
Trust Separation on the Cray XC40 using PBS Pro

Sam Clarke
Met Office

Fitzroy Road
Exeter, UK

Email: sam.clarke@metoffice.gov.uk

Abstract—As the UK’s national weather agency, the Met
Office has a requirement to produce regular, timely weather
forecasts. As a major centre for climate and weather research,
it has a need to provide access to large-scale supercomputing
resources to users from within the organisation. It also provides
a supercomputer facility for academic partners inside the UK,
and to international collaborators. Each of these user categories
has a different set of availability requirements and requires a
different level of access.

This paper describes the steps taken to create an HPC
facility that separates these different requirements using soft
partitions created by the batch system. We detail our initial
experiences with cgroup containers and our use of custom PBS
hooks to partition the Lustre name space. We summarise some
of the problems observed during implementation, comment
on the scalability of the solution and outline possible future
enhancements.

Keywords-Scheduling; PBS Pro

I. INTRODUCTION

As a leading centre for weather and climate science re-
search, the Met Office supercomputer installation supports a
large scientific community. Much of this work is focused on
developing new features of the various geophysical models
used by the organisation for weather forecasting and climate
research.

In addition to research priority work, the Met Office also
has a requirement to run large, time-critical operational fore-
casts. Each forecast consists of a complex suite of dependent
jobs, many of which interact with external systems in order
to source observations and to transfer resultant forecasts to
customers.

The Met Office has strong links with a number of external
scientific organisations both nationally and internationally.
There are particularly strong links with the Natural Envi-
ronment Research Council (NERC), the non-governmental
body responsible for supporting environmental research in
the UK, and since 2009 the Met Office and NERC have
been involved in the MONSoonN project which involves
the provision of a series of dedicated supercomputers for
joint research partnership[1].

The Met Office also works with a number of other national
meteorological centres who have chosen to join the Unified
Model Partnership, using a shared model to support their
own forecasting and climate prediction services[2].

Each of these three separate categories of work — op-
erational forecasting, internal research, and external col-
laboration — requires a different set of features from the
supercomputer and needs a different level of access to both
the data held on the system and to other facilities within the
Office.

Given the overlap between these groups and the need to
dynamically change their relative shares of computational
resources, it is not practical to use static partitioning. This
is especially true where some research groups may have
a requirement to run large and short simulations to test
scalability while others need to run small but long-running
scientific studies.

In addition to the dedicated MONSooN facility, the Met
Office has two significant Cray XC40 systems dedicated
to operational weather forecasting, climate research, and
weather science. Access to these systems is restricted to
internal users. It has recently acquired a third Cray system
intended to replace the existing MONSooN hardware whilst
also supporting operational and research work on the same
system.

In order to maximise the flexibility of the new system the
Met Office has chosen to use a dynamic partitioning scheme
to divide the XCS system rather than rely on hardware
partitioning. This makes it possible to divide the entire 6,600
node Cray XC40 between the three different groups of users
mentioned above using the facilities provided by PBS Pro
and the Cray Linux Environment.

II. DESIGN DECISIONS

During the initial design phase, it became clear that the
standard Met Office system architecture used to configure
the existing XC40 systems contained a number of resources
which were shared by all users of the system. These included
the external login nodes, the Lustre file system, and all the
XC40 nodes.

The design analysis also revealed a number of common
software resources, such as the Unified Model code base,
which were required by a large number of users but which
had previously needed to be manually synchronised between
internal supercomputers and those used for collaboration. It
also indicated other areas, such as user account management,



where administrative effort was being duplicated between
internal and external systems.

Once these constraints had been identified, it became clear
that the shared resources would need to be separated into
different zones of trust based on their point of origin.

Users in the collaboration group, most of whom are based
outside the Met Office and who access the system via a
proxy from the internet, need the least level of trust. Their
level of file system access can be limited to their own
data areas and read-only access to the shared code base
directories. They should not have access to internal Met
Office systems.

Users in the research group, all of whom are based in the
Met Office and have direct access to the system, have access
to their own files, to those in the collaboration zone, and to
the shared code base. They are allowed limited access to
specific Met Office systems, such as the observations store,
required to allow them to pursue their research interests.

Users in the operational group, composed of an extremely
limited subset of Met Office users, only need access to
their own files. They have a need to be able to access
some internal systems, such as the observations store. They
also have a requirement to run jobs at particular times and
to ensure that competition for resources with other jobs,
including other operational jobs, cannot deny them access
to the resources they require.

III. IDENTIFICATION OF NODE ROLES

The Cray system is composed of four different types
of node directly visible to end users of the system. Of
these nodes only the external login nodes are accessed
interactively by the users; all other nodes, internal to the
XC40 mainframe, are accessed in batch.

A. External Login Nodes

Each of the existing Cray systems has been configured
with an active-active pair of external login nodes. These
provide general interactive user services and act as a point
of entry to the PBS batch system.

Having decided to divide the system into three separate
trust zones, the number of external login nodes connected
to the XCS was increased to six with two nodes per
zone. Each of these hosts all the users at a particular trust
level, providing a physical separation between processes at
different levels. Each category of external login is connected
to a specific network, with in- and out-bound access to each
of these networks restricted by firewall rules and routing
settings.

As all new PBS work must enter the system through one
of the external login nodes, these points of origin can be
used to identify the trust level of each job. And since the
point of origin is resolved on the PBS server and not the
client where the qsub command was run, it is not possible
for the user to change the apparent point of origin.

Since each pair of login nodes is statically assigned to a
particular trust zone, it is possible to configure the node with
the required bind mounts to the trust zone specific portions at
boot time once both Lustre file systems have been mounted.

B. XC40 MAMU Nodes

Much of the work run on the Met Office supercomputers
requires the ability to run serial jobs in parallel with compute
jobs. These serial tasks, which typically involve archiving,
file management, post-processing, and compilations, account
for the majority of the jobs run on the system. To support this
work, the XCS system has been configured with a hundred
MAMU nodes.1

On the existing internal systems, where all work is run
at the same trust level, the MAMU nodes are available to
all users. A small number of these nodes have been marked
with an operation resource to separate operational tasks from
general user work. There are no additional constraints on the
resources available to individual jobs on these nodes; rather
it is assumed that these jobs are well behaved and will not
exceed the CPU and memory resources they have requested
via PBS.

In order to implement trust levels, it is important to assign
work submitted at different levels to different groups of
nodes. It was also apparent that the current laissez faire
approach to resource management was not sustainable and
a stronger method was needed to ensure process separation.

As all MAMU nodes have access to the Aries high speed
network, it is important to limit communication between
them and other nodes in the system. This ensures that jobs
running on MAMU nodes at different trust levels cannot
communicate with each other in a way that might allow
them to bridge trust zones.

C. XC40 MOM Nodes

Each of the Cray systems installed at the Met Office has
been configured with 10 MOM nodes.2 These execute the
serial portions of the PBS job scripts and host the aprun
commands used to launch parallel executables on to the set
of compute nodes allocated to the job PBS.

As with the MAMU nodes, it is important to assign work
submitted at different levels of trust to a different group
of MOM nodes. Similarly it is important to prevent the
MOM nodes from communicating with nodes at different
trust levels across the network. Unlike the MAMU nodes, the
MOM nodes must be free to communicate with the compute
nodes in order to execute applications on the compute nodes.

1MAMU nodes are re-purposed compute nodes that have been booted
with a service node CLE image. The nodes are defined as serial in PBS by
setting the vntype resource to cray_serial

2These are re-purposed compute nodes booted with a service node image
and distinguished in PBS by a vntype of cray_login



D. XC40 Compute Nodes

When a job asks for compute nodes from PBS, the actual
request is satisfied by ALPS which returns a list of nodes
that the job is allowed to use. These nodes are allocated
exclusively to each job. This means that there is no need
to explicitly partition the compute nodes — which comprise
the vast bulk of the 6,600 nodes on the system — so they do
not need to be statically assigned to a particular trust zone.

When a compute node is assigned to a job at a particular
trust level, it must be reconfigured to allow access to the
correct file systems for the trust level. And whenever a job
completes, the trust-zone-specific file system bindings must
be removed and the compute node must be returned to its
original un-configured state ready for its next job.

IV. IMPLEMENTATION

The implementation of the trust zone model can be
divided up in to separate stages, with the first encompassing
the configuration of the user environment and Lustre, and the
next concerning the changes to the batch system required to
tailor each job and each job’s executing environment to its
requested trust zone.

A. User Set-up

Once the decision had been made to create three different
zones of trust, each supercomputer user was assigned to a
particular zone based on their usage of the existing systems.
Each user was assigned a secondary group which matched
their trust level. Where an internal Met Office user was
also involved in work on a MONSooN project, they were
assigned to both the research and the collaboration group.

Users within the collaboration zone were also allocated
to a group matching each of the research projects they
were involved with. This group allows them to place access
controls on shared project data. It can also be used by the
batch software to determine whether a user is allowed to
charge compute resources to a particular project.

Where users and groups had previously been defined using
static files on the small MONSooN system, a decision was
made to use LDAP to provide identification and authenti-
cation services on XCS. This was done using the SSSD
software on the XC40 and external nodes, and standard
LDAP features on the Sonexion storage.

B. Lustre File Systems

Both the MONSooN and XCS systems have been con-
figured with two Lustre file systems. The first of these file
systems is relatively small and is used to hold user home
directories and configuration files. The second file system is
much larger and is used to hold model output data. Much
of the model data is transient, with most of it transferred to
an external archive in parallel with each model run.

In order to separate the system into different trust levels, it
is necessary to prevent users at one level from accessing files

at another. Due to hardware constraints and for performance
reasons, it was necessary to achieve this separation without
the need to create additional file systems.

Lustre services on the system are provided by two Sonex-
ion 2000 appliances. These support the standard POSIX dis-
cretionary access controls but do not provide any mandatory
controls at the file system level which might be used to
prevent a file owner from exposing their data to users at dif-
ferent levels of trust. However, we found that by combining
standard discretionary controls with bind mounts, we were
able to create a facility which provided an approximation of
mandatory access controls.

In order to limit the visibility of the file systems, we first
created a set of directories for each trust level. The root of
each of these directory trees was given an extremely limited
set of permissions and ownership was set to the superuser.
This effectively prevents normal users from accessing any-
thing under the directory tree using the Lustre mount point.

Underneath each of the restricted directories, we created
a normal directory structure. For example, under the home
directory tree for the research trust zone, we created direc-
tories for each user with the necessary permissions to allow
them to access the contents as usual.

On both the Cray XC40 and the external nodes, we
mounted the Lustre file systems as normal. Depending on
the partitioning scheme and the node type, we then run a
series of mount commands to bind the restricted locations
in the file system to a user accessible directory.

For example, on an external login node which has been
marked as a member of the research trust zone, we might
bind /small/research/home to /home. The permis-
sions on the /home directory allow the user access to the
contents whilst also hiding the details of the trust zone
directory from the user. This has the added benefit of
providing the user with a consistent set of directory paths
regardless of the trust zone.

A similar method can be used to configure static bind-
ings on the user-accessible nodes of the XC40, such as
the MAMU and MOM nodes, where the trust zone of a
particular node is not likely to change.

Although the same method of bind mounts can be used
on the Cray compute nodes to provide access to a specific
sub-tree of the Lustre file system, these bindings cannot be
applied statically. Rather, an appropriate set of bind mounts
must be created on a set of nodes before PBS passes control
to a job and removed again when each job completes.

V. PBS IMPLEMENTATION

With the exception of the external login nodes, all access
to the Cray XC40 is via PBS Pro and this makes it possible
to delegate much of the implementation of the trust zone
model to the workload manager.

PBS contains a number of hook points which can be used
to trigger code at particular points in the job life cycle. These



can be used to modify each job as it is submitted to ensure
that its requested resources and attributes adhere to local site
policies, and to update the job as required. Hooks can also
be used to trigger events on the executing node prior to the
start of and immediately after each job, making it possible
to tailor the environment for a specific job.

A. Identification of Resources
The PBS server supports the creation of arbitrary string

resources. These can be used to assign a value to one or
more nodes and similar values can be requested by each
job as it is submitted. When these resources are added to
the PBS scheduler, they impose a constraint which prevents
jobs which have requested the resource from being executed
until a node with a matching resource becomes available.

In order to implement basic separation of trust levels, a
string resource was created to hold the zone value. This
resource was then assigned to each of the MAMU and MOM
nodes, effectively dividing each into three pools based on the
value of the resource string.

B. Job Submission Changes
Whenever a new job is submitted to the system, it is

necessary to associate it with a particular trust zone. This
ensures that it will be passed to the correct set of MOM or
MAMU nodes. For reasons of security, it is important that
it is not possible for the user to set the trust zone. This can
be achieved using a PBS submit hook.

When a job is passed to the submit hook, it examines the
value of the requestor_host attribute as defined by the
PBS server. If this value matches the name of the one of the
external login nodes, the hook consults a configuration file
which maps the name of each external node to a trust zone.
This ensures that jobs submitted from outside the system
belong to the correct zone.

Where the value of requestor_host matches an in-
ternal node such as a MOM or MAMU node, PBS checks
the value of the trust zone resource assigned to the host and
reapplies it to the job. This ensures that jobs submitted from
within the system retain their parent trust zone whilst also
allowing internal nodes to be transferred from one zone to
another by the simple expedient of draining the node and
changing its zone attribute.

Under normal circumstances, where a job has requested
Cray compute nodes, PBS allows it to run on any MOM
node and does not impose any resource constraints. This
does not match the trust zone model, where jobs from
different trust levels must be assigned to different sets of
MOM nodes.

Consequently, the trust zone submit hook also allocates
an additional chunk of resources to each job which asks for
Cray compute nodes. This chunk requests a single CPU, a
small amount of memory, and, more importantly, specifies
trust zone resource. This last ensures that the job can only
be assigned to a MOM node at the right trust level.

C. Non-Compute Node Jobs

Jobs which do not require Cray compute nodes will
be scheduled for execution on the MAMU nodes with
a vntype of cray_serial and where the trust zone
resource matches the zone requested by the job. Because the
MAMU nodes are statically partitioned and the file system
bind mounts had already been configured, the job can be
scheduled without any further intervention from PBS.

D. Compute Node Jobs

Jobs which require compute nodes must wait for sufficient
resources to become available. Because the compute nodes
are not labelled with a trust zone, any compute node can be
used to satisfy the requirement. Once sufficient free nodes
are available, the job is passed to a MOM node in the
appropriate trust zone for execution.

Prior to the start of each compute node job, a PBS hook
is run on the allocated MOM node to prepare the set of
assigned compute nodes for the job. The hook obtains the
list of compute nodes from the server and uses the pcmd
command available through ALPS to bind the Lustre file
systems to the appropriate mount points for the job and to
apply network configuration settings to reset the gateway
node used to direct traffic out of the system.

Once the job is complete and all the user processes have
exited, but before the job has left the MOM node, the same
hook runs and reverses the various changes applied by the
set-up hook. This makes multiple attempts to unbind the
Lustre file system to ensure that it is not possible for a
subsequent job to view files at the wrong trust level.

While experiences with the compute node configuration
hook on our development system were successful and initial
tests on the larger XCS appeared to be successful, serious
performance problems were encountered as soon as we
attempted to run benchmarking jobs larger than a few
hundred nodes.

When we profiled the hook, we found that almost all
the time was being spent in mount operations, with each
bind mount carried out in its own pcmd. When this was
changed to merge the mount operations into a single pcmd
performance improved substantially, with the time taken to
launch a machine-sized job dropping from over five minutes
to approximately 30 seconds.

E. MOM Node Resources and Placement Sets

Following the implementation of the trust zone mode, a
problem was encountered which caused almost every cycle
of the PBS scheduler to abort with a calendaring error.
This caused the system to drain and the only jobs run
during this period were those that spanned multiple cabinets.
Investigations in combination with Cray and Altair revealed
that this problem was caused by an error in the placement
set configuration on the system.



As originally configured, each two-cabinet group of
electrically connected nodes had been assigned a pair
string resource in PBS. This had been added to the
node_group_key setting in the server, causing PBS to
attempt to allocate jobs to nodes with the same pair value
to encourage tasks to be placed on physically adjacent nodes
— a behaviour that noticeably improved performance.

With the introduction of the trust zone configuration, each
job was also assigned a chunk of resource on a MOM node.
But, as originally configured, the MOM nodes were not
defined with a pair resource. Consequently the PBS server
could not satisfy the placement constraint for all jobs which
were small enough to fit in a two-cabinet group, causing
the scheduler backfill calendar to fail. Jobs which were too
large to fit in any of the pair placement sets were implicitly
assigned to the universal set which explains why they were
able to be scheduled.

Once the root cause of the problem was identified, it was
resolved by removing and recreating the pair resource as
a string_array. This redefinition of the resource made
it possible to make each MOM node a member of every
placement set. This ensured that whatever the placement set
selected for the compute nodes, the server was always able
to locate a MOM node with a matching placement string,
preventing the scheduler from failing to calendar the request
because of an unsatisfied resource requirement.

F. PBS Conclusions

We have now been running with our PBS trust zone
configuration for some months and our experiences have
been extremely positive. Having resolved the problems with
placement set configuration and having improved the scal-
ability of the compute node set-up hook, the system has
performed reliably and our end users have reported very
little inconvenience as a result of the new operating model.

VI. CGROUPS AND RESOURCE SEPARATION

The separation of user work into separate trust zones is
sufficient to prevent processes at different trust levels from
interacting with each other. This provides some degree of
protection from inadvertent denials of service caused by
jobs at the same level. However, it does not provide any
separation between processes owned by jobs at the same
level of trust running on the same MOM node or MAMU
node.

By default PBS does not apply any additional constraints
on jobs once they have been allocated to a node. This means
that it is possible for a job to request a single CPU from PBS
and then to make use of all the CPU resources on the node.
As a result it is possible for users at the same level of trust
and running on the same node to compete for access with
other tasks on the same node. Where these tasks are time
critical, as is the case for operational forecast work, it is
possible for these delays to result in a denial of service.

In order to isolate tasks from different jobs from each
other when running on the same node, it is necessary to
configure PBS to run each job in its own cgroup. The cgroup
acts as a container, limiting the processes running within it
to a subset of the available processors and memory based on
the resources requested in the PBS job submission. Where
a job attempts to use more than the requested number of
CPUs, its processes are forced to time-slice; and where a
process attempts to exceed the memory limit of the group,
it is forceably killed.

Cgroups have been integrated with PBS via an internal
hook script which runs on the MOM node or MAMU node
prior to the start of each job to create the container. The
same hook runs again at the end of each job and removes
the container if all user processes have exited.

A number of attempts have been made to enable cgroup
support on the Cray, starting prior to the implementation of
the trust model with PBS 12.2 and progressing as far as PBS
13.0.406. Each of these releases has been problematic and
so far none has proved sufficiently stable for full production
use.

A. Inability to Release Cgroups

Initial experiences with an experimental version of the
cgroup hook provided with PBS 12.2 were largely unsuc-
cessful. The hook was able to create the cgroup and the job
scheduled to run in it worked as expected, with resources
being constrained to its requested resources.

Problems were observed with the cgroup clean-up, where
stale job processes occasionally prevented the hook from
removing the group. This caused an accumulation of stale
groups on executing nodes, eventually causing jobs to fail
to start correctly. This behaviour was invisible to the PBS
scheduler and resulted in many jobs being assigned to the
same problematic node, causing a large amount of work to
be placed on hold.

This problem was resolved by Altair in a subsequent
release of the hook which moved orphaned job containers
which could not be removed, allowing them to be cleaned
up by a periodic hook once all the job processes had been
exited.

B. CGroup VNode Time-outs

Following an upgrade to PBS 13.0.401, an attempt was
made to enable cgroups on a subset of the system by
changing the hook configuration file to ignore all nodes
except those with a custom vntype. This configuration
worked successfully on our small test platform but produced
very inconsistent results when run on our larger production
systems.

An analysis of the problem revealed that the code used to
determine the vntype of the current node posted a query to
the PBS server every time a cgroup was created. Due to the
load on the server the node type code was timing out before



receiving a response, causing it to return a None value to
the hook which, because this failed to match the exempt
list, resulted in the hook being enabled on the wrong set of
nodes.

This consistency problem was partly avoided on the XCS
system by creating an empty exempt list and enabling the
hook on all node types. While this solution was not suitable
for production use, it did allow the cgroup hook to be tested
during system acceptance.

The underlying fault was resolved in PBS 13.0.406 when
the hook was updated to cache the vntype of the current
node in the persistent /var file system, removing a great
deal of unnecessary load on the server daemon.

C. CGroup Time-out Condition

Once the cgroup hook was enabled on XCS, a further
problem was observed with containers not being removed
correctly at the end of every job. As before, this resulted in
an accumulation of stale containers on the nodes, eventually
resulting in a large number of job failures as the PBS
scheduler repeatedly tried to schedule jobs to nodes without
any available resources.

An examination of the PBS daemon logs on the executing
nodes revealed a correlation between stale cgroups and hook
alarm time-out events. In some cases these alarms had
occurred in the cgroup hook itself, but in most cases the
time-outs were found to have occurred in one of the local
site epilogue hooks.

An inspection of the implementation of PBS hooks in the
PBS Pro open source code base provided a useful insight
into the cause of the problem. This showed that each script
associated with a given chain of hooks was run in sequence,
so that the failure of any particular script would cause any
remaining scripts in the sequence to be abandoned. Thus an
alarm event in one of the site epilogues, by default ordered
ahead of Altair’s hook, was sufficient to prevent the cgroup
from running.

This problem was largely avoided by increasing the time-
outs of the hook scripts and changing the order of Altair’s
cgroup hook to -13 ensuring the hook ran before any of the
site hooks.

D. Cgroups and File Cache Memory

When a cgroup memory limit is enabled any process
which attempts to exceed the maximum memory available to
the container is killed with a signal. When determining the
total amount of memory used by processes in the container,
cgroups includes that used for file caching[3].

Although file cache memory is dropped to free up re-
sources for large computational tasks, limiting it in this
way can cause IO-intensive operations to fail unexpectedly.
These failures result in a distinctive trace-back in the system

3Internal PBS hooks ordering is allowed to go negative. User Hooks are
limited to values from 0 to 1023

logs, indicating that a process has failed while attempting to
acquire additional page cache.

For example, when a file copy is run in a cgroup with a
memory limit that is too low to buffer the file and the IO
stream has not been opened in direct mode, the process will
be terminated by the out-of-memory killer when it reaches
the limit. For single files this problem can be avoided by
enabling direct IO but this greatly reduces the performance
and does not help with cases where the failure is due to a
recursive copy of a directory tree.

This problem was first noticed when cgroups were enabled
on MOM nodes on XCS where default memory was capped
at a gigabyte to encourage users to run post-processing work
on the shared nodes. These limits resulted in intermittent
failures of sequences of model runs, where large files needed
to be copied at the end of each run ready for the start of the
next model in sequence.

This problem was resolved by the simple expedient of
raising the memory limits on the MOM nodes to 1.5
gigabytes. This was sufficient to prevent jobs from failing
whilst also being small enough to allow all 72 CPUs on the
node to be used.

E. CGroup and PBS Memory Settings

The cgroup hook, as provided by Altair in PBS 13.0,
was initially configured to prevent the hook script from
attempting to allocate more than 90 per cent of physically
configured memory on the node. But when a node is
provisioned by PBS, its maximum available memory is set
to 100 per cent of the physically configured memory.

Consequently it is possible for a job to request all the
available memory on a node and for the PBS scheduler to
assign the job to a MAMU node which has advertised that it
has sufficient free memory to run the job. When the job starts
on the node, PBS is unable to create the cgroup because it
is constrained to 90 per cent of memory. It treats this failure
as a run-time error and places the job in a held state.

This problem can be resolved by reducing the amount of
available memory advertised by each MAMU node to match
the amount of memory available using cgroup containers.
This ensures that work will only ever be scheduled on a
node if it can fit within the resources available at run-time.

This behaviour has changed slightly at PBS 13.0.406
where it is now possible to specify an absolute memory limit
in gigabytes rather than having to specify a percentage of
the available memory. This simplifies the task of reserving
memory for operating system tasks on the MAMU nodes.

F. CGroups and Hyperthread Settings

Following the upgrade to PBS 13.0.406, it was noticed
that the performance of certain serial jobs on the MAMU
nodes had degraded significantly. Investigations showed that
these problems were limited to CPU-intensive jobs request-
ing access to all the physical CPUs on a node.



When the allocation of resources to these jobs was inves-
tigated, it was found that the cgroup hook had incorrectly
assigned all the tasks to a single NUMA socket on the
node rather than spreading across the two available sockets.
Consequently tasks which had previously been placed on
separate physical cores were now being placed on different
hyperthreads on the same core.

An examination of the cgroup hook suggested that the
problem had occurred because the CPUs were being detected
by examining each NUMA node in turn. In the previous
version of the hook, the CPUs had been sorted by ID to
ensure physical cores were placed ahead of hyperthreads.
In the revised hook, which added partial support for hy-
perthreading, the CPUs were returned in order of discovery,
causing tasks to be assigned a mix of cores and hyperthreads.

This problem was worked around by modifying the
cgroup hook to explicitly ignore hyperthreads.

G. CGroup Run-time Error Handling

Prior to PBS 13.0.406, run-time errors when creating a
cgroup at the start of a job were handled by placing the
affected job in a held state. Because the node remained in
service, this typically resulted in another being assigned to
the same node and also being placed on hold. This resulted
in occasions where a fault on a single node caused many
hundreds of jobs to fail and be placed in a held state.

With the advent of PBS 13.0.406, Altair changed the
way run-time errors were handled to prevent large numbers
of jobs from failing by taking the affected node off-line
when it was unable to create or remove a cgroup container.
This behaviour was coupled with a change to the periodic
clean-up portion of the cgroup hook which places the node
back on-line once any transient problems — especially those
caused by failed cgroup removal — have been resolved.

This change works well on the MAMU nodes but works
less well when a cgroup error occurs on a MOM node.

The implementation of PBS on the Cray is such that the
compute nodes, which make up the majority of the system,
are defined as virtual nodes owned by the MOM nodes.
Consequently, when a MOM node is taken off-line, a large
number of the compute vnodes are also placed off-line. As a
result, it is possible for a cgroup handling fault on a MOM
node to cause the compute resource to become unavailable.

This problem has been raised with Altair but no immediate
work around has yet been found.

H. Cgroup Conclusions

It is apparent that, although cgroups offer a powerful tool
for managing the resources available to jobs on specific
nodes, the facility is still immature and problematic. Where a
problem occurs at run-time, the actions taken by the cgroup
hook — such as placing a job on hold or, in the latest version
of the hook, taking a node off-line — have the potential to

cause large numbers of jobs to become stuck or to cause
large parts of the system to be taken out of service.

As a result of the problems seen on the XCS system,
the Met Office has chosen not to implement cgroups on its
operational systems. However, we continue to be interested
in using cgroups and have been working closely with Altair
to provide feedback on the hook, trialling new versions of
the hook prior to formal upgrades of PBS.

VII. SUMMARY

As can be seen from this paper, the PBS trust labelling
scheme makes it possible to ensure that user jobs at different
levels are always assigned to different serial or MOM nodes.
The use of dynamic compute node partitioning ensures that
resources can be created or removed as needed to fulfil
individual job requirements.

It is further possible to isolate the processes and resources
assigned to jobs at the same trust level using cgroup integra-
tion with PBS. This effectively dedicates resources to each
job and prevents one user from denying resources to another
user on the same non-compute node.

The use of cgroups presents a number of additional
challenges and the facility is not yet sufficiently mature
to be used on systems where completely reliable behaviour
is required. Depending on the nature of the workload and,
especially, the amount of IO performed by compute jobs on
MOM nodes, users jobs may fail with unexpected memory
errors.

REFERENCES

[1] Met Office and NERC joint supercomputer
system (MONSooN). [Online]. Available:
http://www.metoffice.gov.uk/research/collaboration/jwcrp/monsoon-
hpc

[2] Unified Model Partnership. [Online]. Avail-
able: http://www.metoffice.gov.uk/research/collaboration/um-
partnership

[3] Memory cgroup Documentation (Kernel Archives). [Online].
Available: https://www.kernel.org/doc/Documentation/cgroup-
v1/memory.txt

[4] PBS Professional 13.0 Administrator’s Guide, 2015.

[5] PBS Professional 13.0 Reference Guide, 2015.


