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§ System:
– Cray XC40 system
– 3,624 compute nodes/ 231,936 cores
– 9.65 PetaFlops peak performance
– Accepted Fall 2016

§ Processor:
– Intel Xeon Phi, 2nd Generation (Knights Landing) 7230
– 64 Cores
– 1.3 GHz base / 1.1 GHz AVX / 1.4-1.5 GHz Turbo

§ Memory:
– 16 GB MCDRAM per node
– 192 GB DDR4-2400 per node 
– 754 TB of total system memory

§ Network:
– Cray Aries interconnect
– Dragonfly network topology

§ Filesystems:
– Project directories: 10 PB Lustre file system
– Home directories: GPFS

THETA



VARIABILITY ON THETA
§ Variability between runs is frequently 15% or greater, can be up to 100%
§ Identified 4 causes of potential variability

o Core level variability due to OS noise
o Impact on applications: minimal
o Available mitigations: Use core specialization, exclude tile 0 & 32

o Tile level variability due to shared resource contention on tile (L2)
o Impact on applications: yes
o Available mitigations: run using only 1 core per tile

o Memory mode variability due to cache mode page conflicts
o Impact on applications: yes
o Available mitigations: run in flat mode
o Potential mitigations: improved zone sort

o Network variability due to shared network resources
o Impact on applications: yes
o Available mitigations: run without other jobs present on system
o Potential mitigations: compact job placement
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KNIGHTS LANDING PROCESSOR
Chip
§ 683 mm²
§ 14 nm process
§ 8 Billion transistors

Up to 72 Cores
§ 36 tiles
§ 2 cores per tile
§ 3 TF per node

2D Mesh Interconnect
§Tiles connected by 2D mesh

On Package Memory
§16 GB MCDRAM
§8 Stacks
§485 GB/s bandwidth

6 DDR4 memory channels
§2 controllers 
§up to 384 GB external DDR4
§90 GB/s bandwidth

On Socket Networking
§Omni-Path NIC on package
§Connected by PCIe



KNL TILE AND CORE
Tile
• Two CPUs
• 2 VPUs per core
• Shared 1 MB L2 cache (not global)
• Caching/Home agent

• Distributed directory, provides coherence

Core
• Based on Silvermont (Atom)
• Functional units:

• 2 Integer ALUs
• 2 Memory units
• 2 VPU’s with AVX-512 

• Instruction Issue & Exec:
• 2 wide decode
• 6 wide execute
• Out of order

• 4 Hardware threads per core



DGEMM PERFORMANCE ON THETA
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MKL DGEMM Performance
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• Peak FLOP rate per node on Theta: 2252.8 GFlops
• 2 Vector pipelines
• 8 Wide Vectors
• FMA instruction (2 flops)
• AVX frequency 1.1 GHz

• MKL DGEMM:
• Peak flop rate: 1945.67 Gflops
• 86.3% of peak

• Thread scaling:
• Linear scaling with cores
• More than 1 hyperthread per core does not 

increase performance



§ Floating point performance is limited by AVX frequency
– AVX vector frequency (1.1 GHz) is lower than TDP frequency (1.3 GHz)
– Frequency drops for sustained series of AVX512 instructions

§ Performance may be limited by instruction fetch and decode
– Instruction fetch is limited to 16 bytes
– Up to 2 instructions may be fetched and decoded per cycle
– AVX512 instructions with non-compressed displacements can be 12 bytes long limiting fetch to 1 instruction

§ Thermal limitations restrict sustained AVX512 performance to around 1.8 instructions per cycle
§ Variability in performance

– OS noise can produce variability in when timing small kernels even with core specialization
– L2 cache contention can favor one core leading to differing performance for cores sharing a tile on the same 

workload
– Have not observed significant variability caused processor turbo clock rates
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OBSERVATIONS ON FLOATING POINT PERFORMANCE



KNL MEMORY HIERARCHY AND MODES
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• Two memory types:
• In Package Memory (IPM)

• 16 GB MCDRAM, 8 stacks
• Off Package Memory (DDR2400)

• Up to 384 GB, 2 controllers, 6 channels
• One address space:

• Possibly multiple NUMA domains
• Memory configurations:

• Cached: DDR fully cached by IPM
• Flat: user managed
• Hybrid: ¼, ½ IPM used as cache

• Cluster modes:
• Quadrant, SNC-4, AlltoAll, …

• Managing memory:
• jemalloc & memkind libraries
• numactl command
• Pragmas for static memory allocations

Cache

Hybrid
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MODES, SELECTED AT NODE BOOT TIME



STREAM TRIAD BENCHMARK PERFORMANCE

Case GB/s 
with SS

GB/s 
w/o SS 

Flat, MCDRAM 485 346

Flat, DDR 88 66

Cache, MCDRAM 352 344

Cache, DDR 59 67
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• Measuring and reporting STREAM bandwidth is made more 
complex due to having MCDRAM and DDR 

• Memory bandwidth depends on
• Mode: flat or cache
• Physical memory: mcdram or ddr
• Store type: non-temporal streaming vs regular

• Peak STREAM Triad bandwidth occurs in Flat mode with 
streaming stores:

• from MCDRAM, 485 GB/s
• from DDR, 88 GB/s

• Observations:
• No significant performance differences have yet been 

observed in different cluster modes (Quad, SNC-4, …)
• Maximum measured single core bandwidth is 14 GB/s. 

Need about half the cores to saturate MCDRAM bandwidth 
• Core specialization improves memory bandwidth by ~10%



STREAM TRIAD BENCHMARK PERFORMANCE

Case GB/s 
with SS

GB/s 
w/o SS 

Flat, MCDRAM 485 346

Flat, DDR 88 66

Cache, MCDRAM 352 344

Cache, DDR 59 67
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• Cache mode peak STREAM triad bandwidth is lower 
• Bandwidth is 25% lower than Flat mode
• Due to an additional read operation on write

• Cache mode bandwidth has considerable variability
• Observed performance ranges from 225-352 GB/s
• Due to MCDRAM direct mapped cache conflicts 

• Streaming stores (SS) :
• Streaming stores on KNL by-pass L1 & L2 and 

write to MCDRAM cache or memory
• Improve performance in Flat mode by 33% by 

avoiding a read-for-ownership operation
• Doesn’t improve performance in Cache mode, can 

lower performance from DDR



MEMORY LATENCY

Cycles Nano
seconds

L1 Cache 4 3.1
L2 Cache 20 15.4
MCDRAM 220 170
DDR 180 138
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Threads Barrier
(µs)

Reduction
(µs)

Parallel For
(µs)

1 0.1 0.7 0.6
2 0.4 1.3 1.3
4 0.8 1.9 1.9
8 1.5 2.7 2.5

16 1.8 5.9 2.9
32 2.8 7.7 4.0
64 3.9 10.4 5.6

128 5.3 13.7 7.3
256 7.8 19.4 10.5
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OPENMP OVERHEADS

• OpenMP costs related to cost of memory access
• KNL has no shared last level cache

• Operations can take between 130 – 25,000 cycles
• Cost of operations increases with thread count

• Scales as ~C*threads1/2

EPCC OpenMP Benchmarks



ARIES DRAGONFLY NETWORK

Aries Router:
• 4 Nodes connect to an Aries
• 4 NIC’s connected via PCIe
• 40 Network tiles/links
• 4.7-5.25 GB/s/dir per link

Connections within a group:
• 2 Local all-to-all dimensions

• 16 all-to-all horizontal
• 6 all-to-all vertical

• 384 nodes in local group

Connectivity between groups:
• Each group connected to 

every other group
• Restricted bandwidth between 

groups



MPI BANDWIDTH AND MESSAGING RATE

15

Messaging Rate:
• Maximum rate of 23.7 MMPS

• At 64 ranks per node, 1 byte, window size 128
• Increases generally proportional to core count for small 

message sizes

Bandwidth:
• Peak sustained bandwidth of 11.4 GB/s to nearest 

neighbor
• 1 rank capable of 8 GB/s 
• For smaller messages more ranks improve aggregate 

off node bandwidth

OSU PtoP MPI Multiple Bandwidth / Message Rate Test on Theta



Benchmark Zero Bytes
(µs)

One Byte
(µs)

Ping Pong 3.07 3.22
Put 0.61 2.90
Get 0.61 4.70
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MPI LATENCY
OSU Ping Pong, Put, Get Latency



MPI ONE SIDED (RMA)
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RMA Get
• 2 GB/s using default configuration (uGNI)
• 8 GB/s using RMA over DMAPP
• Huge pages also help.

RMA Put Bi-directionalRMA Get

RMA Put
• 2 GB/s using default configuration (uGNI)
• 11.6 GB/s peak bi-directional bandwidth over DMAPP
• No significant benefit from huge pages

OSU One Sided MPI Get Bandwidth and Bi-Directional Put Bandwidth 



MPI COLLECTIVE PERFORMANCE
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• Node counts from 32 to 2048
• 1 process per node
• 8 KB message sizes
• Plan to review MPI data for 

performance consistency

OSU MPI Gather, Bcast, and Allreduce Benchmarks
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§ Theta #7 on Green500 (Nov. 2016)
§ For high compute intensity, 1 thread 

per core was most efficient
§ Avoids contention with shared 

resources
§ MCDRAM is a 4x improvement over 

DDR4 in power efficiency

POWER EFFICIENCY

Threads 
per Core

Time 
(s)

Power 
(W)

Efficiency
(GF/W)

1 110.0 284.6 4.39

2 118.6 285.4 4.06

4 140.3 295.0 3.32

Memory
Type

Bandwidth
GB/s

Power (W) Efficiency
(GB/s/W)

MCDRAM 449.5 270.5 1.66

DDR4 87.1 224.4 0.39



NEKBONE PERFORMANCE ON KNL

§ Nekbone mini-app derived from Nek5000 (Spectral Element CFD code)
– Solves 3D Poisson problem in rectangular geometry
– Spectral elements and conjugate gradient
– Contains key kernels, operations, and work from Nek5000
– Implemented using Fortran 77, C, MPI, and OpenMP

§ KNL performance 3.2x Haswell (solve time per element)
– KNL : 0.38 ms
– Haswell E5-2699 v3 (dual socket, 36 cores): 1.22 ms

§ KNL kernel mix for run on 1024 nodes scaled to 80% parallel efficiency:
– Streaming kernels – 48% of time (BW limited)

• Streaming kernels are achieving 70-98% of Stream bandwidth from MCDRAM
– Matrix multiply – 21% of time (Compute limited)

• Simple triple loop : ~2.5% of peak
• Unrolled loops : ~20% of peak
• LIBXSMM : ~40% of peak

– Communication – 31% of time (Communication limited)
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NEKBONE - THREADS AND RANKS

Ranks Thds Solve
Time

1 64 3.07
2 32 3.00
4 16 3.02
8 8 3.02

16 4 3.05
32 2 3.04
64 1 3.14

Ranks Thds Solve
Time

1 128 3.65
2 64 3.66
4 32 3.61
8 16 3.63

16 8 3.67
32 4 3.66
64 2 3.75

128 1 4.10

Ranks Thds Solve
Time

1 256 4.72
2 128 4.70
4 64 4.57
8 32 4.59

16 16 4.58
32 8 4.61
64 4 4.69

128 2 5.08
256 1 14.09

Identical problem with Nekbone using different number of hyper-threads, threads and ranks

1 Hyper-thread 2 Hyper-threads 4 Hyper-threads



22

NEKBONE WEAK SCALING
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§ su3_rhmd_hisq application run in cache 
mode with other jobs running

§ grid_order and core specialization are 
used but not huge pages

§ ~84% difference between lowest and 
highest performance between different 
days

§ Application is subject to variance from 
MCDRAM  cache mode and MPI traffic 
from other jobs running

MILC WEAK SCALING
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LAMMPS – STRONG SCALING COMPARISON

§ Molecular dynamics simulation of 32 million 
particles modeling protein in lipid bilayer up 
to 3072 nodes of Theta.

§ One MPI rank per core in all cases; multiple 
OpenMP threads used.

§ On a per-node basis running identical code, 
Theta was generally 5.2x faster than Mira.

§ Additional 2.2x speedup observed using 
Intel-optimized code with explicit AVX-512 
SIMD instructions.
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LAMMPS – UTILIZING MEMORY HEIRARCHY

§ Single-node runs with 256,000 particles and 
PPPM used for electrostatics.

§ DRAM is sufficient to deliver memory 
bandwidth for pairwise computation and 
building neighbor lists (~30 GB/s).

§ HBM yields up to ~170 GB/s for PPPM stencil 
and 3D FFT operations.

§ Intel-optimized code improves memory 
bandwidth utilization (30 ➔ 60 GB/s).

§ Large-scale runs could default to DRAM with 
select data structures allocated to HBM.
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Flat-quad DRAM

Cache-quad

Cache-quad w/ Intel Opt.
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