
Datawarp Accounting Metrics

Andrew Barry
Cray Inc.

 Bloomington, MN USA
 abarry@cray.com

Abstract—Datawarp is a Burst Buffer technology from Cray,
which includes high performance flash memory storage
devices, and software that allows user batch jobs to reserve
some fraction of the available capacity for exclusive use. Jobs
using Datawarp enjoy substantially improved filesystem
performance, though with a limited capacity. However, certain
user behaviors result in suboptimal performance for that
user’s application, and other behaviors result in degraded
performance for the whole system. Thus, systems
administrators benefit from Cray’s tools for tracking which
users are utilizing Datawarp, and how. This paper discusses
how to use those tools, the data presented by the tools, and
presents case studies wherein those data indicate potential
usage issues by users.

I. DATAWARP TECHNOLOGY
Datawarp is a high performance Burst Buffer technology

from Cray. The product includes mainframe service node
blades installed with two or more solid state drives (SSDs),
as well as software enabling compute jobs to use this storage.
The SSD storage used by Datawarp is very fast, allowing
only a pair of drives to saturate the network interface of the
service node. This performance allows a small number of
storage devices to provide a very high level of file system
performance to the system. While Datawarp storage is very
fast, the capacity is limited. Flash storage cannot yet
completely replace spinning disk filesystems on most HPC
systems. Datawarp offers a solution to this by using the SSD
storage only for application data during the run-time of the
compute job, not for long-term storage. Depending on the
amount of available capacity, Datawarp storage may only be
used by a subset of jobs that derive substantial benefit from
the additional performance, compared to spinning disk
storage.

Presented with the potential performance gains, many
system administrators want to know how it is being used,
how effective it is, and who is using the resource. Datawarp
capacity is a limited resource, and systems may not have
enough capacity to completely replace parallel filesystems
for all storage needs. Even for systems that do contain very
large amounts of Datawarp storage devices, some
applications may chose to use direct parallel filesystem
access instead of Datawarp. The most obvious reason for this
is the wear limits attached to the flash storage within the
solid-state drives. Every flash cell within a drive can only be
written a limited number of times. Since Datawarp resources
are finite, it is desirable to determine which applications are
making effective use of the capacity. Applications that

misuse the storage, or get little benefit from using Datawarp
may want to continue using parallel filesystems. To answer
all of these questions, Datawarp includes accounting
functionality.

To understand how Datawarp accounting works, it is first

necessary to understand a little more about how Datawarp
works. When a user wants to use Datawarp to speed up
application input/output performance, he/she must put #DW
directives into the job script submitted to the batch workload
manager. The workload manager will then schedule jobs to
run when Datawarp capacity is available to meet the needs of
the job, as indicated in the job script. When a Datawarp job
is run, the workload manager will contact the Datawarp
service, which then creates a filesystem for the compute job
to use. This filesystem may be either a cache layer between
the application compute nodes and a parallel filesystem like
Lustre, or it acts as a stand-alone scratch filesystem. In either
case, the filesystem is created on storage made available by
some or all of the service nodes with solid-state drives,
which is served to the compute nodes using Cray’s Data
Virtualization Service (DVS) technology.

II. DATAWARP ARCHITECTURE
Datawarp uses the following terminology to describe the

data abstractions used in its implementation. Each time a job
asks for a Datawarp filesystem to be created, a Datawarp
instance is created, which is a master descriptor for all parts
that constitute the filesystem. The compute job is represented
by a session object, which can link to one or more instances.
Each session is identified by a token, which is a text string

Figure 1. Parallel filesystem versus Datawarp

provided by the user or workload manager. Datawarp
instances are created with a static capacity, which is

composed of one or more fragments. A fragment represents
the storage provided for the instance, from a single storage
node. Fragments are allocated from one or more storage
nodes, typically with each filesystem containing fragments
from most or all of the storage nodes in the system. Scratch
type filesystems may also be created with different
namespace options. Compute nodes may all share a common
namespace, or each get private namespaces. Thus there are
one or more namespaces associated with each Datawarp
instance, which Datawarp sometime describes as
configurations. Each namespace is served by one of the
storage nodes providing the capacity for the instance.

III. DATAWARP ACCOUNTING
The architecture of Datawarp allows for a large number

of storage nodes to serve data to each application’s Datawarp
volume; ideally all of the storage nodes would serve data to
all applications. This allows for maximum bandwidth, but
presents a very complex picture for collecting utilization
statistics. Each Datawarp job collects statistics from each of
the compute nodes using the filesystem, and each of the
storage nodes serving data fragments and namespace
services for the filesystem. To make things even more
complex, a job can make use of more than one Datawarp
filesystem, and statistics can be gathered either for the whole
job, or for each constituent application, or both. The total
accounting data available for measuring Datawarp
workflows is large, and may be difficult to interpret without
automation.

In order to collect this large set of Datawarp statistics,
Cray provides a trio of plugins for Resource Utilization
Reporting (RUR). RUR is a Cray tool for collecting arbitrary
utilization statistics for jobs and applications run on Cray
systems. RUR runs a configurable list of data collection and

post-processing plugins, to collect data on processor usage,
memory consumption, energy used, utilization of
accelerators, and now Datawarp usage. This data is collected
from the compute nodes, and sometimes service nodes, used
by the job or application before the start of execution, and
again after completion. These data points are compared, and
the post-processed data is output to one or more data targets,
such as a text file in the user’s home directory, or a log file
on the system management workstation.

A. DWS RUR Plugin
In Cray’s 6.0up02 release of the CLE operating system a

new “DWS” RUR plugin became available. This plugin
provides six simple statistics from the compute nodes in an
application, providing a concise overview of the aggregate
activity on the filesystem:

• Number of inodes created
• Number of files created
• Number of bytes read
• Number of bytes written
• Maximum file offset read
• Maximum file offset written

B. DWS_SERVER RUR Plugin
In Cray’s 6.0up04 release of the CLE operating system

two new RUR plugins became available: dws_server and
dws_job_server. Both of these plugins provide the same
statistics, but do so at different times. Dws_server is run at
the beginning and end of an application, while the filesystem
is still mounted. Collecting accounting statistics at the end of
applications may miss some transactions that happen outside
of user’s applications. Cache type Datawarp filesystems may
retain cached writes in the Datawarp filesystem, which may
not yet have been synced to the parallel filesystem it is
caching. Scratch type Datawarp filesystems allow users to
set up lists of files which will be staged onto the filesystem
before application execution, and another list of files will be
staged off of the filesystem, to a permanent storage location,
after the application has run. Application scope accounting
will miss all of the transactions associated with cache
syncing and data stage-out. The Dws_job_server plugin is
run at the beginning and end of the job, after the filesystems
are unmounted, and all data is synced to the backing parallel
filesystem for cache-type Datawarp and all data staging is
completed for scratch type Datawarp.

These two plugins collect data from all of the storage nodes
serving namespaces and fragments for the Datawarp
instances used by the job. The dwfs and dwcfs filesystems
used by Datawarp make this easy, by providing simple
interfaces to collect this data from the node, and even
aggregating data from multiple nodes automatically.

C. Storage nodes report the following for each namespace
served:
• Maximum file offset read

Figure 2 Datawarp Topology

• Maximum file offset written
• Total bytes read
• Total bytes written
• Number of files created
• Total bytes staged-in
• Total bytes staged-out

D. Storage nodes also report the following for each
fragment of cache type served:
• Filesystem Capacity
• Capacity high-water mark
• Window-write-seconds
• Window-write-bytes
• Maximum offset read
• Maximum offset written
• Maximum offset threshold

E. Storage nodes report the following for each fragment of
scratch type served:
• Filesystem Capacity
• Capacity used
• Capacity high-water mark
• Maximum window write
• Write high-water mark
• Write moving average

IV. RUR OUTPUT
 For a small Datawarp filesystem served by two
storage nodes, with a single namespace, the resulting RUR
output may end up looking something along the lines of
this:
Uid: 16443, apid: 1050, jobid: 2546, cmdname: disk_tester,
plugin: dws {“token”: “2546.sdb”, “inodes_created”: 4114,
“files_created”: 4096, “bytes_read”: 281474976710656,
“bytes_written”: 70368744177664, “max_offset_read”:
68719476736, “max_offset_written”: 68719476736 }

Uid: 16443, apid: 123050, jobid: 2546, cmdname:
disk_tester, plugin: dws_server {[“dwtype”: scratch,
“realm_id”: 657, “server_count”: 2, “namespace_count”: 1,
“token”: “2546.sdb”,
“fragments”: {
“3141”: {“fragment_id”: 3141, “server_name”: “nid00343”,
"fs_capacity": 8796093022208, ”capacity_used":
3518437208883, "capacity_max": 4398046511104,
"max_window_write": 1073741824, "write_high_water":
4294967296, "write_moving_avg": 536870912},
“3142”: {“fragment_id”: 3142, “server_name”: “nid00344”,
"fs_capacity": 8796093022208, ”capacity_used":
3518437208883, "capacity_max": 4398046511104,
"max_window_write": 1073741824, "write_high_water":
4294967296, "write_moving_avg": 536870912}},
“namespaces”: {“2546.sdb_0”: {“bytes_read”:
281474976710656, “bytes_written”: 70368744177664,
“files_created”: 4096, “stage_bytes_read”: 0,

“stage_bytes_written”: 0, “max_offset_read”:
68719476736, “max_offset_written”: 68719476736 }}]}

The above is a very balanced configuration in which two
servers are sharing the load of the filesystem equally. The
report also provides both the user id and the command name.
In this case, disk_tester is a shell script which writes
sequential large blocks to large files.

V. ENABLING RUR COLLECTION OF DATAWARP
STATISTICS

In order to collect these statistics, RUR must be
configured to run the Datawarp plugins. The first step on this
is to enable RUR within the Cray Alps configuration file,
which is done with the Imps configuration tool cfgset update.
Within the Alps configuration file, the apsys prolog entry
should be set to /opt/cray/rur/default/bin/rur_prologue.py,
and the apsys epilog entry should be set to
/opt/cray/rur/default/bin/rur_epilogue.py. Then the RUR
configuration file must be updated to include the dws plugin,
the dws_server plugin, or both. The Datawarp plugins are not
enabled by default; running cfgset update will allow setting
each of these plugins to true.

Enabling the job scope RUR plugin, dws_job_server, is
more complicated. The workload manager prologue and
epilogue scripts will have to be edited to include calls to
RUR, and a job scope RUR configuration file will need to be
created. Firstly, /etc/opt/cray/rur/rur.conf should be copied to
the workload manager configuration directory. Dws and
dws_server plugins should be set to ‘false’, and the
dws_job_server plugin should be set to ‘true’. Once the
config file is set up, the prologue and epilogue scripts should
be modified to include calls to RUR. The prologue should
include:

/opt/cray/rur/default/bin/rur_prologue.py –a 0 –j $JOBID –c
$CONFIGFILE –n $NIDLISTFILE –A jobfile=$JOBFILE
–A jobtoken=$JOBTOKEN.

The epilogue should include:

/opt/cray/rur/default/bin/rur_epilogue.py –a 0 –j $JOBID –c
$CONFIGFILE –n $NIDLISTFILE –A jobfile=$JOBFILE
–A jobtoken=$JOBTOKEN.

The nidlistfile should be a file containing a list of the
storage nodes, while the configfile should point to the cloned
configuration file in the workload manager configuration
directory.

VI. DATAWARP ACCOUNTING USE CASES
The Following are a sample of scenarios in which RUR

statistics identifies a users making poor use of the Datawarp
resources, or the system providing suboptimal performance.
Variants of all of these have been found on test systems
during Datawarp development. They may or may not be
representative of the behaviors of users and software on

Datawarp systems used in production. Note that the output of
the RUR plugin is in bytes. For the purpose of this paper,
those values have been translated to read in gigabytes and
terabytes where it improves readability

A. Tracking Disk Writes
The first use case for accounting is simply tracking

which users are consuming the write cycles on the flash
drives in the storage nodes. Workload manager reports only
indicate how much space users are requesting, not how
much of the drive’s limited lifetime each user is consuming.
Below we see that the user wrote 184 terabytes of data,
which is forty-six full-drive writes spread across thirty-two
drives. Simply adding up these values across all of a user’s
jobs shows how much of the drive write endurance that user
is consuming. Systems that bill users based on compute
node hours used might consider also billing based on flash
drive write endurance consumed.

Uid: 16443, apid: 24104, jobid: 18052, cmdname: TDI.py,
plugin: dws_server {[“dwtype”: scratch, “realm_id”: 803,
“server_count”: 16, “namespace_count”: 1, “token”:
“18052.sdb”,
“fragments”: {…},

 “namespaces”: {“18052.sdb_0”: {“bytes_read”: 22.6TB,
“bytes_written”: 184TB, “files_created”: 26543… }}]}

B. Overallocating Storage
The next case is that of the user who was playing it a

little too safe on capacity. One can see from the following
RUR report that the user requested a thirty-two terabyte
partition, but only used four gigabytes. Obviously there are
times when this is necessary, but if a user is constantly over-
provisioning the storage for their jobs, it impacts the ability
of other users to run.

Uid: 16771, apid: 14654, jobid: 3116, cmdname: rzd.py,
plugin: dws_server {[“dwtype”: scratch,
“fragments”: {
“511”: {"fs_capacity": 32TB, ”capacity_used": 1.03GB,
"capacity_max": 8TB, …},
“512”: {"fs_capacity": 32TB, ”capacity_used": 1.02GB,
"capacity_max": 8TB, …},
“513”: {"fs_capacity": 32TB, ”capacity_used": 1.02GB,
"capacity_max": 8TB, …},
“514”: {"fs_capacity": 32TB, ”capacity_used": 1.02GB,
"capacity_max": 8TB, …}
}…]}

C. Excess Staging
 The next case is that of a user who preloaded
hundreds of gigabytes of data, then read up a very small
proportion of that data, using the scratch filesystem
primarily for writes. There are times when this is
appropriate, as in importing a complex data-set, making
changes in-place, and writing the final data out to permanent

storage. However, in this case the data is not staged out
automatically. If it is not written out as part of the user
application, one must wonder if the user is wasting the
resource.

Uid: 16443, apid: 24186, jobid: 18132, cmdname: postset,
plugin: dws_server {[“dwtype”: scratch, “realm_id”: 844,
“server_count”: 2, “namespace_count”: 1, “token”:
“18132.sdb”,
“fragments”: {…},
 “namespaces”: {“18132.sdb_0”: {“bytes_read”: 2.3GB,
“bytes_written”: 60.73TB, “files_created”: 273,
“stage_bytes_read”: 415.2GB, “stage_bytes_written”: 0,
… }}]}

D. Dissimilar Stripe Allocation
The following performance issue was discovered before

Datawarp accounting tools were available, but is indicative
of the sort of problems many users are interested in finding
with these tools. It accounts for a Datawarp filesystem that
provided performance significantly less than what the user
expected, given the number of storage nodes in the system.
Here we notice that one node contains five times as much
capacity as all of the other storage nodes serving the data.
This occurred because the Datawarp service had nearly
exhausted all of the available Datawarp capacity before the
allocation for this instance. When this instance was created,
it exhausted the capacity on seven of the storage nodes, and
allocated all of the rest of the instance onto nid00221, which
had more unallocated space available. Datawarp data is
striped across all of the storage nodes in the instance. In this
case, the striping was dissimilar between the storage nodes,
and nid00221 had five times as many stripes as any of the
other storage nodes. Thus the performance of the instance
was limited by nid0221, which provided one fifth of the
performance one would expect for each stripe, and the sum
of the eight servers were able to provide only about two
servers worth of bandwidth.

Discovering this problem led to the implementation of
new allocation modes in the Datawarp service called
‘Equalize Fragments’ which over-allocates instances to
prevent fragmentation. Another option, ‘Equalize Fragments
Guarantee’ will reject allocations that would provide
suboptimal performance; in such a case, the workload

Figure 3 Standard Allocations

manager would re-queue the job request, and run it when
capacity is available on all server nodes. Though this sounds
wasteful of capacity, it is not dissimilar from filesystem
settings that ensure that file allocations begin at the start of a
disk stripe boundary.

Uid: 16771, apid: 12350, jobid: 3522, cmdname:
HIO_wrapper, plugin: dws_server {[“dwtype”: scratch,
“realm_id”: 955, “server_count”: 8, “namespace_count”:
1, “token”: “
3522.sdb”,
“fragments”: {
“nid00343”: {"fs_capacity": 3TB, ”capacity_used":
155GB, "capacity_max": 250GB},
“nid00344”: {"fs_capacity": 3TB, ”capacity_used":
155GB, "capacity_max": 250GB},
“nid00345”: {"fs_capacity": 3TB, ”capacity_used":

155GB, "capacity_max": 250GB},
“nid00346”: {"fs_capacity": 3TB, ”capacity_used":
155GB, "capacity_max": 250GB},
“nid00221”: {"fs_capacity": 3TB, ”capacity_used":
750GB, "capacity_max": 1.25TB},
“nid00222”: {"fs_capacity": 3TB, ”capacity_used":
155GB, "capacity_max": 250GB},
“nid00223”: {"fs_capacity": 3TB, ”capacity_used":
155GB, "capacity_max": 250GB},

“nid00224”: {"fs_capacity": 3TB, ”capacity_used":
155GB, "capacity_max": 250GB},

VII. SUMMARY
Recent updates to Cray’s accounting tools allow the

collection of statistics about each Datawarp job, and the
resources it uses. This allows for studying trends in how the
user base use the system, and how individual users differ
from the norm. Above are a selection of user behaviors that
can be identified using the collected statistics. It does not
describe all interesting data patterns, and the Cray
development team looks forward to seeing what other
circumstance can be identified with these statistics.

Figure 4 Equalize Fragments Allocations

