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Abstract—Subfiling is a technique used on parallel file systems
to reduce locking and contention issues when multiple compute
nodes interact with the same storage target node. Subfiling
provides a compromise between the single shared file approach
that instigates the lock contention problems on parallel file
systems and having one file per process, which results in
generating a massive and unmanageable number of files. In
this paper, we evaluate and tune the performance of recently
implemented subfiling feature in HDF5. In specific, we explain
the implementation strategy of subfiling feature in HDF5, provide
examples of using the feature, and evaluate and tune parallel
I/O performance of this feature with parallel file systems of the
Cray XC40 system at NERSC (Cori) that include a burst buffer
storage and a Lustre disk-based storage. We also evaluate I/O
performance on the Cray XC30 system, Edison, at NERSC. Our
results show performance benefits of 1.2X to 6X performance
advantage with subfiling compared to writing a single shared
HDF5 file. We present our exploration of configurations, such
as the number of subfiles and the number of Lustre storage
targets to storing files, as optimization parameters to obtain
superior I/O performance. Based on this exploration, we discuss
recommendations for achieving good I/O performance as well as
limitations with using the subfiling feature.

I. INTRODUCTION

Subfiling is a technique used on parallel file systems to
reduce locking and contention issues when multiple compute
nodes interact with the same I/O node or storage target.
Subfiling provides a compromise between the single shared
file approach that instigates the lock contention problems on
parallel file systems and having one file per process, which
results in generating a massive and unmanageable number of
files. Collecting compute ranks that are topologically close
to each other into a group and having each group access
a single file will increase bandwidth to the file system,
since most contention problems can be avoided. Parallel file
format libraries such as PnetCDF [7] and ADIOS [10] have
implemented subfiling feature. Application libraries, such as
BoxLib [2], have implemented subfiling for storing data in
multiple files in custom binary format. Parallel log structured
file system (PLFS) remaps application data into a layout of
multiple files that gives better performance on a given file
system [4]. All these implementations proved that writing
multiple files instead of single shared file improves parallel
I/O performance.

In this paper, we have evaluated and tuned the performance
of recently implemented subfiling feature in the Hierarchical

Data Format version 5 (HDF5) [13]. HDF5 is a widely used
parallel I/O library at leadership supercomputing facilities and
tuning parallel I/O performance of subfiling benefits a large
number of applications using HDF5. In specific, we have
explained the implementation strategy of subfiling feature in
HDF5, provided examples of using the feature, and evaluated
and tune parallel I/O performance of this feature. We have
evaluated this feature on parallel file systems of a Cray XC30
system (Edison) and a Cray XC40 system (Cori) installed at
The National Energy Research Scientific Computing Center
(NERSC). Edison has a disk-based Lustre file system and Cori
contains an SSD-based burst buffer storage managed by Cray
DataWarp and a disk-based storage managed by Lustre parallel
file system. We have used parallel I/O kernels from a plasma
physics simulation for writing data and a clustering algorithm
for reading the data produced by the plasma simulation to
evaluate performance. Our results show an advantage in the
range of 1.2X to 6.5X with writing subfiles in comparison
to writing a single shared HDF5 file. We have also observed
that the achieved I/O rate with subfiling is 70% of the peak
bandwidth on the Lustre file system (/scratch3) of Edison even
when we were using small fraction of the entire compute
system. We have also varied the number of subfiles to be
created and the number of object storage targets to be used
on Lustre file system to obtain optimal performance. The
advantage of subfiling on Cori’s disk-based Lustre and SSD-
based burst buffers increases at larger scales. At a scale of
16K MPI processes, we observed ≈200 GB/s write rate on
Cori’s Lustre file system (/cscratch) and ≈410 GB/s write
rate on the burst buffer. In this paper, we will present our
recommendations for choosing the number of subfiles and for
deciding how the data should be laid out on the storage nodes.

Overall, the contributions of this paper are:

• Description of an implementation of subfiling in HDF5
along with a background to HDF5’s Virtual Datasets
(VDS) feature.

• Performance evaluation of subfiling feature in HDF5 on
the parallel file systems of Cori, a Cray XC40 sys-
tem installed at the National Energy Research Scientific
Computing Center (NERSC): We have presented I/O
performance of write and read functionality of two real
world use cases from plasma physics field.



• Evaluation of tuning parameters, such as the number
of subfiles and the number of storage targets to obtain
optimal performance using SSD-based Cray DataWarp
burst buffer system and on disk-based Lustre parallel file
system.

The reminder of the paper is organized as follows. We
provide a brief background to HDF5 and related work on
subfiling in section II. We discuss our current implementation
of subfiling in HDF5 in section III. In section V, we present
the scalability results of using HDF5 subfiling on Edison
and Cori file systems, and then evaluate obtaining optimal
performance by tuning the number of subfiles and number
of storage targets. We conclude our discussion with a brief
discussion of recommendations of using subfiling feature in
HDF5 and current limitations in Section VI.

II. BACKGROUND TO SUBFILING

HDF5 is a data model, binary file format, and I/O library
that maps an application’s data into the HDF5 data model
and stores it as HDF5 file(s). Basic elements of the HDF5
data model are multidimensional arrays of structures (HDF5
dataset). Associated datasets can be grouped together using
the HDF5 grouping structure (HDF5 group). Data stored in
HDF5 datasets can be read or written using regular POSIX I/O
or MPI I/O, allowing multiple processes to access the same
HDF5 dataset in an HDF5 file or multiple datasets in the same
HDF5 file. An application running on an HPC system can also
choose to have selected processes write to separate HDF5 files
and rely on other software to assemble the files or use HDF5
features like external links or file mounting to assemble data
for post-processing, e.g., for visualization.

The separate files I/O model is very attractive for large scale
applications, which require fast data dumps for checkpoints,
where the management of large number files per time step is
not an issue. Several parallel I/O libraries have implemented
writing separate subfiles [7], [10], [4].

The advantage of writing a file per process or using n
processes to write m files is well known and widely use by
HPC applications. It was recently demonstrated in a project
between The HDF Group and researchers at Diamond Light
Source (DLS), the United Kingdom’s national synchrotron
science facility. Parallel write performance was investigated
on the DLS cluster by appending 2D image frames, where
sections of the image are distributed across the processes, to an
extensible 3D dataset [12]. For both the IBM General Parallel
File System (GPFS) and the Lustre file system, the perfor-
mance of executing serial writes per process was anywhere
from five to ten times faster than writing to a single file, for this
particular application, Fig. 1. An obvious disadvantage of this
approach is non-self-describing mapping between application
data and data stored in the underlying HDF5 files.

HDF5 library version 1.10.0 introduced the notion of a
Virtual Dataset (VDS), which allows for pieces of a dataset
to be stored in separate HDF5 files (called source files) and
datasets (called source datasets), but would be viewed as a
single HDF5 dataset from a master file, Fig. 2.

Fig. 1. Parallel write performance on a cluster at Diamond Light Source
(DLS) facility for appending 2D image frames to a 3D dataset. The perfor-
mance of executing serial writes per process ranges from five to ten times
faster than writing to a single file [12].

Fig. 2. Colored regions of a Virtual Dataset are stored in the corresponding
colored regions of the source datasets.



A VDS is composed logically of blocks of data stored in
the source datasets. Source datasets may be in the same file
as the VDS or in another file. Source datasets may themselves
be virtual datasets.

Regardless of how a virtual dataset is composed, it appears
transparently to the user as a dataset, and can be accessed via
the HDF5 dataset API, just like any other dataset. The current
implementation allows only sequential access to the VDS data.
A VDS can be repacked using the h5repack command-
line utility into an HDF5 dataset with more conventional
contiguous or chunked storage.

Because a virtual dataset allows for data to be stored in
multiple source files, it emerged as a natural mechanism for
the implementation of subfiling in HDF5.

Using API calls implemented for this research, it is possible
to leverage an additional mechanism of parallelization to the
task of writing, for example, a checkpoint file, allowing data
to be split logically along application-specific and user-defined
boundaries, in a way that a parallel file system alone does not
implicitly support. The current implementation requires the
user to explicitly split the MPI_COMM_WORLD communicator
into multiple subcommunicators, and creates one subfile per
subcommunicator at file creation time. At dataset creation
time, the user must state explicitly what portion of the dataset
each process will write. Each processes in a given subcom-
municator then writes its portion of the dataset to the subfile
associated with the communicator.

An application can then read data stored in the VDS using
sequential or parallel access. No special knowledge is required
of how data is stored in the subfiles since the initial mapping
is stored with the VDS itself. The next section describes in
greater detail the HDF5 subfiling programming model and
outlines its implementation.

III. IMPLEMENTATION OF SUBFILING

Subfiling is a compromise between performing file-per-
process I/O and doing MPI I/O on a single file shared by
all processes in communicator. By grouping parallel tasks,
a smaller number of files is generated that file-per-process,
providing the performance benefit, while also maintaining a
workable number of open files on the system. Fig. 3 shows
groups of processes writing to a shared dataset using subfiling.

This section outlines HDF5 subfiling programming model
and summarizes changes to the HDF5 library. The changes
targeted feasibility of the feature in HDF5 and demonstration
of its performance enhancement potential.

A. HDF5 Subfiling Programming Model

New functions were introduced to set and get subfiling
configuration settings.

1) Creating an HDF5 file with subfiling enabled: Before
subfiling can be enabled, the communicator must be split
n-ways, where n is the number of subfiles to be written,
e.g., assuming round-robin assignment of tasks to nodes, the

Fig. 3. Processes in subcommunicators writing regions of the dataset. Each
reqion is stores in the subfile associated with the subcommunicator. In HDF5
subfiling is implemented by using Virtual Dataset (VDS).

following C code will split the communicator in such a way
that all tasks on a given node will write to the same subfile:

int color = mpi_rank % subfile;
if (n_nodes > subfile)

color = (mpi_rank % n_nodes) % subfile;
MPI_Comm_split (..., &subfile_comm);

Names of subfiles are defined for each sub-communicator
as shown:

sprintf(subfile_name,"Subfile_%d.h5",color)

To create an HDF5 file with subfiling enabled for some
or all datasets, a file access property must be set using the
H5Pset_subfiling_access to indicate the number of
process groups that will write to corresponding subfiles, subfile
name, MPI communicator and MPI info object for the subfile
that the calling process will access. After the file access
property is set up, the HDF5 file can be created as usual.

2) Creating an HDF5 dataset with subfiling enabled: When
an HDF5 file is created with subfiling enabled, datasets can
be individually created as subfiled or not.

In order to create a subfiled dataset the HDF5 library
needs to know what region of the dataset is to be stored
in which subfile. Therefore, it is required to indicate, at
dataset creation time, what region(s) each group of pro-
cesses is responsible for writing to the dataset. A new
function H5Pset_subfiling_selection is called on
the dataset access property list to indicate the regions
of the dataset that the process will write to or read
from later. In the current implementation, regions cannot
intersect. After the dataset access property is set with
the H5Pset_subfiling_selection function, one can
proceed to create the dataset as usual.

The dataset created in the master HDF5 file will be a VDS,
and each group of processes will create a subfile to hold a
source dataset that maps to a portion of the VDS. The source
dataset will contains regions of data written by the processes
of the same color.

3) Writing: :
Once an HDF5 file and a dataset are created to use subfiling,

I/O is performed with H5Dwrite/H5Dread as usual.



The coding segment below demonstrates the set up for
subfiling when the number of process groups is mpi_size,
which is the total number of processes in the communicator.
The number of subfiles created will be mpi_size.

/*
Create file access property list.
Set MPI access and enable subfiling.

*/
fapl_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mpio(fapl_id, comm, info);
/*
Set the name of the subfile and use
it when enabling subfiling.

*/
sprintf(subfile_name, "Subfile_%d.h5",

mpi_rank);
H5Pset_subfiling_access(fapl_id,

subfile_name, MPI_COMM_SELF,
MPI_INFO_NULL);

/*
Create the file with the subfiling
feature. The call creates the master
file and the subfiles.

*/
fid = H5Fcreate(filename, ..., fapl_id);
/* Define hyperslab parameters */
....
/*
Set the dataspace selection that the
calling process will write to.

*/
ret = H5Sselect_hyperslab(sid,
H5S_SELECT_SET, start, stride, count,

block);
/*
Create the dataset with subfiling enabled.

*/
dapl_id = H5Pcreate(H5P_DATASET_ACCESS);
H5Pset_subfiling_selection(dapl_id, sid);
did = H5Dcreate(fid, DATASET, ..., sid,
..., dapl_id);
/*
Write to the dataset.

*/
H5Dwrite(did, H5T_NATIVE_INT, mem_sid, sid,
H5P_DEFAULT, wbuf);

4) Reading: Since a subfiled dataset is a virtual dataset,
it does not require special calls to be read. However, an API
call to H5Pset_subfiling_access may take advantage
of the knowledge of how the data was subfiled, in order to
speed retrieval. It requires that the same subfiling info be used
(coloring/task-grouping) for the file access property list passed
to the H5Fopen call.

B. HDF5 Library Modifications

To summarize, the following modifications were done to the
HDF5 library to enable subfiling.

1) File creation: Modification of the file creation code to
create subfiles when requested.

2) Dataset creation: Modification of the dataset creation
code to create the needed datasets in the subfiles, and to
configure the master dataset so that the existing VDS code
would manage the I/O to the source datasets in the subfiles.

3) API extension: Modifications required to support the
API extensions discussed above.

C. Other considerations

Modifications required to bypass code disabling VDS stor-
age in parallel, and to bypass other sanity checks triggered by
our initial modications to the HDF5 library.

IV. EXPERIMENTAL SETUP

A. Platforms

We have performed our experiments to evaluate the HDF5
subfiling feature on ‘Edison’, a Cray XC30 system, and on
‘Cori’, a Cray XC40 system, both located at NERSC. Edison’s
compute partition consists of 5586 compute nodes. Within
each compute node are two 2.4 GHz 12-core Intel Ivy-Bridge
processors and 64 GB of 1866MHz DDR3 DRAM. The
compute nodes are connected using Cray Aries interconnect
in Dragonfly topology with 23.7 TB/s global bandwidth. On
Cori, there are two types of compute partitions, one with 2,388
nodes that have Intel Xeon E5-2698 v3 (Haswell) CPUs with
32 cores per node running at 2.3GHz and another with 9,688
nodes that have Intel Xeon Phi (Knights Landing) processors
with 68 cores per node. In this study, we have used the
partition with Haswell CPUs, where each node has 128 GB
DDR4 2133 MHz memory.

We have used one file system (known as ‘scratch3’) on
Edison and two file systems (‘cscratch’ and burst buffer) on
Cori. The ‘scratch3’ file system on Edison has a total of 3.2 PB
of storage provided by a Cray Sonexion 1600 Lustre appliance.
Scratch3 has 36 object store servers (OSSs) and 36 object
store targets (OSTs) with 72 GB/s I/O bandwidth. For all of
our experiments, files are striped across all 144 OSTs. Cori
has one scratch file system, named /global/cscratch1,
which has 30 PB disk capacity and 700 GB/sec IO bandwidth.
We refer to this file system as ‘cscratch’ in this paper.
The ‘cscratch’ file system is shared between Cori and Edison
system, whereas the file system can be accessed from both
systems. It is configured with 248 Lustre OSSs and 248 OSTs.
Cori also has a SSD-based burst buffer1 managed by Cray
DataWarp [8]. The burst buffer has a storage capacity of 1.8
PB and a peak I/O performance specification of 1.7 TB/s.

In our experiments on Edison ‘scratch3’, we have used all
the 36 OSTs for striping the files. On ‘cscratch’, we have used
128 OSTs for tests running on 1024 (1K), 2048 (2K), and 4096

1Cori burst buffer architecture: http://www.nersc.gov/users/computational-
systems/cori/burst-buffer/burst-buffer/



(4K) MPI processes and used 192 OSTs for those running on
8192 (8K) and 16384 (16K) MPI processes.

B. I/O Kernels

We have used two parallel I/O kernels in this evaluation:
VPIC-IO and BD-CATS-IO. These kernels have been derived
from two applications, Vector Particle-In-Cell (VPIC) [5], [3]
and Big Data Clustering at Trillion Particle Scale (BD-CATS)
[11], [1]. The VPIC-IO is a write intensive benchmark and
BD-CATS-IO is a read intensive one.

1) VPIC-IO: VPIC is a highly optimized and scalable
particle physics simulation developed by Los Alamos National
Lab [5]. VPIC-IO [3] uses H5Part [9] to create a file, write
eight 1D array variables and close the file. The H5Part API
provides a simple veneer for issuing HDF5 calls correspond-
ing to a time-varying, multi-variate particle data model. We
extracted all the H5Part function calls of the VPIC code to
form the VPIC-IO kernel. The particle data written in the
kernel is random data of float data type. The I/O motif of
VPIC-IO is a 1D particle array of a given number of particles
and each particle has eight variables. The I/O kernel writes 8
million particles per MPI process and the total size of the file
increases as the number of MPI processes increases.

2) BD-CATS-IO: Clustering is an important data mining
kernel used in many scientific applications, such as finding
halos in cosmology, satellite image segmentation, noise filter-
ing and outlier detection. BD-CATS is an end-to-end system
for performing clustering analysis on large scale scientific data
[11]. BD-CATS internally uses DBSCAN, a density based
clustering algorithm [6]. The BD-CATS processing begins by
reading an input file containing the data to be clustered. BD-
CATS-IO kernel [1] is the reader of input files that store
properties of particles in arrays using HDF5 file format, where
each property is stored as a HDF5 Dataset. Using P MPI
processes for running the BD-CATS-IO kernel for reading the
data related to N particles, each HDF5 dataset is logically
split into P equal partitions. Each process p reads a subset of
particles starting from p ∗ N/P to (p + 1) ∗ N/P . The last
MPI process in addition reads data related to the remainder of
N/P .

C. Measurements

1) I/O time measurements: The VPIC-IO kernel initiates
data structures of corresponding simulation with random data
and write data to file system. In the BD-CATS-IO kernel,
we have read the HDF5 files written by the VPIC-IO kernel.
Both kernels use MPI-IO in collective I/O mode, where the
H5Part uses Lustre optimizations. The collective I/O mode is
also known as the two-phase I/O mode, where a small set of
aggregators among the MPI processes of a job interact with the
file system to perform reads or writes. The H5Part/H5Block
in the Lustre optimization mode sets the number of MPI-IO
aggregators equal to a multiple of the number of Lustre OSTs.
We have measured “I/O time” by using gettimeofday()
calls before opening a file and after closing the file. This
interval includes the time to open a HDF5 file in write mode,

to write metadata of HDF5 datasets, to write the data to the
underlying file system, and to close the file. We select the
maximum I/O time of all the MPI processes assuming all the
processes wait until an I/O phase is finished. The “IO rate”
reported in the results section (§V) is the ratio of the total
amount of data read or written to the I/O time.

V. RESULTS

In this section, we present an evaluation of the subfiling
feature in HDF5. We have used three types of evaluation:
scalability of writing and reading subfiles, tuning subfiling
factor, i.e., the number of processes writing to a subfile,
and tuning Lustre stripe settings. In all three cases, we have
measured the I/O time and calculated the I/O rate.

• Using the VPIC-IO benchmark, we have tested the scala-
bility of writing subfilies and compared I/O performance
with writing data to a single file. Both the subfiles and the
single file were written in the HDF5 format. We have used
BD-CATS-IO benchmark for reading the files written by
the VPIC-IO benchmark. (See §V-A)

• For tuning the subfiling factor, we ran the VPIC-IO
benchmark with 4K MPI processes and varied the number
of subfiles from 1 file to 4096 files. In these tests, we have
kept the striping parameter of Lustre constant. On Edison
‘scratch3’, we have used 36 OSTs and on ‘cscratch’, we
have used 128 OSTs – equal to the number of compute
nodes. On both file systems, we have set the stripe size
to be 32MB. (See §V-B1)

• For tuning the Lustre stripe settings, we have varied
the Lustre stripe count from 1 to 248 on ‘cscratch’
with 32MB stripe size, accessing from Edison and from
Cori. We have also compared the performance with
“default” Lustre stripe setting of 1 OST as stripe count
and 1MB as stripe size. (See §V-B2)

We have run each job at least three times and selected the
best performing instance to report the results in this section. As
performance I/O subsystems that are shared by all jobs running
on the system depends on interference due to communication
and I/O activity of other jobs, we consider selection of the best
performing instance represents the capability of the subfiling
feature as well as the performance of the file systems used in
this study.

A. Scalability of subfiling

1) Subfile write performance on Edison and Cori.: We have
evaluated performance of subfiling with VPIC-IO benchmark
writing data to ‘scartch3’ from Edison, to ‘cscratch’ from
both Edison and Cori, and to burst buffer from Cori. For all
these cases, we have compared performance of writing HDF5
subfiles with that of writing a single shared HDF5 file. On
Edison, we have run VPIC-IO using 1K, 2K, and 4K MPI
processes2 and on Cori, we have run the benchmark from 1K
to 16K, incrementing with multiples of two.

2K = 1024



In Figure 4, we compare the I/O time of VPIC-IO writing
a single file and multiple subfiles to ‘scratch3’ on Edison.
We observe up to 4X performance improvement with writing
subfiles. In these tests, we have kept the number of processes
writing a subfile, called subfiling factor, as 32. The observed
I/O rate (see Figure 5) is 67% of the peak I/O rate of the file
system (i.e., 75 GB/s) at 2K cores writing 512 GB data.

In Figure 6, we compare the IO rate of writing data to
‘cscratch’ file system from Edison. Compared with writing a
single file, subfiling feature achieves an average of 4X perfor-
mance improvement. With 4K process case, the performance
improvement is 6.5X. As shown in Figure 7, for the same file
system, writing subfiles from Cori’s Haswell nodes achieve
10% to 20% performance improvement compared to that of
writing a single shared file up to 8K cores. At 16K-process
scale, we observe 60% improvement with the subfiling feature.
The contrast between performance improvement of subfiling
performed on Edison and on Cori may be due to the network
links to the ‘cscratch’ file system.
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Fig. 4. Observed I/O time with VPIC-IO writing a single shared file
(Original) and writing subfiles (Subfiling) at different scales on the Edison
scratch3 Lustre file system.
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and writing subfiles (Subfiling) at different scales on the Edison scratch3
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In Figure 8, we compare subfiling and single file writing
performance with VPIC-IO to the burst buffer on Cori, varying
the number of Haswell processes from 1K to 16K. Similar to
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Fig. 6. Observed I/O rate with VPIC-IO writing a single shared file (Original)
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writing ‘cscratch’ from Cori Haswell, subfiling performance
up to 8K processes is 10% to 20%. With 16K processes, the
performance of subfiling improves by 80%.

2) Subfile read performance on Edison: In Figure 9, we
show the performance of reading subfiles from ‘cscratch’ file
system from Edison nodes using the BD-CATS-IO benchmark.
We have shown performance of reading 10% of the data at
random locations and that of reading the entire data at different
scales. A limitation of current subfiling implementation is that
the number of processes and the subfiling factor have to be
the same as those of the job that wrote the files. We observe
the read performance is improving as the number of processes
increase.
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Fig. 9. Read rate of BD-CATS benchmark reading subfiles at different scales
from the global cscratch file system, from the Edison system. The first bar is
the performance of reading 10% of the particles at random locations, and the
second bar is that of reading all the particles.

B. Tuning subfiling

1) Number of subfiles: In Figure 10, we demonstrate that
the subfiling factor has a significant impact on the I/O rate
in writing data from Edison to ‘scratch3’. We have used
4K MPI processes in this evaluation. We show the I/O rate
achieved with different subfiling factors and the average I/O
rate. This plot reveals that using small as well as large subfiling
factors, i.e., writing too many or too few subfiles, respectively,
performs poorly. We observe that using subfiling factors of
8 to 1024, for a 4K processes achieves above average I/O
performance, and using 8, 16, or 32 as subfiling factor obtains
the best performance.

In figures 11 and 12, we show the impact of varying
subfiling factors writing data from Edison and Cori to the
‘cscratch’ file system, respectively. While writing a large
number of subfiles does not impact performance significantly
on this file system, writing a small number of files have a
severe impact on performance. Using a subfile factor of 8 to
32 obtained the superior performance compared to the other
value for this configuration. Performance of writing different
numbers of subfiles to the burst buffer on Cori (Figure 13) has
mostly similar behavior as that of writing from Cori nodes to
‘cscratch’. The main deviation from the trend is that writing
large number of files, i.e., subfiling factors of 1, 2, and 4 obtain

similar performance as that of the factors equal to 8 to 128.
The I/O rate degrades with writing smaller numbers of subfiles
as expected.
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Fig. 10. Observed I/O rate with VPIC-IO writing different numbers of
subfiles with 4K processes on Edison to the scratch3 Lustre file system.
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Fig. 11. Observed I/O rate with VPIC-IO writing different numbers of
subfiles with 4K processes on Edison to the Global cscratch file system.

2) Storage layout tuning: In order to find an optimal
number of Lustre stripe configuration for subfiles, we have
measured performance of writing 32 subfiles from 4K MPI
processes. We have varied the stripe count used on ‘cscratch’
from 1 to 248. Up to 128, we have incremented the count
by multiples of two. We have set the stripe size to be 32MB
as each process is writing that amount of data pertaining to
8∗1024∗1024 particles. We have also compared the perfor-
mance with default stripe setting, which is equal to a stripe
count of 1 and a stripe size of 1MB.

Figure 14 shows the I/O rate with varying stripe counts
on ‘cscratch’ for data generated on Edison nodes. Figure 15
shows the same performance for the data generated on Cori
Haswell nodes. In both cases, default Lustre settings obtain
poor performance. This is obvious because the small stripe
size requires more I/O requests from each process and serving
larger number of requests results in poor performance. While
there was no clear consensus on selecting the number of OSTs,
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Fig. 12. Observed I/O rate with VPIC-IO writing different numbers of
subfiles with 4K processes on Cori Haswell partition, to the Global cscratch
file system.
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Fig. 13. Observed I/O rate with VPIC-IO writing different numbers of
subfiles with 4K processes on Cori Haswell partition, to the burst buffer file
system.

using 8, 16, 32, and 64 OSTs have similar performance.
In Figure 16, we have explored the stripe settings of

‘cscratch’ further by measuring the I/O rate of writing 64
subfiles from 16K MPI processes on Cori Haswell partition.
As mentioned above, we have set the stripe size to be 32MB
as each process is writing that amount of data pertaining to
8∗1024∗1024 particles. The default stripe settings use 1 OST
with 1MB stripe size. The total amount of data written by
VPIC-IO is equal to 4096GB and the number of subfiles with
64 processes writing to a subfile is 256. Each subfile is of size
16GB. When writing with 16K cores, higher stripe count was
beneficial. With 64 and 128 OSTs, we have observed the best
I/O rate.

VI. CONCLUSIONS

In this paper, we have described the current implementation
of the subfiling feature in HDF5. Our evaluation on three
file systems shows an I/O performance improvement of up
to 6.5X with subfiling. We have also analyzed performance
sensitivity of the feature with choices for the number of
subfiles and the number of Lustre stripe counts. Based on our
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Fig. 14. Observed I/O rate with VPIC-IO writing 32 subfiles with 4K
processes from Edison to the ‘cscratch’ file system. The file system has 248
OSTs.
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Fig. 15. Observed I/O rate with VPIC-IO writing 32 subfiles with 4K
processes from Cori Haswell partition to the ‘cscratch’ file system..
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Fig. 16. Observed I/O rate with VPIC-IO writing 64 subfiles with 16K
processes from Cori Haswell partition to the ‘cscratch’ file system.



observations, we summarize the following recommendations
and report the limitations of using the feature.

A. Recommendations

• The main goal of subfiling is to have fewer number of
files to be dealt with. To achieve that goal, we suggest
setting the subfiling factor of 8 to 64, which obtains good
I/O performance as well as fewer files to manage.

• We suggest setting the stripe size to be 8 or 16 on Cori’s
‘cscratch’ file system to obtain good I/O performance at
smaller scales, such as 4K processes. At larger scales,
such as 16K cores, we have observed that striping the
subfiles on larger number of OSTs obtains better write
performance.

B. Limitations

We have observed the following limitations in the current
implementation of the subfiling feature, which requires HDF5
developers to work on resolving.

• Subfile datasets are always one-dimensional and use
contiguous storage.

• Using subfiling feature with 32K MPI processes failed
with the following error:
H5Fsuper.c:1083: H5F_super_dirty:
Assertion ‘f->shared->sblock’ failed.

• The limitation on the number of subfiles was observed to
vary with total number of MPI tasks, and successful runs
with 64 subfiles were observed up to 504 tasks on 21
nodes, yet failure occurs at higher task and node count.
The failure message in these instances:
Rank 664 [Mon Apr 24 18:30:14 2017]
[c00c1s9n0] Fatal error in PMPI_Bcast:
Invalid root,
error stack:
PMPI_Bcast(1614): MPI_Bcast
(buf=0x7fffffff5ab8, count=1, MPI_INT,
root=1389571432,comm=0xc4000002) failed
PMPI_Bcast(1576):
Invalid root (value given was 1389571432)

• Failure was observed for region sizes of 2GB or greater.
• The number of reader processes and the subfiling factor

have to match those used for writing the files. Supporting
arbitrary number of reader processes and subfiling factors
is beneficial.
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