
DXT: Darshan eXtended Tracing

Cong Xu∗, Shane Snyder†, Omkar Kulkarni∗, Vishwanath Venkatesan∗,
Philip Carns†, Suren Byna‡, Robert Sisneros§, and Kalyana Chadalavada∗

∗Intel Corporation Email: {cong.xu,omkar.kulkarni,vishwanath.venkatesan,kalyana.chadalavada}@intel.com
†Argonne National Laboratory Email: {ssnyder,carns}@mcs.anl.gov
‡Lawrence Berkeley National Laboratory Email: sbyna@lbl.gov

§National Center for Supercomputing Applications Email: sisneros@illinois.edu

Abstract—As modern supercomputers evolve to exascale,
their I/O subsystems are becoming increasingly complex, mak-
ing optimization of I/O for scientific applications a daunting
task. Although I/O profiling tools facilitate the process of
optimizing application I/O performance, legacy profiling tools
lack flexibility in their level of detail and ability to correlate
traces with other sources of data. Additionally, a lack of
robust trace analysis tools makes it difficult to derive actionable
insights from large-scale I/O traces.

Darshan is an HPC I/O characterization tool that records
statistics in a lightweight manner that makes it appropriate for
full-time production deployment. However, Darshan’s default
characterization mechanism records information at a fixed
granularity. We augment Darshan by proposing Darshan
eXtended Tracing (DXT) for more detailed profiling of I/O
software stacks. DXT enables users and administrators to
vary the level of fidelity captured by Darshan at run time
without modifying or recompiling applications. This capability
facilitates systematic analysis on the I/O behavior of applica-
tions and can provide useful application kernel I/O traces to
help advance parallel I/O research. We have demonstrated the
power of DXT by obtaining a wide range of useful statistics
for multiple case studies, and we further show that DXT is
able to do so same with negligible overhead.

I. INTRODUCTION

The past decade has witnessed an exponential increase
in scientific data produced on high-performance computing
(HPC) systems. Across different disciplines, scientific appli-
cations adopt a broad range of strategies to store colossal
amounts of data to storage subsystems. Multiple studies
have found, however, that the I/O performance of production
applications often suffers considerably due to unforeseen
factors in practice [14], [7]. Analyzing the cause of poor
I/O performance is a complex undertaking, especially in
large-scale parallel I/O systems comprised of multilayered
software stacks and hardware components.

I/O profiling tools have been developed to cope with
such complexities and are employed to characterize the
I/O activities carried out on parallel file systems. Legacy
profiling tools, however, either provide limited information
with coarse granularity or introduce unacceptable overheads
in terms of application runtime, memory footprint or disk
space usage. Furthermore, if users or administrators wish

to alter the level of profiling, they often must explicitly
adopt different characterization tools with diverse usage
conventions and output formats. There is a clear need for
a comprehensive profiling tool that can generate both high-
level statistics and detailed I/O traces with minimal overhead
and allow the user to tailor the output according to specific
requirements.

Darshan [9] is a user-level, scalable I/O characteriza-
tion tool widely deployed on large-scale HPC systems.
It intercepts I/O function calls at multiple levels within
the application I/O path, collects I/O traces, and reports
aggregated statistics. We have extended Darshan and propose
Darshan eXtended Tracing (DXT) to provide high resolu-
tion traces of application I/O which can be used to study
behaviors of a wide range of workloads. DXT is intended
to be a generic I/O profiling tool catering to almost any
underlying file system. It is disabled by default and may
be enabled by setting an environment variable. Through
multiple experiments over various I/O access patterns, it was
found that the overhead introduced by DXT was less than
1%.

Using the bundled tool, DXT logs can be parsed, analyzed
and visualized offline, i.e. on a separate system or node from
the ones on which the job was run to minimize the impact
on application performance. DXT can intercept a range of
calls for the most commonly used I/O APIs, namely POSIX
and MPI-IO, thereby allowing us to perform comprehensive
analysis. We have implemented many features in the analysis
tool to provide useful insights into applications’ I/O access
patterns and their performance with respect to the underlying
file system. These features include noncontiguous I/O detec-
tion, data distribution analysis, I/O bandwidth reporting, and
outlier detection.

In addition, since DXT can provide detailed I/O tracing
information with negligible overhead, we can deploy it on
any large-scale cluster without significantly affecting regular
workflows of users. These traces can be used to study the
application’s I/O behavior from the file system’s perspective
by correlating it with the physical layout of the file and other
tunables.

In this paper, we present the design and implementation



details of the lightweight I/O profiling tool DXT. Based
on the detailed I/O tracing information collected by DXT,
we have developed log parsing and visualization scripts to
conduct systematic analysis. Through two case studies we
demonstrate that DXT can provide users with interesting
insights into application I/O behaviors.

The rest of the paper is organized as follows. Section II
provides the background on existing I/O characterization
tools and our motivation for the DXT effort. We then
describe the design of DXT components and our strategies to
limit their overhead in Section III. Section IV measures the
performance and scalability of DXT, followed by two case
studies in Section V. In section VI we present the existing
research related to our work. Finally, we conclude the paper
in section VII.

II. BACKGROUND AND MOTIVATION

I/O libraries such as MPI I/O [3], HDF5 [11], and
netCDF [5], provide an efficient way to represent complex
data structures in applications. The last decade has seen
an increased interest in using such libraries amongst the
scientific computing community that makes it imperative
to optimize these libraries across file systems. Optimizing
such middleware has been done in the past by treating the
underlying file system as a black box by predicting file
system behavior based on empirical analysis. LIOProf [15],
tries to address this problem by providing a solution to
provide feedback from the file system on the behavior of the
middleware. This can be used to optimize the way I/O is sent
to the file system from the middleware thereby improving
the performance of the middleware. The LIOprof approach,
although useful, is restricted to Lustre [1] and also requires
super user privileges to obtain such traces.

The Darshan eXtended Tracing (DXT) extends Dar-
shan [9] which is an I/O characterization tool widely adopted
and used in many leadership scale systems. DXT allows
us to extract detailed I/O traces from the user space in a
file system agnostic way. DXT has been designed in such
a way that it remains switched off by default and can be
switched on by toggling an environment variable at runtime.
Parsing and visualization of data on DXT traces can be
done offline and such analysis can be used to identify issues
like lock contention, stripe misalignment, imbalance in data
distribution and detection of outliers with post-analysis tools.

One other important advantage of implementing extended
tracing as a part of Darshan is that it supports intercepting
I/O calls from multiple layers of the stack. This allows
developers to correlate and identify issues in I/O issued
in the different layers. For example, MPI I/O may use
POSIX I/O to access the file system. DXT can provide traces
for multiple layers that can be very useful in identifying
potential issues in I/O patterns at a specific layer.

Despite the size of the traces, the overhead of saving
the trace information is kept as low as 1% using collective

buffering [10] to write traces to the parallel file system.
With such minimal overhead, DXT could potentially be used
to extract detailed I/O traces from applications running in
leadership scale clusters. And since these traces are file
system agnostic, they can be used for benchmarking and I/O
research. Variety of research areas like prefetching, cache re-
placement policies can benefit from such traces. Such traces
could also reduce the time spent on running application
benchmarks and improve distribution and reproducibility of
workloads. The Storage Networking Industry Association
(SNIA) [8] provides these traces for aiding storage research,
but the repositories lack HPC workloads and applications.
Using DXT, such traces can easily be generated and added
to such repositories.

III. DESIGN AND IMPLEMENTATION

DXT aims to provide detailed I/O tracing information of
applications for users to conduct comprehensive analysis.
It records all the I/O requests and related information in
the MPI-IO and POSIX layers. For each I/O request, it
reports the file offset, length, start and end times, as well
as the issuing MPI process rank and hostname of the
compute node. Like Darshan, DXT intercepts I/O function
calls issued in multiple layers and does not require any
modifications to the source code of applications. DXT in-
struments applications via either compile-time wrappers for
statically linked executables or dynamic library preloading
for dynamic executables.

DXT contains two main components: DXT logging and
DXT analysis tool. The DXT logging component is respon-
sible for recording the I/O activities of applications. During
application execution, it temporarily stores the I/O traces in a
memory buffer within each process. At the end of the job, it
compresses and flushes the traces to persistent storage where
they can be analyzed offline. The DXT analysis tool can be
used to analyze and visualize the I/O traces collected by the
DXT logging component. We have developed a command
line interface to analyze and visualize useful information
about factors that influence I/O performance such as the
I/O bandwidth, performance outliers, data distribution on the
parallel file system, noncontiguous I/O, and stripe misalign-
ment.

As previously outlined, it is important that profiling over-
heads imposed by DXT’s logging component be minimal
to limit possible impact on applications. The most critical
overheads from the application’s perspective are the runtime
costs of intercepting and extracting trace data for each
I/O operation and allocating additional memory to store
these traces. To minimize impact on the runtime, DXT
avoids communication and I/O within intercepted functions,
deferring these costly activities towards the end during
application shutdown. For reducing memory overhead, DXT
first allocates a small buffer for storing a process’s trace data
(around 2 KB), then gradually expanding it as needed. A

2



user-configurable maximum buffer size (which defaults to 4
MB) is used to cap DXT’s memory usage. To further reduce
the memory footprint, DXT does not capture any redundant
data that may otherwise be retrieved from other Darshan
modules. Finally, compression is applied to reduce the size
of the final output file.

The DXT analysis tool is designed to analyze and visu-
alize I/O traces collected by DXT logging component. It
can be run on any machine for offline analysis. DXT can
detect the type of the file system, and accordingly query
the physical file layout such as striping information. By
correlating this information with DXT I/O traces, the tool is
able to perform comprehensive analysis on the I/O activities
of applications. For instance, the I/O traces can be grouped
based on compute nodes, process ranks, Lustre OSTs, etc.
which can yield interesting insights. Using statistical meth-
ods, it can report performance outliers: processes, nodes or
I/O servers that may be performing sluggishly compared to
the rest. The type of analysis and specific input parameters
may be passed to the tool through the command line. There
is also an option to output all analysis results.

IV. EVALUATION

We begin our evaluation of DXT by quantifying the
amount of runtime overhead that it introduces in instru-
mented applications. Multiple experiments were conducted
on the Cori system at National Energy Research Scientific
Computing Center (NERSC) and Blue Water system at the
National Center for Supercomputing Applications (NCSA).

The Cori system contains two different kinds of nodes:
2,004 Intel Xeon “Haswell” nodes and 9,300 Intel Xeon Phi
“Knight’s Landing” nodes. The storage is a 30 PB Lustre
file system with 248 Lustre OSTs. We launch our jobs on
“Haswell” processor nodes. One node equips 32 CPU cores
and 128 GB of memory. The Blue Waters system is a Cray
XE6-XK7 supercomputing system that has 26 PB online
disk capacity. There are 22,640 XE6 nodes and 4,224 XK7
nodes connected via Cray Gemini interconnect. Our tests
were run on the XE6 nodes, each node has two 16 core
CPUs and 64GB of main memory.

We used the synthetic workloads from the IOR benchmark
for evaluations. IOR can simulate different I/O access pat-
terns and supports multiple I/O interfaces, including POSIX
and MPI-IO. It is widely used to quantify I/O performance
on parallel file systems. For this experiment, we used Cray
MPI (version 17.0.1) and Lustre (version 2.7.1).

A. Overhead Measurement

IOR was configured to use MPI-IO for quantifying the
overhead introduced by DXT. Up to 4,096 processes were
launched on 128 Lustre clients, interacting concurrently with
128 Lustre Object Storage Targets (OSTs). The total data
size was 4 TB, and the transfer size was set to 512 KB.
A directory was created on Lustre to store the DXT logs

and was configured such that DXT could flush the logs to
multiple Lustre OSTs.

1024 2048 4096
Number of Processes

0

50

100

150

200

250

Ex
ec

ut
io

n 
Ti

m
e 

(S
ec

)

Original
Darshan
DXT

(a) Cori System

1024 2048 4096
Number of Processes

0

100

200

300

400

500

Ex
ec

ut
io

n 
Ti

m
e 

(S
ec

)

Original
Darshan
DXT

(b) Blue Waters System

Figure 1. Overhead Measurements on Two HPC Systems

We compared the execution time of the original IOR
(Original), IOR with Darshan enabled (Darshan), and IOR
with DXT enabled (DXT) on both Cori and Blue Waters
systems. The execution time is the time difference between
“Run finished” and “Run began” reported in the IOR output.
IOR was instructed to run three iterations. Fig. 1 presents
the results. From the figure we can see that both the Darshan
and DXT cases perform similarly to the original case at
various processes on both systems. This demonstrates that
both Darshan and DXT introduce negligible overhead to the
run-time system. In the rest of this section, we focus on the
results in Cori system.

Transfer size determines the amount of data on storage
covered in each I/O function call. It is another important
parameter that needs to be considered when measuring the
DXT overhead. When the file size is kept constant, a smaller
transfer size results in a larger number of I/O operations,
consequently increasing the size of the DXT logs.

To investigate the transfer size effects on DXT overhead,
we kept other parameters constant and varied the transfer
size from 64 KB to 4 MB at 4,096 processes. As depicted
in Fig. 2, all cases perform worst with 64 KB transfer size
because it introduces too many small I/O requests to the
file system. We cannot observe any differences between the

3



0	

200	

400	

600	

800	

64KB	 256KB	 1MB	 4MB	

Ex
ec
u1

on
	T
im

e	
(S
ec
)	

Transfer	Size	

Original	
Darshan	
DXT	

Figure 2. IOR Benchmark with Various Transfer Sizes

three cases with various transfer size from the figure because
the overhead introduced by DXT is negligible.

DXT buffers the traces in the memory during the run
and writes the DXT logs to Lustre at the end of the job.
Therefore, any overhead (if noticeable) will be at shutdown
time, since that is when the compression and output happens.
In the next section we analyze the time spent in shutdown.

B. Shutdown Time

Once the application has finished executing, DXT inter-
cepts the MPI Finalize() function to compress and write
DXT logs to Lustre concurrently. Therefore, it becomes
important to investigate the impact on shutdown time since
most of the overhead (if noticeable) will be incurred at
this stage. Darshan can be made to report precise per-
module timing metrics for flushing the logs by setting the
DARSHAN INTERNAL TIMING environment variable.

Table I
SHUTDOWN TIME DISSECTION AT 4,096 PROCESSES

Operation Darshan(ms) DXT(ms)
log open 8.22 16.39
job write 0.47 0.34
hash write 20.71 20.82
header write 0.13 0.11
POSIX shutdown 1.54 1.42
MPI-IO shutdown 1.73 1.31
LUSTRE shutdown 1.39 1.19
STDIO shutdown 18.27 18.54
X POSIX shutdown 24.56
X MPIIO shutdown 99.61
Total Shutdown Time 58.48 213.27

We compared the overhead introduced by Darshan and
DXT with a 512 KB transfer size at 4,096 processes. Table
I presents the time spent on each operation in detail. During
the shutdown time both Darshan and DXT write a log file to
the parallel file system. The table shows the cost of opening

the log, writing metadata information, and appending traces
of each module.

Compared with Darshan, DXT introduces additional
X POSIX shutdown and X MPIIO shutdown modules to
provide detailed I/O tracing information in the POSIX and
MPI-IO layers. As shown in the table, DXT spent 24.56ms
and 99.61ms in writing the X POSIX and X MPIIO mod-
ules, respectively. The X POSIX module uses less time than
the X MPIIO module because its log size is much smaller
than that of the X MPIIO module. IOR enabled a collective
buffering algorithm [10] in the evaluation; the algorithm
aggregated the I/O requests in the MPI-IO layer and thus
issued fewer requests in the POSIX layer.

Table II
DXT SHUTDOWN OVERHEAD WITH DIFFERENT TRANSFER SIZES

Operation & Log Size 64KB 256KB 1MB 4MB
X POSIX shutdown (ms) 26.07 25.81 25.21 23.91
X MPIIO shutdown (ms) 330.80 180.93 99.42 97.04
Total Shutdown (ms) 507.21 309.45 203.66 142.33
Log Size (mb) 492.93 156.20 46.84 19.81

Table II shows the DXT shutdown time and log size with
different IOR transfer sizes. As can be seen, the shutdown
times of the X POSIX module with different transfer sizes
are almost the same, since the number of POSIX I/O
calls remains nearly constant throughout due to aggregation
of requests in collective I/O. On the other hand, for the
given file size of 4 TB, the number of MPI I/O requests
is inversely proportional to the transfer size resulting in
larger logs for the X MPIIO module. Consequently, both the
total shutdown time and log size grow as the transfer size
decreases. However, the overhead is still small; even when
the transfer size is 64 KB, the 507.21 ms total shutdown
cost is 0.1% of the 436 s job execution time, and the 492.93
MB DXT log size is 0.012% of the 4 TB file size.

C. Memory Usage and Log Size

The two preceding sections discussed the overall and
shutdown overhead introduced by DXT. Here we focus
mainly on the memory usage of DXT and the size of the
log generated by DXT.

The DXT log contains both the trace header and I/O
tracing segment. The trace header stores the basic infor-
mation related to current process, including rank number,
hostname, and number of write/read operations. The trace
header is followed by the I/O tracing segment, which records
the start time, end time, offset, and length of the I/O request.
The memory used by each process in one I/O layer can be
calculated using the following formula:

memory = header+io operations∗trace segment (1)

4



Currently the sizes of the header and trace segment are
104 Bytes and 32 Bytes, respectively. The number of I/O
operations depends mainly on the number of I/O requests
and the MPI-IO algorithm. In the DXT X MPIIO module,
the number of I/O operations equals the number of MPI-
IO function calls issued by the application. In contrast, the
number of POSIX I/O operations recorded by the DXT
X POSIX module depends on the specific MPI collective
I/O algorithm. If collective buffering is enabled, the MPI-
IO library aggregates I/O requests and issues actual I/O calls
to the file system. Otherwise, MPI I/O calls go directly to
the file system.

For instance, let us assume that IOR launches 4,096
processes to write a 4 TB file and that the transfer size
is configured to be 1 MB. Then each process needs to
perform 1,024 MPI-IO function calls. Thus the size of the
DXT X MPIIO module per process is 104 Bytes + 1024
* 32 Bytes, which is 32,872 Bytes. If the Lustre stripe size
equals 4 MB and the collective buffering algorithm has been
enabled, there will be 256 POSIX I/O function calls to the
Lustre file system. The size of the POSIX I/O request is
4 MB (equal to the stripe size). Thus the size of the DXT
X POSIX module per process is 8,296 Bytes. Consequently,
the total memory used by the DXT X MPIIO and X POSIX
modules in each process equals 41,168 Bytes, which is much
smaller than the 4 MB DXT memory limit per process.

Additionally, DXT employs zlib to compress the DXT
logs within each process before writing to the file system.
In this case we have 4,096 processes, and the total size
of the DXT log is 41,168 Bytes * 4096 processes, which
is 160.8 MB. After zlib compression the log size becomes
46.84 MB with a compression ratio of 3.4:1. This calculation
demonstrates that the DXT log is compact to be able to
buffer such a large amount of I/O tracing information in the
memory.

V. CASE STUDIES

To demonstrate the power of DXT, we use two case
studies to show how DXT can provide insight into the I/O
behaviors of applications. Both case studies are conducted
on the Wolf development cluster at Intel Corporation. The
Wolf cluster features 70 physical compute nodes, each with
Octadeca-Core 2.3 GHz Xeon processors (36 cores) and 64
GB of memory. All compute nodes are connected by using
Mellanox QDR ConnectX InfiniBand.

A. GCRM-IO

The first case study was conducted using GCRM-IO. It
simulates I/O for GCRM, a global atmospheric circulation
model, simulating the circulations associated with large
convective clouds. The I/O kernel also uses H5Part to
perform all the GCRM I/O operations with random data. The
I/O pattern of GCRM-IO corresponds to a semi-structured

geodesic mesh, where the grid resolution and subdomain
resolution are specified as input.

To investigate the I/O performance of GCRM-IO, we
launched 256 processes that wrote in parallel to a shared file
on a Lustre file system. The grid and subdomain resolutions
were set to 10 and 4 respectively. The total number of
timesteps was 64, so the application outputs the pressure
variable value 64 times. Lustre optimization and stripe
alignment options provided by the application were enabled.

Lustre file system on the Wolf cluster is able to provide
an aggregate write bandwidth of up to 2500 MB/s. In this
case study, however, GCRM-IO was able to achieve only
1689.13 MB/s write bandwidth. We used the DXT analysis
tool to study DXT logs of the application to identify the
cause of the gap in performance.

Write Read
I/O Operations

0.0

0.5

1.0

1.5

2.0

2.5

Ba
nd

w
id

th
 (B

yt
es

/s
) 1e9

Figure 3. GCRM-IO I/O Requests Bandwidth

Fig. 3 presents a box plot of POSIX I/O requests band-
width in GCRM-IO. The box plot whiskers extend to the
far end of the x-axis (where X=1.5x of the box extents).
Any results outside those extents are considered outliers. The
read bandwidth is empty because GCRM-IO kernel does not
read data in the evaluation. As can be observed in the figure,
the median bandwidth of GCRM-IO write requests is 1.39
GB/s, and there exist plenty of outliers with inferior I/O
performance.

To conduct further investigation, the DXT log analysis
tool outputs the details of these outliers, Fig. 4 depicts the
first part of the outputs. As shown in the figure, between 24.8
s and 28.3 s almost all processes take about 3.5 s to write a
very small data segment, resulting in bad I/O performance.
The major reason is that the same Lustre stripe is accessed
by multiple processes simultaneously, leading to severe lock
contention due to false sharing. Additionally, a number of
small I/O requests issued almost concurrently to a single
OST also incurs a high amount of I/O latency.

When we examine the GCRM-IO source code, we find
that GCRM-IO uses the H5Part API to write HDF5 datasets
collectively. However, small portions of HDF5 metadata

5



Figure 4. GCRM-IO I/O Requests Bandwidth Outliers

are written by each process individually, leading to huge
performance penalties. To address this issue, the collective
metadata I/O feature in HDF5 needs to be enabled explicitly
in GCRM-IO, so that the small metadata I/O requests can
be aggregated and written to the storage.

B. HACC-IO

The HACC-IO benchmark is the I/O kernel extracted
from the Hardware Accelerated Cosmology Code (HACC)
simulation. The HACC framework uses N-body techniques
to simulate the formation of structure in collisionless fluids
under the influence of gravity in an expanding universe.

In this case study, we launch 256 processes to perform
concurrent I/O on a single shared file, the total number of
particles is 8,589,934,592 which yields a file size of 304
GB. We have measured the I/O performance of two cases:
POSIX I/O (POSIX) case and collective I/O (Collective)
case. In POSIX I/O case, each process uses POSIX API
to write a large contiguous data block directly. On the other
hand, the collective I/O case employs the collective buffering
algorithm to perform I/O operations.

Fig. 5 shows the I/O bandwidths of two cases. The
POSIX I/O case outperforms the collective I/O case in both
write and read operations. This indicates that the collective
buffering algorithm is not suitable for the large contiguous
I/O accesses in HACC-IO benchmarks.

To investigate the reason, we use DXT analysis tool to
estimate the time spent in collective buffering algorithm,
which consists of communication and I/O phases. In the
communication phase, the algorithm transfers data between
aggregators and all the processes. While in the I/O phase,
the aggregators issue parallel I/O to the file system.

0

500

1000

1500

2000

2500

3000

3500

4000

Write Read

B
an

d
w

id
th

 (
M

B
/S

ec
)

I/O Operations

POSIX

Collective

Figure 5. POSIX and Collective I/O Bandwidth Comparison

Fig. 6 presents the execution time spent in both cases.
The POSIX case does not have communication cost because
it performs I/O directly. In collective I/O case, the figure
depicts the average communication and I/O time spent on
aggregators. As shown in the figure, the I/O time has been
reduced in the collective I/O case due to the effects of stripe
alignment and enhanced data locality on aggregators.

However, the collective I/O case spends a large amount of
time in transferring data between processes that stems from
a lack of parallelism in data transfer over the network. For
large contiguous requests, the data accessed by each process
is striped across multiple OSTs, which are accessed through
individual aggregators. At any given instant, an aggregator
is only able to service an IO request from a single process
while the remaining processes have to wait for their turn,
leading to a serialization of network transfers. This issue is

6



0

100

200

300

400
Ex

ec
u

ti
o

n
 T

im
e 

(S
ec

)

I/O Operations

Communication Time

I/O Time

Figure 6. Time Dissection

known as aliasing and arises when the file access regions
of processes are perfectly aligned such that all processes try
to simultaneously access data from the same OST, and as a
result, the same aggregator.

VI. RELATED WORK

A few tools, including ScalaIOTrace [13], Recorder [6],
and Darshan [9], can capture I/O tracing information in
each layer of a multi-layered I/O stack. However, these
tools either generate large trace files and introduce high run-
time overhead or provide limited information on high-level
accumulated statistics. A flexible profiling tool is needed that
can generate both, detailed I/O tracing information as well
as high-level statistics at the user’s request.

IOPin [4] is a dynamic instrumentation framework that
characterizes the I/O activities in MPI and PVFS [2]. It
can provide users a hierarchical view of the I/O calls from
the MPI library to the PVFS server. However, IOPin is
specifically designed to profile the applications over the
PVFS file system and is reported to introduce, on average,
7% overhead to the run-time systems. Clearly needed is a
generic tool that can profile I/O workloads over all kinds of
file systems, while introducing only minimal overhead.

The Lustre Monitoring Tool (LMT) [12] and Lustre I/O
profiler (LIOProf) [15] are two important tools that provide
server-side I/O profiling. LMT is responsible for monitoring
the real-time status of the Lustre storage server. It serves as a
Cerebro plugin on Lustre servers to collect and store server
status for further analysis. LIOProf is designed to provide
detailed file system I/O activities to users, helping them
investigate the root cause of performance problems. Both
tools require superuser (root) privileges to conduct server-
side I/O profiling, and are not available to normal users.

To overcome constraints in legacy I/O profiling tools,
we have developed a flexible user-level instrumentation
framework DXT. It is a generic tool that is independent of
the underlying file systems. It records the detailed I/O tracing

information in multiple layers of I/O stacks and at the same
time introduces as minimal of an overhead as possible.

VII. CONCLUSION

Analyzing scientific applications I/O behavior and pin-
pointing I/O performance bottlenecks are grand challenges
for users due to increasing scale and complexity of parallel
I/O systems. While a few I/O profiling tools exist to char-
acterize the I/O activities and facilitate the analysis of I/O
performance issues, a light-weight flexible instrumentation
framework will serve as a powerful tool in the arsenal of
scientists, application developers, system administrators and
performance engineers alike.

In this paper, we have extended Darshan and proposed
Darshan eXtended Tracing (DXT) to facilitate detailed I/O
instrumentation on I/O software stacks. We use I/O intensive
workloads to conduct systematic analysis on the overhead
introduced by DXT, and demonstrate that DXT is a scal-
able I/O profiling tool that introduces negligible overhead
to the application runtime. Through two case studies we
show that DXT is capable of providing detailed I/O tracing
information for comprehensive analysis of the application’s
I/O activities.

ACKNOWLEDGMENTS

This material is based upon work supported by the
U.S. Department of Energy, Office of Science, Advanced
Scientific Computer Research, under contract DE-AC02-
06CH11357. This research used resources of the National
Energy Research Scientific Computing Center, a DOE Office
of Science User Facility supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

REFERENCES

[1] Lustre 2.0 Operations Manual.
http://wiki.lustre.org/images/3/35/821-2076-10.pdf.

[2] P. H. Carns, W. B. Ligon, III, R. B. Ross, and R. Thakur.
PVFS: A Parallel File System for Linux Clusters. In Pro-
ceedings of the 4th Annual Linux Showcase & Conference -
Volume 4, ALS’00, pages 28–28, Berkeley, CA, USA, 2000.
USENIX Association.

[3] M. P. Forum. MPI: A Message-Passing Interface Standard.
Technical report, Knoxville, TN, USA, 1994.

[4] S. J. Kim, S. W. Son, W. keng Liao, M. T. Kandemir,
R. Thakur, and A. N. Choudhary. IOPin: Runtime Profiling
of Parallel I/O in HPC Systems. In SC Companion, pages
18–23. IEEE Computer Society, 2012.

[5] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur,
W. Gropp, R. Latham, A. Siegel, B. Gallagher, and M. Zin-
gale. Parallel netCDF: A High-Performance Scientific I/O
Interface. In Proceedings of the 2003 ACM/IEEE Conference
on Supercomputing, SC ’03, pages 39–, New York, NY, USA,
2003. ACM.

7



[6] H. Luu, B. Behzad, R. Aydt, and M. Winslett. A Multi-
Level Approach for Understanding I/O Activity in HPC
Applications. In 2013 IEEE International Conference on
Cluster Computing (CLUSTER), pages 1–5, Sept 2013.

[7] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms,
M. Prabhat, S. Byna, and Y. Yao. A Multiplatform Study of
I/O Behavior on Petascale Supercomputers. In Proceedings
of the 24th International Symposium on High-Performance
Parallel and Distributed Computing, pages 33–44. ACM,
2015.

[8] SNIA - Storage Networking Industry Association. SNIA I/O
Trace Data Files. http://iotta.snia.org/traces, 2017.

[9] S. Snyder, P. H. Carns, K. Harms, R. Ross, G. K. Lockwood,
and N. Wright. Modular HPC I/O Characterization with
Darshan. In ESPT’16 Proceedings of the 5th Workshop on
Extreme-Scale Programming Tools, Salt Lake City, Utah, Nov.
2016. IEEE Press.

[10] R. Thakur, W. Gropp, and E. Lusk. Data Sieving and
Collective I/O in ROMIO. In Frontiers of Massively Parallel
Computation, 1999. Frontiers ’99. The Seventh Symposium
on the, pages 182–189, Feb 1999.

[11] The HDF Group. Hierarchical Data Format Version 5.
https://www.hdfgroup.org/HDF5/, 2016.

[12] A. Uselton. Deploying Server-side File System Monitoring
at NERSC. In Cray User Group Conference, 2009.

[13] K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth. Scalable
I/O Tracing and Analysis. In Proceedings of the 4th Annual
Workshop on Petascale Data Storage, PDSW ’09, pages 26–
31, New York, NY, USA, 2009. ACM.

[14] V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka.
Topology-aware Data Movement and Staging for I/O Acceler-
ation on Blue Gene/P Supercomputing Systems. In Proceed-
ings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages
19:1–19:11, New York, NY, USA, 2011. ACM.

[15] C. Xu, S. Byna, V. Venkatesan, R. Sisneros, O. Kulkarni,
M. Chaarawi, and K. Chadalavada. LIOProf: Exposing Lustre
File System Behavior for I/O Middleware. In Cray User
Group Conference, 2016.

8


