
Experiences running different work load managers across Cray Platforms

Haripriya Ayyalasomayajula
Cray Inc.

901 Fifth Avenue, Suite 1000
Seattle, WA 98164

hayyalasom@cray.com

Karlon West
Cray Inc.

6011 W, Courtyard Dr #200
Austin, TX 78730
karlon@cray.com

Abstract—Workload management is a challenging problem,
both in analytics and in High Performance Computing. The
desire is to have efficient platform utilization while still meeting
scalability and scheduling requirements. Slurm and Moab/-
Torque are two commonly used workload managers that serve
both resource allocation and scheduling requirements on the
Cray® XC™ and Cray® CS™series supercomputers. Analytics
applications interact with a different set of workload managers
such as YARN or more recently, Apache Mesos, which is
the main resource manager for Cray® Urika-GX™. In this
paper, we describe our experiences using different workload
managers across Cray platforms (analytics and HPC). We
describe the characteristics and functioning of each of the
workload managers. We will compare the different workload
managers and specifically discuss the pros and cons of the HPC
schedulers vs. Mesos, and run a sample workflow on each of
the Cray platforms and illustrate resource allocation and job
scheduling.

Keywords-HPC, Analytics, Slurm, Moab/Torque, YARN,
Apache Mesos, Urika-GX, Cray CS and XC

I. INTRODUCTION

Workload management is a challenging problem both
in analytics and High Performance Computing (HPC).
Workload managers help to launch jobs on the under-
lying computing resources by providing resource man-
agement and scheduling. The desire is to achieve effi-
cient resource utilization while still meeting the scalability
and scheduling requirements. Traditional HPC applications
interact with workload managers such as Slurm [1] or
Moab [2]/Torque [3] for resource management and schedul-
ing. Analytics applications typically interact with a different
set of modern workload managers such as Apache Hadoop
YARN [4] or Apache Mesos [5] [6]. Several key differences
exist in the nature of the applications (HPC and analytics) as
well as the workload managers they interact with to launch
jobs.

At CUG2016 [7], we described our initial experiences of
running mixed workloads using Apache Mesos. As a follow
up, in this paper, we describe our experiences using different
workload managers across Cray platforms (analytics and
HPC). The goal of this paper is to highlight the differences
between the workload managers and discuss the pros and
cons of each of them.

By presenting a comparison between these workload man-
agers, we create a stage for gathering requirements for future
Cray architectures where we want to run both analytics and
HPC workloads on the same platform and while maintaining
the best of both worlds- HPC and analytics.

On CS and XC series supercomputers, we use Slurm or
Moab/Torque in an attempt to balance the goals of efficient
resource utilization, high scalability, and meeting scheduling
requirements. Apache Mesos is the main resource manager
for Urika-GX . Modern analytics workload managers such
as Apache Mesos provide great flexibility and extensibility.
The rest of the paper is organized as follows: In section
2, we provide a description of each of the three workload
managers: Slurm, Moab/Torque, Apache Mesos. In section
3, we describe our sample workflows and illustrate how these
are run on each of our machines. In section 4, we will
compare the different workload managers and specifically
discuss the pros and cons of the HPC schedulers vs Mesos.
Finally, we present our conclusion.

II. DESCRIPTION OF WORKLOAD MANAGERS

Resource management and scheduling are two separate
but related problems. By resource management we refer to
the negotiation of managed resources that are required for
running a job. Once the resources eligible to satisfy a job
are identified, scheduling is performed by allowing those
idle resources available to run a job to be reserved and that
job is launched. The jobs whose resources are not available
are enqueued (depending on the policy of the workload
manager), waiting for the required resources to be freed up
and scheduled on the compute resources guided by a certain
policy specific to the workload manager.

Workload managers for HPC style applications tradi-
tionally handle both resource allocation and scheduling.
Modern analytics resource managers such as Apache Mesos
operate differently. Mesos handles resource allocation while
delegating the scheduling decisions to the frameworks that
are registered with it. On our analytics platforms we have
different frameworks which interact with the resource man-
ager to get the resources. By framework, we refer to a
programming paradigm. Users write programs targeting a
specific framework. For example, Spark [8] and Hadoop [9]



are two different frameworks on Urika-GX. The programs
that users write when submitted to these frameworks are
referred to as jobs. Spark and Hadoop jobs can communicate
with each other using defined API’s but the jobs are launched
within the different frameworks. In the HPC world, jobs are
submitted to the workload manager queue. It is up to the
workload manager to handle both resource allocation and
scheduling of the job. By submitting a job, a user requests
for specific resources required to run the job. The workload
manager then grants the resources for the job and then
schedules the job on those resources.

Slurm and Moab/Torque are free, open source workload
managers for running HPC applications on, among others,
Cray Platforms. To launch HPC style applications, users
usually request a fixed allocation of physical nodes from
Slurm or Moab/Torque and then submit the jobs. The jobs
are queued and the sub-tasks of these jobs are launched
by Slurm or Moab/Torque on the nodes. These workload
managers also facilitate configuring communication among
sub-tasks, which is particularly useful for our HPC style
applications. Also, in most of the HPC applications, fault
tolerance is handled by the users in their programs.

A. Slurm

Slurm is a workload manager often used to support HPC
applications on Cray platforms. It provides both resource
allocation and scheduling for HPC applications. From an
HPC application perspective, Slurm is important primarily
because it knows how to configure communication among
the sub-tasks.

There is a central manager called ”slurmctld” which
monitors resources and execution of tasks. On each compute
node, a ”slurmd” daemon is running. This is responsible
for running the tasks of a job on the corresponding node.
The users grab an allocation of resources using the salloc
command. The jobs are then submitted using: srun. We can
see the status of all the jobs using the sinfo command.

B. Moab/Torque

Moab is a workload manager which provides scheduling
and facilitates management tasks. It offers job orchestration
and facilitiates enforcing site policies through its service
level agreement (SLA) features. It provides system diagnos-
tics and other essential statistics which help in understanding
the cluster utilization information. Moab supports batch and
interactive workloads and allows you to submit jobs that
should be run at specific times as well as long running
applications. It maintains complete accounting and auditing
records. It has been designed for providing higher resource
utilization. The Moab scheduler facilitates fair utilization
of compute resources by determining the details of job
launching specific to the cluster. It serves major scheduling
requirements by tracking the resources and providing the
resources to a job when requested. By doing this, it ensures

new jobs with resource requirements wait until the resources
are available.

Torque is the open source resource manager which inte-
grates with Moab.

C. Apache Mesos

Apache Mesos is the main resource manager for Urika-
GX. It is a distributed cluster and resource manager, which
uses two level scheduling. Mesos takes care of resource
allocation, keeping its core simple. It delegates the schedul-
ing decisions to the frameworks registered with it, thereby
allowing each framework to address its own scheduling
needs.

Mesos offers rich Application Programming Interfaces
(APIs) through which users can write new frameworks and
port them easily on the same platform alongside the existing
applications. Frameworks take charge of negotiating re-
sources with Mesos and scheduling the jobs, fault tolerance
etc. Users can focus on developing rich applications and not
worry about resource allocation and other low level details.

Mesos provides the necessary functionality to allow
Urika-GX to share system resources between the three
diverse frameworks. Frameworks on Mesos are diverse and
have different scheduling needs. The scheduling needs are
often based on the design goals of the framework. For
example, some analytics frameworks want to provide data
locality. In such case, the framework scheduler choses to
schedule compute tasks on the nodes with relevant data.
The way the frameworks address fault tolerance and high
availability could differ too. Having multiple frameworks
on one common platform means sharing the underlying
compute resources for launching jobs of different kinds
of frameworks. Since different frameworks have unique
scheduling requirements, it is difficult to serve the needs of
all of them through a centralized scheduler. Even if we chose
to implement one, it would not be scalable for the needs
of future frameworks. Apache Mesos does not implement
a centralized scheduler. Instead, it delegates the scheduling
decision to frameworks. Mesos has a distributed two-level
scheduling mechanism called resource offers. It encapsulates
a bundle of resources that can be allocated to a framework
on a cluster node to run tasks into resource offers.

Figure 1 shows the Mesos resource offer mechanism.
Mesos decides how many resources to offer to each frame-
work based on an organizational policy. The frameworks
decide which resources to accept and which job to run on
them. The task scheduling and execution decisions are left
to the framework. Each framework implements a scheduler
of its own. This enables the framework to implement diverse
solutions to various problems in the cluster example: data
locality and fault tolerance which can evolve independently.
While the decentralized scheduling model is not always the
globally optimal solution, it is efficient to support diverse
workloads.



Resource 

Offer 

Resource Offer 

Figure 1: Mesos Resource Offer

Like many other distributed systems, Mesos has been
implemented in a master-worker pattern. Mesos consists of
Mesos Master, Mesos Agent, and Frameworks. There is one
Mesos agent/slave daemon that runs on each node of the
cluster. There is a Mesos master that manages agent/slave
daemons running on each cluster node. Frameworks that reg-
ister with Mesos run tasks on these agents. A resource offer
comprises a list of free resources on multiple agents. Frame-
works running on Mesos have two components: Scheduler,
a process that registers with master to be offered resources,
and Executor, a process that is launched on an agent node
to run the framework tasks.

III. DESCRIPTION OF WORKFLOWS

To illustrate an HPC workflow, we use an MPI application.
The data set we use for this has been generated from multi-
spectral images. The entries in the input file represent pixels
of the spectral images, where each pixel is represented by
the integer value of the class that it belongs to (a result of
segmentation and clustering). We use two files of different
sizes, one with 1024 rows, and other with 2048 rows and
these files reside on lustre. We use a sequential code for
an image processing algorithm which performs smoothing
operations on an image represented by our input file as
a starting point. An MPI application developed as part of
graduate coursework of one of the authors [10] is being
used here. The application parallelizes the original algorithm
using MPI using a 1-D block row-wise data distribution.
Further, smoothing is performed in an iterative fashion on
the cells. The goal of smoothing is to change the class that
a pixel has been assigned to, if a majority of neighboring
elements have a different class. For each pixel, the two
neighborhood pixels in each direction are analyzed and the
algorithm runs ten iterations. Ghost cells are used to perform
smoothing and these are continuously communicated be-
tween the various processes using MPI for every iteration of
smoothing. Once the smoothing is performed, the processes
write the smoothed pixel values back to the image.

To illustrate analytics workflow, a Pokemon dataset was
selected which includes 721 Pokemon. Each line consists

of the following fields: Id for each pokemon, name of
the pokemon, primary type of the pokemon, sum of the
existing pokemon statistics, hit points, base modifier for
normal attacks, base damage resistance against normal at-
tacks, special attack, base damage resistance against special
attacks, and speed which determines which pokemon attacks
first each round. For more details about the data set look at
https://www.kaggle.com/abcsds/pokemon. The data is stored
in csv format. We developed a few simple spark applications,
each of which perform simple operations on this dataset such
as ”list all the pokemons grouped by primary type”, ”list all
pokemons grouped by both primary and secondary type”,
and ”list all pokemons grouped by generation”.

A. Running the workflow on Apache Mesos

1) Running MPI application on Mesos: Marathon is a
framework in the Mesos ecosystem which supports long
running web services. At Cray, we leveraged Marathon
to launch HPC applications on Mesos. Cray developed a
Marathon Framework Application Launcher which does the
Aries setup required for PGAS/DMAPP [11] called ”mrun”.
mrun allows for more precise control of system resources,
and better ability to clean up error cases that may arise when
running HPC tasks.

Here, Marathon receives resource offers from Mesos.
When a user submits an mrun job, marathon accepts the
resources from Mesos and gives them to the mrun which
runs as a marathon application. From there, the HPC job
is scheduled as a regular marathon application utilizing the
resources it receives from Mesos. Initially, all resources for
each node will be allocated to mrun, and all nodes are
assumed to be homogeneous with equal core counts and
RAM. mrun will launch one setuid-root helper app on each
node, which will in turn initialize Aries communication as
needed, set core affinity for each helper process to spread
processes evenly between the sockets on each node as
desired, setuid() to the user and finally fork()/execvp() the
correct number of application instances per node. Once
the job finishes running, the helper process releases the
resources back to Mesos.

2) Running Spark application on Mesos: Spark appli-
cations are launched using the ”spark-submit” command.
When a Spark job is submitted, spark is registered as a
framework with Mesos. Mesos gives resource offers to all
the frameworks that are registered with it. When the spark
job receives resource offers from Mesos, Spark choses either
to accept or reject those resources. By default, even if spark
requests for more resources than the resource offer Mesos
provides, spark will accept the resource offer. The resources
are granted to spark. Spark then schedules the spark job on
the offered resources. This is shown in Figure 2. Once the
job finishes running, the resources are released by Spark
back to Mesos. This is shown in Figure 3.



Figure 2: Spark job launch

Figure 3: Spark releases resources after job launch back to
Mesos

B. Running the workflow on Slurm

1) Running HPC workflow on Slurm: salloc
The first step in launching a job on Slurm is to grab an

allocation. When the user invokes salloc for an HPC job,
the resource request is enqueued to slurmctld (the central
manager), and the user waits until the resource request
can be satisfied (or is timed out) at which time the user’s
prompt is returned, and their shell is updated with various
environment variables describing the resources slurm has set
aside for use. In Figure 4, the user has asked for 4 free CPU
cores and will be limited to using no more than those 4
cores for the duration of this salloc request. Slurm will likely
satisfy this request with a single multi-core node, but if the
compute environment contained some single or dual-core
CPU nodes (unlikely in any Cray XC system), then slurm
would be free to allocate two dual-core nodes, 4 single-core
nodes, or 1 dual-core and two single core nodes.

The job is launched using srun. When the user invokes
srun after an salloc, srun communicates to slurmctld and
requests are sent to slurmd daemons running on the compute
nodes to configure the Aries network across the nodes
reserved, and to fork/exec the correct number of instances of
the application on each node requested. When the applica-
tion finishes, slurm will clean-up its internal Aries network
maps and return the user to their prompt, still within the
original salloc environment. Only when the user exits from
the salloc shell are the resources released back to slurm.

2) Running Spark application on Slurm: Shifter images
are used to run Spark on slurm. Shifter images are spun

up using salloc which in turn spins up a standalone spark
cluster in the allocation received. The user runs spark-submit
as in the case of Mesos, except now, it operates within the
spark stand alone resource manager.

IV. COMPARISON OF DIFFERENT WORKLOAD MANAGERS

There is a fundamental difference in how these workload
managers are designed to perform resource allocation and
scheduling. HPC workload managers expect the jobs to
request resources and then grant the resources for the jobs
based on the current resource availability. In contrast, Mesos
keeps offering resources to the frameworks registered with
it and leaves it to the frameworks either to accept or reject
the resource offers.

Due to the resource offer model, Apache Mesos provides
better resource utilization. We illustrate this by running a
simple experiment on our platforms.

Multiple jobs are submitted to a platform with slurm as
the main resource manager. For this purpose, an XC system
with 171 nodes is utilized, see in Figure 5. Several analytics
jobs are started on the XC system and keeps the systems
fully busy. This is shown in Figure 6.

After recording that no resources are available, an analyt-
ics application is submitted to the slurm queue by explictly
requesting twenty nodes. Since there are no nodes available
currently, note that the job is waiting there for resources to
be available. Seven nodes are then freed up.

This is shown in Figure 7. Note the status of the analytics
application just submitted. Though seven nodes are idle,
observe that the application is still waiting for resources.
Next, submit the MPI application requesting for twenty five
nodes. sinfo shows that along with the analytics image, the
MPI application is also waiting for resources, though there
are seven nodes that are idle. This is shown in Figure 8. The
resource requirements of each of these applications cannot
be met by the current resource availability of Slurm and they
continue to wait in the queue until the minimum resource
requirements are met.

Multiple jobs are submitted to a platform with Mesos
as the main resource manager. A Urika-GX system with
41 compute nodes is utilized for this. This is shown in
Figure 9a. Forty one jobs are submitted to the system. All
nodes are utilized and the system is busy. A snapshot of
the system resource availability is taken. This is shown
in Figure 11. Submit a spark job explicitly requesting for
128 cores by using –total-executor-cores flag and observe
the behavior. The spark job continues to wait for resources
infinitely. Free up one node and note available resources.
This is shown in Figure 9b. Look at the current resource
statistics and observe that only 36 cores are available. This is
less that what was requested explicitly for the job. Due to the
resource offer model, even if mesos offers less resources than
that is originally available, Spark can accept resources less
than the original requirement, and schedules its job. Once



Figure 4: Resources being allocated by Slurm using the salloc command

Figure 5: Idle XC system, all resources available

Figure 6: Busy XC system, no resources available

Figure 7: XC system with 7 idle nodes

this job completes, the user submits multiple jobs which
run in the background when the same set of resources are
available (36 cores). It is observed that all the jobs finish
running one after the other. This is shown in Figure 10.

It is observed that, due to the resource offer model of
Mesos, better resource utilization is achieved, while in slurm,
though there are some nodes idle, if the resource requirement
is not met, the jobs are still waiting in the queue while the
platform is not fully utilized. Further, Mesos does not have
a global queue. Each framework has its own scheduler. The
main advantage to this is that, for future frameworks with
diverse scheduling needs, it will be easier to port it to Mesos.
However, it comes with a downside that, a fair scheduler
across all frameworks is not available, which we are used
to in the HPC world.

HPC workload managers facilitate Aries network setup
which makes it easy to launch HPC applications. While this
is not a built in option with Mesos, in order to facilitate
running HPC workloads on on analytics platforms, with
significant development effort, Cray developed mrun which

uses Marathon to negotiate resources from Mesos. Similarly,
on our XC platform, we use the shifter container technology
to launch analytics workloads on the same platform.

V. CONCLUSION

We discussed our experiences using different workload
managers across Cray platforms (analytics and HPC) in
this paper. Different workload managers were described,
launching both analytics and HPC workloads on Slurm and
Mesos, using two sample workflows was also described.
The main differences between these workload managers
were highlighted. Using some simple experiments, it was
demonstrated that with the resource offers model of Mesos,
better resource utilization can be achieved as compared
to Slurm. Further, the downside to using the open source
version of Apache Mesos in its current state is that the
user misses out on having a global queue and a fair share
scheduler which are offered by Slurm. While the resource
offer model is different from the traditional way workload
managers work(jobs request for resources from workload



Figure 8: Jobs waiting in slurm queue though seven nodes are idle

managers), Mesos has its own advantages such as better
resource utilization and an ability to support diverse frame-
works with different scheduling requirements on the same
platform. As future platforms are considered, work on trying
to simulate the missing features of each of these worklaod
managers in the other such as trying to add global queue to
Mesos should begin. This way, the best of both the worlds
could be achieved, having efficient resource utilization as
well as fair share scheduling.

ACKNOWLEDGMENTS

The authors would like to thank Kristyn Maschhoff for
her ideas which served as the starting point for putting this
paper together. We would like to thank Mike Ringenburg
for coaching us, reviewing the paper and also help in
brainstorming the use cases to illustrate the comparison
of different workload managers. We thank our team for
providing useful feedback and comments.

REFERENCES

[1] “Slurm Workload Manager,” https://slurm.schedmd.com.

[2] “Adaptive Computing Moab,”
http://www.adaptivecomputing.com/products/hpc-
products/moabhpcbasicedition/.

[3] “Adaptive Computing Torque,”
http://www.adaptivecomputing.com/products/open-
source/torque/.

[4] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed,
and E. Baldeschwieler, “Apache hadoop yarn: Yet another
resource negotiator,” in Proceedings of the 4th Annual
Symposium on Cloud Computing, ser. SOCC ’13. New
York, NY, USA: ACM, 2013, pp. 5:1–5:16. [Online].
Available: http://doi.acm.org/10.1145/2523616.2523633

[5] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica, “Mesos: A
platform for fine-grained resource sharing in the data
center,” in Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation, ser.
NSDI’11. Berkeley, CA, USA: USENIX Association, 2011,
pp. 295–308. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1972457.1972488

[6] “Apache Mesos,” http://mesos.apache.org/.

[7] H. Ayyalasomayajula and K. Maschhoff, “Experiences Run-
ning Mixed Workloads on Cray Analytics Platforms,” in Cray
User Group Conference (CUG ’16), London, UK, 2016.

[8] “Spark Lightning-fast cluster computing,”
http://spark.apache.org.

[9] “Apache Hadoop,” http://hadoop.apache.org/.

[10] E. Gabriel, S. Shah, and H. Ayyalasomayajula,
“Parallel Computations Graduate Course Fall 2013,”
http://www2.cs.uh.edu/g̃abriel/courses/cosc6374 f13/ParCo 09 hw1.pdf.

[11] T. Johnson, “Coarray C++,” in 7th International Conference
on PGAS Programming ModelsCray User Group Conference,
Edinburgh, Scotland, 2013.



(a) Idle Urika-GX system, all resources available
(b) Only one node resources available



Figure 10: Running multiple spark jobs when only one node is idle



Figure 11: Busy Urika-GX system, no resources available


