
Experiences Running Different Workload
Managers on Cray Platforms
Haripriya Ayyalasomayajula
Karlon West

Agenda

● Purpose
● Value
●  Introduction
● Workload Managers
● Workflows
● Comparison of workload managers
● Summary
● Q&A

CUG 2017 Copyright 2017 Cray Inc.
2

Purpose

● Workload managers
●  Help to launch jobs on underlying resources
●  Provide

●  Resource Management
●  Scheduling

● Goals
●  Achieve efficient resource utilization while still meeting scalability

and scheduling requirements

CUG 2017 Copyright 2017 Cray Inc.
3

Value

●  Important to understand the differences in the nature
of workload managers

● Gathering requirements for future Cray architectures
●  Run both Analytics and HPC workloads on the same platform
●  What features do we want?
●  How can we get them?

CUG 2017 Copyright 2017 Cray Inc.
4

Workload management

● Resource management
●  Negotiation of managed resources that are required for running a job

● Scheduling
●  Policy by which tasks of a job are launched on the allocated resources

CUG 2017 Copyright 2017 Cray Inc.
5

Workload managers on Cray Platforms

 Urika-GXTM

 Main Resource Manager: Apache MesosTM

CUG 2017 Copyright 2017 Cray Inc.
6

Workload Managers on Cray Platforms

CUG 2017 Copyright 2017 Cray Inc.
7

Workload Managers: SlurmTM, MoabTM/TorqueTM

HPC workload managers

CUG 2017 Copyright 2017 Cray Inc.
8

Slurm

●  Slurm knows how to configure communication among the
sub-tasks
●  Important for HPC applications

●  Anatomy:
●  Daemons:

●  slurmctld: Central manager, monitors resources and execution of tasks
●  slurmd daemon: Runs on every compute node, responsible for running the

tasks of a job on the corresponding node
●  Useful commands:

●  salloc command: Users grab an allocation of resources
●  srun command: Jobs are submitted
●  sinfo command: We can see the status of all the jobs

CUG 2017 Copyright 2017 Cray Inc.
9

Moab/Torque

● Moab
●  Provides scheduling
●  Facilitates management tasks
●  Offers job orchestration
●  Facilitates enforcing site policies through its service level

agreement (SLA) features
●  Supports batch and interactive workloads

●  Torque: open source resource manager which
integrates with Moab.

CUG 2017 Copyright 2017 Cray Inc.
10

Apache Mesos

● Main resource manager for Urika-GX
●  Two level scheduling policy

●  Handles resource allocation
●  Framework

●  Programming paradigm and tools built around it
●  Register with Mesos
●  Responsible for scheduling, fault tolerance
●  Ex: Spark, Marathon
●  Each framework will address its own scheduling needs

CUG 2017 Copyright 2017 Cray Inc.
11

Mesos Resource Offers

●  Mesos gives resource offers to frameworks registered with it
●  Marathon is a pre-registered framework on Mesos in Urika-GX
●  Every spark application registers as a new framework on Mesos

●  Every framework performs offer matching
●  Each framework implements its own logic to perform offer matching

●  Available: default resources or resources specified by user
●  Compares this with resources in offer
●  If they match, accept resource offer
●  If not, reject the resource offer and wait

●  By default, spark looks for “some” match of resources
●  Grabs the resource offer, even if it is less than the resources requested by

user

CUG 2017 Copyright 2017 Cray Inc.
12

Mesos giving resource offers to registered
frameworks

CUG 2017 Copyright 2017 Cray Inc.
13

Resource offer matching

Framework
registers with

Mesos

Receive
resource offer
from Mesos

Offer Matching

Schedule job on
resources

Send reject
resource offer to

Mesos
Match

Send accept
resource offer to

Mesos

CUG 2017 Copyright 2017 Cray Inc.
14

Description of Worklows
HPC Workflow

● Dataset:
●  Generated from multi-spectral images
●  The entries in the input file represent pixels of the spectral images

●  Each pixel is represented by the integer value of the class that it
belongs to (a result of segmentation and clustering)

●  Two files of different sizes: one with 1024 rows, and other with
2048 rows

CUG 2017 Copyright 2017 Cray Inc.
15

●  The application parallelizes the original algorithm
using MPI using a 1-D block row-wise data distribution.
●  Performs smoothing operation in an iterative fashion on the cells
●  The goal of smoothing is to change the class that a pixel has been

assigned to, if a majority of neighboring elements have a different
class

●  For each pixel, the two neighborhood pixels in each direction are
analyzed and the algorithm runs ten iterations

CUG 2017 Copyright 2017 Cray Inc.
16

Analytics workflow

CUG 2017 Copyright 2017 Cray Inc.

●  Pokemon dataset:
●  721 Pokemon (csv format)
●  Each line consists of:

●  Id for each pokemon, Name of the pokemon,
Primary type of the pokemon, Sum of the existing
pokemon statistics, Hit points, base modifier for
normal attacks, base damage resistance against
normal attacks, special attack, base damage
resistance against special attacks, and speed
which determines which pokemon attacks first
each round

●  Few simple spark applications
●  List all the pokemons grouped by primary type
●  List all pokemons grouped by both primary and

secondary type
●  List all pokemons grouped by generation

17

Running the workflows on different workload
managers

● Running the workflow on Apache Mesos
●  HPC
●  Analytics

CUG 2017 Copyright 2017 Cray Inc.
18

HPC workflow on Mesos

● Marathon
●  Framework in the Mesos ecosystem
●  Supports long running web services

● Cray developed a Marathon Framework Application
Launcher called “mrun”
●  Configures the Aries setup required for PGAS/DMAPP

●  “mrun” allows
●  More precise control of system resources
●  Better ability to clean up error cases that may arise when running

HPC tasks

CUG 2017 Copyright 2017 Cray Inc.
19

● Marathon receives resource offers from Mesos
● When a user submits an mrun job, Marathon

●  Accepts the resources from Mesos
●  Gives them to the mrun which runs as a marathon application

●  From there, the HPC job is scheduled as a regular
marathon application utilizing the resources it receives
from Mesos

CUG 2017 Copyright 2017 Cray Inc.
20

HPC workflow on Mesos

CUG 2017 Copyright 2017 Cray Inc.
21

Analytics workflow on Mesos

●  Spark applications are launched using the spark-submit
command

●  Mesos gives resource offers to the current Spark
application
●  Spark choses either to accept or reject those resources
●  The resources are granted to spark
●  Spark then schedules the spark job on the offered resources
●  Once the job finishes running, the resources are released by Spark

back to Mesos
●  Users can configure parameters to say what and how spark

can accept resources

CUG 2017 Copyright 2017 Cray Inc.
22

Analytics workflow on Mesos

CUG 2017 Copyright 2017 Cray Inc.
23

Running the workflow on different workload
managers

● Running the workflow on Slurm
●  HPC
●  Analytics

CUG 2017 Copyright 2017 Cray Inc.
24

HPC workflow on Slurm

●  Step 1: Grab an allocation using salloc
●  The resource request is enqueued to slurmctld (the central manager)
●  User waits until the resource request can be satisfied (or is timed out) at

which time the user’s prompt is returned
●  Step 2: Launch job using srun

●  srun communicates to slurmctld
●  Requests are sent to slurmd daemons running on the compute nodes to

configure the Aries network across the nodes reserved
●  Fork/exec the correct number of instances of the application on each node

requested
●  When the application finishes, slurm will clean-up its internal Aries network

maps and return the user to their prompt, still within the original salloc
environment

●  Only when the user exits from the salloc shell are the resources released
back to slurm

CUG 2017 Copyright 2017 Cray Inc.
25

HPC workflow on Slurm

CUG 2017 Copyright 2017 Cray Inc.
26

Analytics workflow on Slurm

● Shifter images are used to run Spark on slurm
● Shifter images are spun up using salloc

●  We spin up a virtual standalone spark cluster in the allocation
received

●  We run the spark stand alone cluster manager
●  This allows us to run spark jobs
●  Support for submitting jobs in batch style, interactive shell
●  Spark over shifter uses TCP/IP for communication over Aries

interconnect

CUG 2017 Copyright 2017 Cray Inc.
27

Comparison of workload managers

●  Platform with “n” nodes is used
●  Multiple jobs are submitted such that the system is fully busy
●  Record that no resources are available
●  Submit a new job to the queue by explicitly requesting x nodes.
●  Observe the behavior

●  Since there are no nodes available currently, note that the job is waiting there
for resources to be available

●  Free up y nodes (y <x)
●  The number of nodes available now are less that the number of nodes

requested by the job
●  Observe the behavior

CUG 2017 Copyright 2017 Cray Inc.
28

What happened on Mesos?

● Due to the resource offer model, frameworks have a
flexibility to accept resources though it does not
satisfy its exact requirement

●  Though (number of resources available) < (number of
resources requested), the applications accepted the
available resources anyway

● Efficient resource utilization!

CUG 2017 Copyright 2017 Cray Inc.
29

Urika-GX system with all resources available

CUG 2017 Copyright 2017 Cray Inc.
30

Urika-GX system with no resources available

CUG 2017 Copyright 2017 Cray Inc.
31

Urika-GX system with only one node available

CUG 2017 Copyright 2017 Cray Inc.
32

CUG 2017 Copyright 2017 Cray Inc.
33

What happened on Slurm?

● Strict resource requirements specified when job is
submitted

●  Jobs sit there waiting in the queue for the exact
resources to be available

 Compared to Mesos, lower resource utilization is seen

CUG 2017 Copyright 2017 Cray Inc.
34

XC system with all resources available

CUG 2017 Copyright 2017 Cray Inc.
35

XC system with no resources available

CUG 2017 Copyright 2017 Cray Inc.
36

XC system with only seven nodes available

CUG 2017 Copyright 2017 Cray Inc.
37

Jobs waiting in the queue though there are seven
nodes available

CUG 2017 Copyright 2017 Cray Inc.
38

Pros and Cons of the workload managers
Apache Mesos Slurm

Resource Utilization With its resource offer
model, achieves efficient
resource utilization for
flexible/elastic workloads

Originally designed for
HPC workloads which
have strict resource
requirements. Not the
best option for elastic
workloads like analytics
style applications.

Queue support Missing in current open
source Mesos.
Enterprise DCOS offers
these (not open source).

Fair share scheduler,
global queue support
available

Flexibility Use marathon to develop
marathon launcher for
HPC jobs

Use shifter containers to
launch analytics
workloads

CUG 2017 Copyright 2017 Cray Inc.
39

Summary

●  Discussed our experiences
●  How we launch both analytics and HPC workloads on Slurm and

Mesos
●  Highlighted main differences

●  Resource offers model of Mesos helps us achieve better
resource utilization as compared to Slurm

●  Actively exploring alternatives to Mesos to overcome its
limitations

●  Desire:
●  Efficient resource utilization
●  Fair share scheduling

CUG 2017 Copyright 2017 Cray Inc.
40

More details in the original paper

● Experiences running different work load managers across
Cray Platforms

CUG 2017 Copyright 2017 Cray Inc.
41

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual
property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release.
Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any
use of Cray Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance
of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may
affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design,
SONEXION, and URIKA. The following are trademarks of Cray Inc.: APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT,
CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, REVEAL, THREADSTORM. The following system family marks, and associated
model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other
trademarks used in this document are the property of their respective owners.

CUG 2017 Copyright 2017 Cray Inc.
42

CUG 2017 Copyright 2017 Cray Inc.
43

 Q&A

 Haripriya Ayyalasomayajula
 hayyalasom@cray.com

 Karlon West
 karlon@cray.com

