A High Performance SVD Solver on Manycore Systems

Dalal Sukkari¹, <u>Hatem Ltaief¹</u>, Aniello Esposito², and David Keyes¹

¹KAUST Extreme Computing Research Center ²Cray EMEA Research Lab

> Cray User Group Meeting Redmond, WA USA

- 2 QDWH Algorithm
- Implementation Details
 - Performance results
- 6 Application to SVD
- 6 Related Work

Problem statement

- 2 QDWH Algorithm
- 3) Implementation Details
- Performance results
- **5** Application to SVD
- 6 Related Work
 - Conclusion and Future Work

Main Component: Polar Decomposition

• The polar decomposition:

$$A = U_p H$$
, $A \in \mathbb{R}^{m \times n} (m \ge n)$

where, U_p is an orthogonal matrix and $H = \sqrt{A^T A}$ is a symmetric positive semidefinite matrix

• Directly, using the singular value decomposition (SVD):

$$A = U\Sigma V^{\top} = (UV^{\top})(V\Sigma V^{\top}) = U_p H$$

• Iteratively, using the inverse free QR dynamically-weighted Hally iteration (QDWH)

Application to EIG/SVD

- The polar decomposition is a critical numerical algorithm for various applications, including aerospace computations, chemistry, factor analysis
- The polar decomposition can be used as pre-processing step toward calculating the SVD

$$A = U_p H = U_p (V \Sigma V^{\top}) = (U_p V) \Sigma V^{\top} = U \Sigma V^{\top}$$

• The polar decomposition can be used as pre-processing step toward calculating the EVD $A = V\Lambda V^{\top}$, $V = [V_1V_2]$ $A = U_pH$, then

$$U_{p} + I = \begin{bmatrix} V_{1} & V_{2} \end{bmatrix} \begin{bmatrix} I_{k} & \mathbf{0} \\ \mathbf{0} & -I_{n-k} \end{bmatrix} \begin{bmatrix} V_{1} & V_{2} \end{bmatrix}^{*} + I$$
$$= \begin{bmatrix} V_{1} & V_{2} \end{bmatrix} \begin{bmatrix} I_{k} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} V_{1} & V_{2} \end{bmatrix}^{*}$$
$$= 2V_{1}V_{1}^{*}$$

Problem statement

QDWH Algorithm

- Implementation Details
- Performance results
- **5** Application to SVD
- 6 Related Work
 - Conclusion and Future Work

Polar Decomposition (QDWH)

$$A = U_p H$$

where, $U_p U_p^{\top} = I_n$, H is symmetric positive semidefinite

- Backward stable algorithm for computing the polar decomposition
- ► Based on conventional computational kernels, i.e., Cholesky/QR factorizations (≤ 6 iterations for double precision) and GEMM
- ► The total flop count for QDWH depends on the condition number of the matrix κ :

κ	1	10^{16}
flops	$(10 + \frac{2}{3})n^3$	$43n^3$

Polar Decomposition QDWH (cont'd)

The QDWH iteration is:

$$X_{0} = A/\alpha, \begin{bmatrix} \sqrt{c_{k}}X_{k} \\ I \end{bmatrix} = \begin{bmatrix} Q_{1} \\ Q_{2} \end{bmatrix} R, X_{k+1} = \frac{b_{k}}{c_{k}}X_{k} + \frac{1}{\sqrt{c_{k}}}\left(a_{k} - \frac{b_{k}}{c_{k}}\right)Q_{1}Q_{2}^{\top}, k \ge 0.$$
(1)

When, X_k becomes well-conditioned, it is possible to replace Equation 1 with a Cholesky-based implementation as follows:

$$X_{k+1} = \frac{b_k}{c_k} X_k + \left(a_k - \frac{b_k}{c_k}\right) (X_k W_k^{-1}) W_k^{-\top}, W_k = \text{chol}(Z_k), \ Z_k = I + c_k X_k^{\top} X_k.$$
(2)

Polar Decomposition QDWH (cont'd)

$$\begin{bmatrix} \sqrt{c_k} X_k \\ I \end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} R, \ X_{k+1} = \frac{b_k}{c_k} X_k + \frac{1}{\sqrt{c_k}} (a_k - \frac{b_k}{c_k}) Q_1 Q_2^{\mathsf{T}}$$
(3)

where,

$$\begin{aligned} a_k &= h(l_k), \ b_k = (a_k - 1)^2 / 4, \ c_k &= a_k + b_k - 1\\ \sigma(X_k) &= l_k = \frac{l_{k-1}(a_{k-1} + b_{k-1}l_{k-1}^2)}{1 + c_{k-1}l_{k-1}^2}, \ k = 1, 2, \dots\\ h(l) &= \sqrt{1 + d} + \frac{1}{2}\sqrt{8 - 4d} + \frac{8(2 - l^2)}{l^2\sqrt{1 + d}}, \ d = \sqrt[3]{\frac{4(1 - l^2)}{l^4}} \end{aligned}$$

The convergence of the iterate X_{k+1} to the polar factor is measured by the closeness of its singular values $\sigma_i(X_{k+1})$ to 1. Hence, the number of QDWH iterations for convergence is the first k such that $|1 - l_k| < 10^{-16}$. Ex: $l_0 = 10^{-16}$

#it	$a_{\#it}$	<i>b</i> # <i>it</i>	c _{#it}	$\sigma(X_{\#it})$
1	1.2×10^{11}	3.4×10^{21}	3.4×10^{21}	1.16×10^{-5}
2	4.5×10^{3}	5.9×10^{6}	5.8×10^{6}	0.057
3	17.09	64.7	80.8	0.78
4	3.4	1.4	3.8	0.89
5	3.0003	1.003	3.007	0.99
6	3	1	3	1.0

Problem statement

2 QDWH Algorithm

Implementation Details

- 4) Performance results
- 5 Application to SVD
- 6 Related Work
 - Conclusion and Future Work

We implement QDWH using the state-of-the-art vendor-optimized ScaLAPACK from the Cray Scientific library (libSCI):

- Relies on block algorithms, similar to LAPACK
- Employs the bulk synchronous programming model
- Uses 2D block cyclic data distribution to map the matrix data to the distributed-memory
- Relies on the Message Passing Interface (MPI) to exchange data within the grid of MPI processes

ScaLAPACK Block Algorithm:

- Panel-Update Sequence
- Transformations are blocked/accumulated within the Panel (Level 2 PBLAS)
- Transformations applied at once on the trailing submatrix (Level 3 PBLAS)
- Parallelism hidden inside the PBLAS

ScaLAPACK 101

Source: Short Course on the DOE ACTS Collection - SIAM CSE05 Conference Orlando, FL - February 11, 2005

Sukkari, Ltaief, Esposito and Keyes

ScaLAPACK 101

2D Block-Cyclic Data Distribution:

Processes Grid

A ₁₁	A ₁₂	A ₁₃	A ₁₄	A ₁₅
A ₂₁	A ₂₂	A ₂₃	A ₂₄	A ₂₅
A ₃₁	A ₃₂	A ₃₃	A ₃₄	A ₃₅
A ₄₁	A ₄₂	A ₄₃	A44	A45
A ₅₁	A ₅₂	A ₅₃	A ₅₄	Ass

Logical View (Matrix)

A ₁₁	A ₁₄	A ₁₂	A ₁₅	A ₁₃
A ₄₁	A44	A ₄₂	A ₄₅	A ₄₃
A ₂₁	A ₂₄	A ₂₂	A ₂₅	A ₂₃
A ₅₁	A ₅₄	A ₅₂	A55	A ₅₃
A ₃₁	A ₃₄	A ₃₂	A ₃₅	A ₃₃

Local View (CPUs)

Environment Settings

Software:

- Intel Compiler Suites v15.0.1.133
- Cray LibSci/13.2.0 ScaLAPACK library
- Square MPI process grid P=Q
- Block size nb = 64
- Ill and Well conditioned matrices generated using ScaLAPACK routine PDLATMS

Hardware: The Cray XC4O system codenamed *Piz Dora* installed at the Swiss National Supercomputing Centre (CSCS). *Piz Dora* has 1256 compute nodes, each node has:

- Two-sockets Intel Xeon E5-2690 v3 (Haswell)
- 12 cores each running at 2.60GHz
- 64GB of DDR3 main memory
- ullet The theoretical peak performance of the system is 1.254 Petaflops

- Problem statement
- 2 QDWH Algorithm
- Implementation Details

Performance results

- 5 Application to SVD
- 6 Related Work
 - Conclusion and Future Work

QDWH performance results in Tflop/s

QDWH performance results in Tflop/s

QDWH scalability assessment

QDWH scalability assessment

- Problem statement
- 2 QDWH Algorithm
- 3 Implementation Details
- Performance results
- 6 Application to SVD
 - 6 Related Work
 - Conclusion and Future Work

QDWH-based SVD

Algorithm 1 QDWH-SVD [1]

Compute the polar decomposition $A = U_p H$ via QDWH Compute the eigenvalue decomposition $H = V \Sigma V^{\top}$ Compute the right singular vectors $U = U_p V$ Hence the SVD $A = U \Sigma V^{\top}$

We used different eigensolvers to build QDWH-SVD:

- ► PDSYEVR ScaLAPACK eigensolver based on a 1-stage tridiagonal reduction and the MRRR eigensolver
- ► ELPA-EIG which combines a two-stage reduction with a divide-and-conquer eigensolver

¹Yuji Nakatsukasa, Nicholas J. Higham: Stable and Efficient Spectral Divide and Conquer Algorithms for the Symmetric Eigenvalue Decomposition and the SVD. SIAM J. Scientific Computing 35(3) (2013)

Sukkari, Ltaief, Esposito and Keyes

Orthogonality of U (similar to V)

Accuracy of Singular Values

Accuracy of SVD

Orthogonality of U (similar to V)

Accuracy of Singular Values

Accuracy of SVD

Performance comparison of SVD solvers in Time: 12x12

Performance comparison of SVD solvers in Time: 96x96

Profiling the Computational Stages of the ELPA-based QDWH-SVD: Well-Conditioned Matrix

Profiling the Computational Stages of the ELPA-based QDWH-SVD: Ill-Conditioned Matrix

QDWH Performance on Cray KNL-based Distributed-Memory System (quadrant/cache)

144 nodes, [P=64; Q=144], up to 8X speedup

Sukkari, Ltaief, Esposito and Keyes

QDWH-SVD on Manycore Systems

QDWH Performance on Shaheen-2 Cray XC 40

288 nodes, [P=64; Q=144], up to 3.5X speedup

QDWH-SVD Performance on Cray KNL-based Distributed-Memory System (quadrant/cache)

144 nodes, [P=64; Q=144], up to 4.3X speedup

Sukkari, Ltaief, Esposito and Keyes

QDWH-SVD on Manycore Systems

QDWH-SVD Performance on Shaheen-2 Cray XC 40

288 nodes, [P=64; Q=144], up to 1.8X speedup

- Problem statement
- 2 QDWH Algorithm
- Implementation Details
- Performance results
- **5** Application to SVD

6 Related Work

7 Conclusion and Future Work

- Higham and Papadimitriou (1994), matrix inversion QDWH, shared-memory systems
- Nakatsukasa et. al (2010), inverse-free QDWH, theoretical accuracy study
- Poulson et. al (2012), Elemental, distributed-memory system
- Nakatsukasa and Higham (2013), QDWH-EIG, QDWH-SVD, theoretical accuracy study
- Sukkari, Ltaief and Keyes (2016), QDWH-SVD, shared-memory system equipped with multiple GPUs

- Problem statement
- 2 QDWH Algorithm
- Implementation Details
- Performance results
- Application to SVD
- 6 Related Work

Conclusion and Future Work

- The performance analysis shows decent scalability running with around 9200 MPI processes on well and ill- conditioned matrices of 100K x 100K problem size
- The performance impact of using QDWH as a pre-processing step toward calculating the SVD achieves up to 4.3X speedup speedup against ScaLAPACK PDGESVD
- The numerical accuracy study highlights the robustness of QDWH-SVD over ScaLAPACK PDGESVD
- Bulk synchronization model
- Fork-join model
- Task-based asynchronous QDWH
- Implementation on shared and distributed memory
- Application to EVD and SVD

Thank you 🙂

