwwv\r}ﬁ;e g
— Diagnostic messages
— Some faults evident instantly from source Fix

« Why did it happen?
— Unique “Smart Highlighting”

)) Locals Current Line(s) | Curreni Stack I .

— Sparklines comparing data across processes «] |current Linecs & x| |
Variable Name Value L
§---my;':m WyﬂZTM

W
150119] i §~~cr_eahe_ocn_communicahor (communicate f90:300)

N

Bottling it... aﬁa

PERFORMANCE

REPORTS

e Lock in obtain results: Performance AND
Correctness

« Save your results nightly

 Tie your performance results to your continuous
Integration server

allinea

Top Tips for HPC Development Success

« Performance is important
« Software needs performance attention
« Regular profiling pays rewards

« Test correctness and validate performance on real
workloads

 Integrate your debugger with program correctness
regression testing

« Constant diligence pays off

allinea

