

Trust Separation on the XC40 using PBS Pro

Sam Clarke

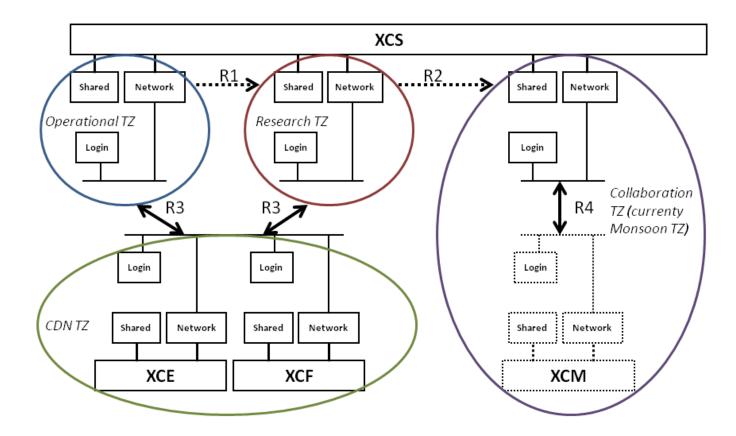
May 2017

© Crown copyright Met Office

- About the Met Office workload
- Trust zone design
- Node configuration
- Lustre implementation
- PBS Implementation
 - Use of hooks
 - Placement Sets
 - Cgroups
- Conclusions

The Met Office Workload

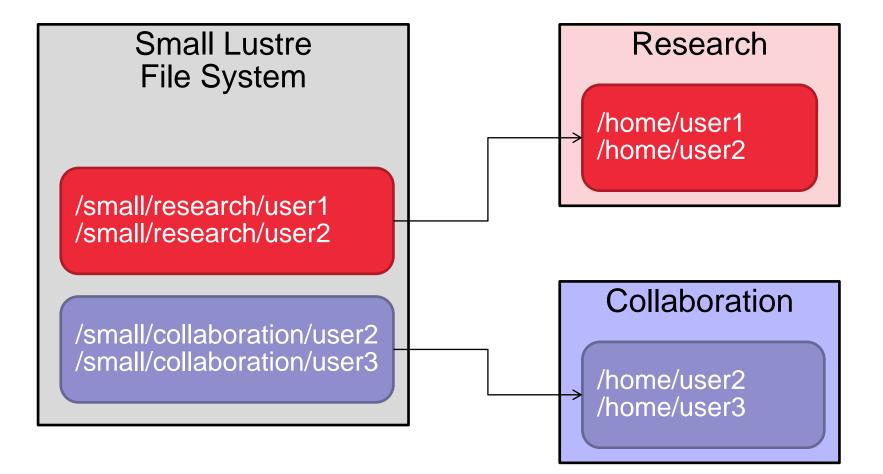
- Three principal groups
 - Operational weather forecasting
 - Internal research
 - Collaborative research
- Previously groups were kept separate
 - Operational and research work on two internal XC40s
 - Collaboration on a smaller dedicated XC40
- Different levels of trust
 - Operational work is sensitive and time critical
 - Internal users are security cleared and trusted
 - External users access the systems from the internet



Trust Zone Design: Towards a Shared System

- Create a single system with three trust levels
- Limit file system access to specific levels
- Prevent traffic between levels
- Prevent tasks at different levels from interfering with each other
- Prevent tasks within a level from interfering with each other
- Provide a flexible configuration that allows resources to be dynamically moved between groups

XCS & Trustzones



- Met Office
- Two Sonexion 2000 Lustre appliances
 - Small one is 450TB and used for configuration files
 - Large one is 14PB and used for data and scratch files
- Partition using Unix ACLs
 - Create a restricted access directory tree for each group
 - Create a regular user file structure under each tree
- Create bind mounts into specific parts of the subtree
 - Bindings are static on eLogin, MOM and MAMU XC40 nodes
 - Bindings are dynamic on compute nodes

Lustre File Systems

office Layout and Bindings

Met Office Job Submission

- Label the nodes
 - Create a string resource called trustzone
 - Set the trustzone resource on MOM and MAMU nodes
- Trust zone submit hook
 - When a new job is submitted on an eLogin
 - Examine the identity of the requestor host on the SDB
 - Use a static map to set the trustzone resource on the job
 - When a new job is submitted on a MOM or MAMU node
 - Examine the resource setting of the current node
 - Set the trustzone resource on the job to match the resource on the current node
 - Allocate a MOM node chunk to all compute jobs and set the trustzone resource

Met Office Job Scheduling

- Scheduler has been configured to use the trustzone resource
- Job waits for sufficient MOM or MAMU nodes with the trustzone resource to become free
- Job is dispatched to nodes where the trustzone resource matches

Met Office Job Execution

- On a MAMU node
 - Node has been statically configured to use a trust zone
 - No further action is required
- On a MOM node at start-up
 - Determine the set of compute nodes allocated to the job
 - Use pcmd to bind Lustre directories on each compute node
 - Configure any additional network routing
- On a MOM node at shutdown
 - Unbind the Lustre directories
 - Remove any network settings

Met Office Trust zone conclusions

- Scalability of compute job startup
 - Initially poor with machine-sized jobs taking many minutes to start
 - Resolved by merging pcmd mounts into a single command
- Placement sets and calendaring errors
 - Prevented anything other than large jobs from running
 - Caused by lack of placement resources on MOM nodes
 - Resolved by replacing placement set strings with string arrays and adding definitions to every MOM node

Met Office Cgroups

- Implemented in an internal hook provided by Altair
 - Initially tested cgroups with PBS 12
 - Started using in earnest on XCS at 13.0.401
- Initial problems involved stale cgroups
 - Clean-up hook did not run successfully because of a race condition between processes ending and the cgroup being removed
 - Resolved when Altair supplied an asynchronous version of the hook

Met Office Cgroup vnode timeouts

- Compute node vnode type timeouts
 - A test node was created with a non-standard vntype
 - All other vntypes were excluded using the cgroup configuration file
 - But hook ran unpredictably on other nodes in the system
- Caused by server load
 - Every cgroup invocation was requesting current vnode type from the PBS server
 - Server load caused the call to intermittently timeout
 - Timeout returned a None value which failed to match our exclude list
 - Workaround was to run on XCS with cgroups enabled on all vnodes
 - Resolved by Altair in PBS 13.0.406

Met Office Cgroup memory limits and file cache

- These constrain a node to a subset of the available memory
 - Memory limit applies to both compute memory and file cache
 - Causes IO-intensive operations to fail if there is insufficient memory to buffer the operation
 - Can be workaround around using direct IO but this is slow
- Impacted users doing recursive copies on MOM nodes
 - Workaround involved raising the standard memory limit on MOM chunk assigned to the job
- This is a standard feature of cgroups on Linux
 - There don't seem to be any kernel tunables to change this behaviour

Met Office Cgroup runtime error handling

- Prior to PBS 13.0.406
 - Runtime failures resulted in jobs being placed on hold
 - Scheduler had no awareness of the problem so new jobs often assigned to same set of failing nodes
 - Often caused large numbers of jobs to go into limbo
- In 13.0.406
 - Node is taken offline when an error occurs
 - Periodic hook runs, attempts to fix problems with stuck cgroups, and puts node back online once problem has been resolved
 - Works well for MAMU nodes
 - But when an error occurs on a MOM node, it results in many compute vnodes being taken offline causing the system to drain

Met Office Cgroup conclusions

- Performance is improving
 - Hook is much better than the original version
 - Altair have worked hard to fix bugs and have been very responsive to problems
- Many edge conditions
 - Race conditions waiting for processes to end
 - Linux cgroup memory limits including file cache
 - Compute nodes accidentally taken offline
- Not ready for full production use yet
 - There is too much potential for forecast disruption
 - But plan to keep on trying on our XCS system

Met Office

- Trust separation working well
 - Very few problems seen following implementation
 - System successfully accredited by external auditors
 - Collaboration users have access to a system capable of running jobs over 50 times larger than the original MONSooN XC40
- Lustre file system separation has been trouble-free
- Cgroups remain problematic
 - The hook seems to improve with every PBS release
 - We are confident the problems will be fixed or workaround eventually

Acknowledgements

Met Office

- The Met Office HPC Systems Group
 - Helen Fairhurst, Doug Hayman, Joe Heaton, David Moore, Robin Pallister, and Will Wishart
- Cray on-site support staff
 - George Brown, Laurence Baldwin, and Maurizio Ianniciello
- Cray and Altair software support

