
Project Caribou  
Streaming Telemetry for Sonexion 

Craig Flaskerud 
Cray Inc. 

Bloomington, MN USA 
cflaskerud@cray.com 

 
 

Abstract—This paper presents the architecture of project 
Caribou and details the types and sources of metrics that are 
collected and persisted. We will discuss the use of Grafana and 
the user interface as well as how to create customized Grafana 
panels to meet site-specific needs. We will discuss events and 
alerts that are available. We will explore data retention and 
reduction challenges of time series and logging data. We will 
also discuss collected metrics as well as calculated metrics and 
user interface workflows to more easily and quickly identify 
and root cause a performance problems. 

I. INTRODUCTION 
Distributed storage systems have always had challenges 

around timely availability of detailed metric performance 
and health data, specifically for real-time performance 
analysis and alerting.  Significant amounts of time series 
metric data as well as logging and event data are available in 
interfaces such as /proc, sysfs, syslog and SNMP. Examples 
of these raw data sources include Linux kernel stats, latency 
and bandwidth metrics, file system operations metrics and 
syslog data. These sources provide raw, unprocessed data 
formats that are difficult to use when gathered across a 
distributed system.  

 
A large array of tools exists to access and persist data 

needed for useful insights in a distributed storage system. 
However, many times custom tooling/scripts and data 
processing tools are needed to integrate multiple sources, to 
develop a picture of the overall performance. Making this 
data available in a streaming data architecture provides 
visibility to individual component, subsystem, user or 
application activity and provides new insights not currently 
available in the Sonexion storage system. This ultimately 
leads to a better understanding of a storage system’s activity 
and utilization.  

 
Project Caribou is chartered with developing Cray’s first 

product to address this domain, and focuses on the storage 
components of the HPC storage system infrastructure. 
Capabilities that have been developed focus on the ability to 
efficiently gather multiple data sources and stream them 
through an integrated message bus architecture. Caribou 
provides a foundation for expansion into other parts of the 
HPC infrastructure by providing an extensible architecture in 

which the additional sources of data can be integrated using 
the same patterns established for the storage components. 

II. BACKGROUND 
A relatively new domain of system management software 

called “IT operational Analytics” or ITOA is a concept that 
involves applying big data analytics techniques to gathering, 
analyzing and reporting on data from IT operations. Many 
companies already utilize big data analytics techniques for 
sales operations or marketing functions. However, the same 
techniques are only now beginning to be applied to IT 
operational data. The range of potential outcomes from 
applying analytics to IT metrics include measurable insights 
such as reduced mean time to repair (MTTR), all the way to 
predictive failure analysis on a complex distributed system 
like supercomputer infrastructure. Cray’s Caribou is a system 
management software infrastructure that aligns with 
concepts of ITOA. 

 
ITOA defines four primary sources of data from IT 

infrastructure that can provide useful insights. The four data 
sources are: 

Agent: All instrumented and observed behavior by a 
software module residing on a host computer. Things such as 
resource usage, transaction data and code-level trace output. 

Machine: This includes event logs, SNMP, etc. 
Functionally anything a machine records about its own 
activity, system self-reported information. 

Probe: synthetic transactions and service checks. This 
data is the output of tests specifically constructed to measure 
specific behaviors. 

Wire: Real-time streaming analysis of wire level protocol 
that transacts across a network. Application communication 
between applications nodes sensors makes up this class of 
data [1]. 

 
Caribou allows integration of all four sources of IT 

operational data. Time series data makes up much of the 
performance metric data that is collected. In addition, 
machine data is collected in the form of syslog, health events 
and SNMP queries.  This allows system software and 
hardware events to be correlated with performance metrics 
and software logs. Finally, wire data from the InfiniBand 
performance and error counter is integrated. Collecting the 



storage network metrics, software and hardware performance 
metrics, and events, allows analysis and visualization of the 
distributed storage system provided by the Cray Sonexion 
and its supporting infrastructure. 

 
Managing the lifecycle of time series data is paramount 

given the scale of data that a large scale distributed storage 
system can produce. Time series data is a type of data in 
which a series of data points, composed of variable 
measurements is taken periodically over a time interval. For 
large storage systems, billions of individual time series data 
points with high write and read throughput are expected. 
Time series data sets also experience a mostly insert/append 
workload with large deletions of expired data and with very 
few updates to the data in place. With this combination of 
characteristics, the workload of a time series database is 
quite different from normal database workloads.  

 
Persistence of time series data for Caribou is managed by 

InfluxDB. InfluxDB is a native time-series database, 
designed for high write and read requests for time series 
projects. InfluxDB is also designed for horizontal scalability. 
It allows data to be sharded for balanced data across multiple 
nodes. More about InfluxDB can be found at 
influxdata.com[2] .  
 

III. DATA MODEL 
 

Caribou provides a data warehouse for operational data 
being collected from the storage and compute infrastructure 
of a Cray supercomputer system. When implementing any 
data-centric infrastructure, having a blueprint for how the 
data will be arranged and accessed enables a clearer 
understanding of the scope of the data in the infrastructure, 
and the usefulness to analysis tools that will access the data. 
In software, a data model is a specific implementation of 
such a data blueprint. Data models represent the structure of 
the data, metadata and relationships managed by a software 
system. Data models define how things are labeled and 
structured which determines how data can be used and 
ultimately the value that can be found in the data.  

 
There are two common kinds of modeling used in 

designing database systems: relational and dimensional. 
Dimensional modeling uses the concepts of facts and 
dimensions stored in a de-normalized structure for optimized 
query. Facts are numeric values that can be aggregated. 
Dimensions are groups of hierarchies and descriptors that 
define the facts. Relational models, in contrast, are oriented 
to fine-grained transactional data, normalized, and stored in 
tables with chains of relationships among the tables. 

 
To facilitate queries to the data collected and stored by 

Caribou’s time series database, a dimensional data model 
was developed to represent the metric data that is collected. 
Utilizing a dimensional data model allows large, bulk 
transactions required to store the volume of data generated 
by large scale HPC infrastructure in a way that also 

simplifies later access. The dimensional data model 
ultimately satisfies the requirements of analysis and 
visualization of the metric data that are being managed by 
the Caribou application.  

 
Before collecting any data, specifically with scale in 

mind, it’s imperative to understand how the data will be used 
and accessed. Part of this is understanding which dimensions 
are needed. These dimensions enable the types of queries 
needed for visualization and analysis of the metric data. The 
table below shows the dimensions of the Caribou data model 
that are added to the metric measurements from the various 
components. 

 
time  
region 
tenant_id  
component 
device 
device_type 
hostname 
product  
service 
system_name 
value 
value_meta 
 
These dimensions, sometimes called tags, are stored as 

metadata in the time series database. This allows the 
implementation of the data model to support querying across 
the data by using any combination of the dimensions. Using 
these tags or dimensions on each time series, rather than 
encoding the dimensions in the series name, prevents the 
quantity of time series entries from growing each time a new 
host or component is added to the system. 

 
Caribou also stores data which is not well suited for time 

series databases. This includes logging and event data. For 
this type of data, a document type, noSQL database is used. 
Data modes for document-oriented systems rely on the 
structure of the documents contained in them to define their 
models. The syslog format, for example, defines a message 
field along with series of tags or dimensions. In this way, the 
syslog format is itself the data model. 

 
By having dimensions in the logging and event data, like 

hostname, that overlap with the dimensions defined by the 
metric data mode enables analysis and visualization tools to 
coordinate metric data with events from syslog 
infrastructure. Other event centric data from InfiniBand 
topology and SNMP polling outputs also have common 
dimensions with the metric data allowing for analysis across 
both types of data. Similar to syslog, InfiniBand and SNMP 
data are defined by the specifications that govern their 
formats, and therefore become the data models when stored 
in a document database. 

 



IV.  DATA COLLECTION 
 

Sonexion node metrics, Lustre file system metrics and 
Lustre Jobstats[8] metrics are collected by receiving data 
from a newly implemented streaming RESTful API on the 
Sonexion management servers.  This interface streams or 
pushes data to the monitoring system. By utilizing a 
streaming paradigm, the scalability of the interface is greatly 
increased compared to a system with a polling 
configuration.   

 
Caribou gathers Workload Manger (WLM) job status 

events directly from the Cray HPC system management 
workstation (SMW) to allow tracking both per application 
and per job statistics.  Each WLM interfaces with the Cray 
XC system management components through a common 
interface to inform the compute system of resource usage 
and resource reservations. This communication includes the 
start and stop events for each job and application. These 
events are gathered from the system management interface, 
communicated via the central message bus, and persisted in 
the time series database. This is required in part because the 
Lustre jobstats data has no concept of when a job or 
application starts or ends. Job and application start and end 
events enrich the metric data with the time window for each 
job. Job start and end events allow queries of metrics 
occurring within that time interval. This in turn allows 
Caribou to calculate several derived metrics, such as average 
IO size per application and metadata ratio. 

 
Other important sources of metric data are the Infiniband 

port and error counters. This is implemented as a software 
module that queries the port performance and error counters 
via OFED command line tools found in the infiniband-diags 
packages. On an interval of 300 seconds, the port and error 
counters are read and delivered via the central message bus. 
At the interval these counters are collected, delta values since 
the last collection are calculated.  This allows the system to 
establish rate values over the interval, that are then stored in 
the time series database. 

 
Sonexion system logs and system events are also 

stored to enable additional context to Caribou’s metric data. 
This type of data is not well suited to the structure of a time 
series database. To resolve this issue, an additional data store 
is implemented for this contextual data. This contextual data 
is stored in a document style database.  Since much of this 
contextual data is in the form of logs, the structure used for 
log data is defined by the syslog data format as documented 
in RFC 5424 [5].     

 
Caribou also integrates multiple logging sources from the 

Sonexion syslog infrastructure. Within the Sonexion itself, 
multiple log files tracking the various subsystems are 
forwarded to the management servers via syslog-ng. These 
logs include, but are not limited to:  

 
• /var/log/debug 

• /mnt/mgmt/var/log/messages 
• /var/log/secure 
• /var/log/maillog 
• /var/log/spooler 
• /var/log/boot.log 
• /var/log/cron 
• /mnt/mgmt/var/log/ha.log 
• /mnt/mgmt/var/log/bash 
• /mnt/mgmt/var/log/ctdb 
• /mnt/mgmt/var/log/winbind 
• /mnt/mgmt/var/log/cifs 
• /mnt/mgmt/nfs   
• /mnt/mgmt/openldap.log 
 
Utilizing syslog-ng forwarding capabilities from the 

Sonexion management nodes, the logs are integrated into the 
Caribou infrastructure via rsyslog.  Logs are received and 
stored into the Elasticsearch database. Elasticsearch provides 
the ability to perform fast, indexed queries of the logs 
gathered from the Sonexion. This log data is later used to 
augment time series data with specific events in the user 
interfaces.   

 
Finally, the InfiniBand topology of the Sonexion system 

is stored to allow changes in the topology to persisted over 
time. A topology is first established by utilizing 
ibnetdiscover() to create a baseline, then stored in the 
Elasticsearch database. Every thirty minutes, a discovery of 
the topology is again invoked, stored and compared to the 
baseline state. When a change in the topology is detected, a 
boolean metric in the time series database is updated to 
enable alarming and notification. 

 
 

V. DATA RESOLUTION 
 

An aspect of data collection that has significant effects on 
the analysis is the resolution at which data sources are 
collected. One of the most popular data collectors for a 
Lustre based system like Cray’s Sonexion, is Lustre 
Monitoring Tool (LMT). While Caribou does not use LMT 
to collect Lustre metrics, what is provided by the streaming 
API in the Sonexion are sampled on an ongoing basis from 
the same /proc filesystem managed by Lustre. Cray has used 
LMT to compare the output data collected to ensure accuracy 
of the data. The frequency (and therefore the resolution) of 
the collected data is sometimes different between the two 
tools, principally due to scalability goals of the Caribou 
design. Because the data is gathered on longer intervals to 
scale to a very large Lustre system, some compromises on 
fidelity of the data are made. For this reason, a direct 
comparison of LMT capabilities to those found in Caribou 
are not reasonable without specific configuration of each 
tool.  

 
 
 



 
Fidelity of the data collected and stored by Caribou is 

different depending on the type of data. Table I outlines the 
data collection rates for each component of Caribou 

 
 

TABLE I.   DATA COLLECTION RATES 

 
Data Collection Rates of Caribou 

Component Rate 
(sec) Measurement 

MDS 5 CPU Utilization, Memory Utilization 

MDT 5 

close, connect, create, destroy, disconnect, 
getattr, getxattr, link, llog_init, mkdir, 
mknod, notify, open, process_config, 
quotactl, reconnect, rename, rmdir, setattr, 
statfs, unlink 

MDT 60 
kbytesfree, kbytesavail, free_inodes, 
used_inodes 
 

OSS 5 

read_bytes, write_bytes 
60 sec samples: kbytesfree, kbytesavail, 
free_inodes, used_inodes 
 

OST 5 read_bytes, write_bytes 

OST 60 
kbytesfree, kbytesavail, free_inodes, 
used_inodes 
 

Jobstats 30a 

create, destroy, getattr, get_info, puch, 
quotactl, read_bytes, read_bytes_max, 
read_bytes_min, read_bytes_sum, setattr, 
set_info, statfs, sync, write_bytes, 
write_bytes_max, write_bytes_min, 
write_bytes_sum 
 

a. Jobstats collection rate is configurable 
 
 
 
 
 

VI. DATA TRANSPORT 
 

Traditional monitoring systems utilize direct connection 
of monitoring agents directly to the storage layers designed 
to persist the data collected. This architecture misses an 
opportunity to implement streaming analysis of the 
monitoring data as it moves from its collection source to a 
persistent store. Streaming analysis of data is one of the ways 
that Caribou applies big data concepts to HPC systems 
monitoring.  

 
Big data infrastructure commonly integrates data 

collected from distributed environments via a message bus. 
Message bus architectures have three components for 
controlling and accessing data: Producers, sources of data 
“produce” the data in message bus system; Consumers, 
clients of the bus, access the messages on the bus for storing 

and analyzing data as it flows through the system; 
and Brokers that manage and cache messages. All access to 
the messages is managed through the broker nodes. 
Messages in a message bus system are organized into topics 
and partitions within the message bus. Topics allow 
consumers to operate on subsets of the data ingested by the 
producers, and partitions allow topics to scale across many 
brokers.  There are various open source and commercial 
implementations of the message bus concepts. For Caribou, 
Apache Kafka is implemented as the message bus 
infrastructure.  

 
“Apache Kafka is a publish-subscribe messaging system 

rethought as a distributed commit log. It was originally 
developed at LinkedIn and later on became a part of the 
Apache project. Kafka is fast – a single Kafka broker can 
handle hundreds of megabytes of reads and writes per second 
from thousands of clients. The main reason why it’s so fast is 
that it uses zero copy[4] and works in a partitioning 
mechanism. Applications that use zero copy request that the 
kernel copy the data directly from the disk file to the socket, 
without going through the application. Zero copy greatly 
improves application performance and reduces the number of 
context switches between kernel and user mode. Other 
advantages of Kafka are that consumers keep the index of 
read data, not Kafka itself. It is scalable – can be elastically 
and transparently expanded without downtime, durable – 
messages are persisted on disk and replicated within the 
cluster to prevent data loss, and distributed by design – it has 
a modern cluster-centric design based on multiple brokers 
and partitions [3].” 

 
Within the Kafka message bus, Caribou implements 

multiple producers to ingest time series data. InfiniBand 
performance and error counters, Lustre file system metrics, 
Lustre jobstats and job status information are all gathered 
and written to the Kafka message bus. Each of these metrics 
is put onto the message bus using producers developed to 
interface with the specific sources of data.  
 

 

VII. DATA PERSISTENCE 
 

Considering the four classes of data defined by ITOA, 
many different data storage methods could be employed for 
storing the data. Metric time series data represents the 
highest volume of data managed by the Caribou 
infrastructure.  With the advent of noSQL databases, several 
products specifically designed to deal with the access and 
scale of time series metrics have become popular. InfluxDB 
from InfluxData[6] is the database chosen for Caribou. 
InfluxDB has both a database engine designed to efficiently 
store time series metrics, as well as a query language and 
data management features that make it an ideal choice for 
time series data. 

 
Among the most significant challenges in managing time 

series data are ingest performance, query speed, and 



efficiency of storing the data. Each of these qualities 
represents different aspects of scalability that affect the 
overall capabilities of an analytics application. For the 
Caribou application, query performance is the most 
impactful to the user interfaces. The dashboard views that are 
provided may query up to ten different time series with tens 
of thousands of data points for each series, when long 
periods of time are selected. One of the ways to address both 
ingest and query performance requirements is the use of 
solid state disk (SSD) storage. Combining SSD storage and 
indexing of the dimensional tags associated with the time 
series data significantly increases the query performance. 
This indexing allows searching the time series by tags from 
the dimensional model to also become highly performant. 
Comparison of InfluxDB and other databases tools can be 
found on the InfluxDB website [7]. 

 
While time series data is addressed specifically by 

InfluxDB, all other data that’s managed including primary, 
logging data, is stored using the Elasticsearch document 
database. Elasticsearch is part of the popular open source 
ELK (Elasticsearch, Logstash, Kibana) toolchain. 
Elasticsearch provides a flexible and scalable store suitable 
for events in addition to logging data. Caribou stores 
hardware events as well as Infiniband topology data in 
separate indexes in Elasticsearch. These logs and events can 
be combined with metric data from the time series database 
to allow events affecting system performance to be 
visualized in a combined way. This makes the assessment of 
both the overall system and individual components easier by 
including both types of data.  
 

VIII. DERIVED METRICS 
 
Several of the time series data made available by Caribou 

are calculated or derived metric values. These values are 
generated by computing values from the raw counts 
collected from the Sonexion API and stored as additional 
time series using InfluxDB. In many cases data reported 
from the API are in counts rather than as rates. It is necessary 
then, to compute a rate by using the delta of the data over the 
interval of collection before storing the data. Rates of data 
flow are much more useful for time series analysis, 
specifically for comparison visualization between different 
dimensional queries. In other cases, values for metrics like 
average IO size issued by an application are calculated 
specifically for supporting the analysis workflows in the user 
interface.   

 
Scoring is an additional concept implemented to help 

administrators find components which may affect overall 
system performance. Scoring involves creating derived 
metric values that highlight outlying behavior of some 
components in relation to other similar components. 
Currently, derived scores are limited to a metadata ratio and 
average IO size, computed and stored in a time series. 
Metadata ratio is defined as the sum of all reads and all 
writes for a specific job, divided by the total number of 

metadata operations performed by the job. Derived job 
metrics are calculated at a once per minute frequency for 
each job the system executes.  
 

IX. USER INTERFACE 
 

Combining the power of modern graphics capabilities of 
web browsers with the ability to access statistical 
relationships between multiple sets of values dynamically, 
leads to many powerful new insights.  Humans can see 
patterns and relationships that are not easily found by 
looking at text driven interfaces because they don’t allow us 
to fully utilize the cognitive ability of our brains. 

 
"Visualization allows people to offload cognition to the 

perceptual system, using carefully designed images as a form 
of external memory. The human visual system is very high-
bandwidth channel to the brain, with a significant amount of 
processing occurring in parallel and at the pre-conscious 
level. We can thus use external images as a substitute for 
keeping track of things inside our own heads [9].” 

 
By augmenting our cognitive systems via rich user 

interfaces, we can use graphical images to turn something we 
want to find into something we can see. 

 
Caribou provides graphical workflows and visualizations 

with user interface capabilities designed to help users solve 
common problems within a distributed storage system. 
Starting with an initial dashboard landing page, a sequence 
of tiles provides an at-a-glance view of multiple Sonexion 
systems configured within the system. These tiles are 
designed to provide a high-level overview of the most 
critical metrics of a system. Rather than providing live 
streaming graphical visualizations at the initial view, 
compact, densely packed data is displayed. 

 
Within each of the tiles, the values are linked to specific 

workflows that use common open source tools for metric 
analytics & visualization. By providing a framework for 
creating various types of charts, and a RESTful API to 
dynamically update the data sources in the charts, Grafana 
replaces the need for a custom-developed charting 
framework. Standard charts and dashboards to match the 
workflows supported by Caribou are provided via Grafana in 
a web browser. Dynamic creation of charts and dashboards is 
enabled by the Grafana REST API.  By inspecting the 
dimensions of the time series in the database, in combination 
with JSON templates for the dashboards, displays are 
customized to the naming structure of the Sonexion systems 
at a site. Logging and event data are integrated into the charts 
by annotating time series data with events stored in the 
Elasticsearch database. This integration of metrics and 
logging in a visual context allows logs and events that affect 
performance to be easily seen with various charts.  

 
Workflows that have been developed support three 

common concepts in a Sonexion system, object storage 



targets (OST), meta data targets (MDT) and Lustre jobstats. 
These workflows overlap or link to one another in various 
ways depending on the use of the interface. The most 
compelling of the workflows is jobstats. The jobs capabilities 
are driven by the Lustre jobstats capabilities to collect 
metrics about the Lustre file system for each job defined by 
the workload manager (WLM). 

 
Lustre jobstats allows the collection of IO activity to be 

tagged with App ID or Job ID, thereby enabling the IO of 
each job to be stored.  Workload managers assign a job ID to 
identify the allocations of resources assigned to a user for a 
specified amount of time. A job normally contains a set of 
job steps that are associated to the application execution. 
These steps are also assigned an identifier called an 
application Id or App ID. Job ID and App ID allow the 
system to track system resources at both a coarse and fine 
grained level, providing detailed data for analysis. 
Combining the overall Sonexion system performance with 
the metrics from a single job or application allows job 
specific activities on the Lustre file system to be visualized 
in contrast to one another as well as comparison to the 
overall system activity. The OST and MDT workflows allow 
views of IO and meta data activity on a per OST or MDT 
basis, including which jobs are active and the count and rate 
of operations on each MDT or OST. 
 

Many users have extensive experience in analyzing 
Sonexion systems and may wish to develop dashboards and 
even workflows that fit their needs. To enable this, online 
documentation of the data model used in Caribou is 
provided. This documentation defines the names of the time 
series stored in InfluxDB as well as a definition of each of 
the values. Users can then create new Grafana dashboards, 
using the editing tools it provides to create charts and 
dashboards that visualize queries into the time series 
database. This flexibility allows users to not only use what is 
provided by Cray but augment them with the specific needs 
or insights of individual users or administrators. 

 
Alerting is an additional type of user interface that is 

provided within the Caribou software.  Alerting creates 
better awareness of the conditions that are affecting the 
Sonexion and its infrastructure without constantly watching 
the dashboards. Alerting is driven by a capability to define 
an alarm which in turn notifies a user or system in a flexible 
way.  Alarms are implemented by utilizing streams 
processing on the metric values passing across the message 
bus. This streams processing provides thresholding that 
evaluates the metric values for time series defined by 
expressions in an alarm definition. Alarm definitions are also 
dynamically scaled based on the dimensions of the metrics. 
The dimensions of a time series apply the same alarm 
definition to new instances of the same component (such as 
an OST) added to the system, thereby scaling the definition 
across all instances of the dimension. Alarms trigger 
notifications when an alarm transitions to a new state. Three 
states for alarms are defined: OK, Alarm and Undetermined. 

A notification can be configured to be sent to an email, pager 
or posted to a web URL.  

 
Predefined alarms are configured during installation to 

notify the user of conditions in a system managed by 
Caribou. Predefined alarms include: OST fullness, errors in 
IB counters, and overall Sonexion health. In addition, when 
metrics are no longer coming into the Caribou system or 
local disk space utilization is above 95 percent, an alarm will 
be activated. Configuration of alarms to act upon other 
metrics from the Caribou data model can also be 
implemented by the user. Currently only metric values can 
be alerted upon.  Notifications are configured separately 
from alarms. During installation, an email address can be 
provided for notification of predefined alarms. This is 
intended to be a group email list, as the notification 
capability does not have the capability to manage multiple 
individual email address. 

 
As discussed earlier, system logs are collected and stored 

in the Elasticsearch database. To browse and search this log, 
the Kibana web interface is also included with Caribou. This 
allows users to access not only the logs that are stored but 
also to see health events and IB topology changes that have 
been recorded. The Kibana interface has similar abilities to 
Grafana allowing for creation of dashboards and advanced 
visualizations for the data in Elasticsearch. None of these 
have been preconfigured by Caribou. Data in Elasticsearch is 
used by Grafana to annotate the time series visualization 
with event and log data.  

X. DATA MANAGEMENT 
 

Collecting and managing operational data at large scale 
requires careful consideration of storage efficiency, and the 
duration that metrics are kept throughout the storage 
management lifecycle. The most significant amount of 
retained data comes from the metric and logging data 
sources. Each Lustre MDT, OST, MDS and OSS produces 
different measurements at different rates. Metric data points 
stored in InfluxDB each consume three bytes. Lustre jobstats 
collection repeats the Lustre MDT and OST for each job that 
issues IO to the Lustre filesystem. Finally, Infiniband metrics 
also store metric data in the Influx database for each HCA 
and port on the IB fabric. Since each of these components 
collect different quantities in each customer configuration, 
computing the specific amount of data that must be managed 
is dependent on the configuration specifics of the system.   

 
 
 
 
 
 
 
 
 



TABLE II.  EXAMPLE DATA QUANTITY FOR A 2 SSU SONEXION 
SYSTEM, NOT INCLUDING JOBSTATS 

Component Number of 
Measurements 

Component 
Qty. 

Samples 
per Hr. Kbytes/hr. 

MDT 26 1 520 39.6 
MDS 4 2 60 1.40 
OST 7 4 520 42.6 
OSS 4 2 60 1.40 
IB 17 20 12 111.5 

Totals 58 29 1172 196.5 
 

 
Calculating jobstats data is dependent on the number of 

jobs that the system executes over the interval used to 
calculate the quantity. Cray has found that the number of 
jobs can vary widely between sites. Caribou collects 18 
measurements for each job with 6 dimensions per 
measurement at a rate of one sample every 30 seconds. This 
results in 38KB per hour for each job. 

 
To aid administrators in managing the quantity of data 

collected by Caribou, data retention polies are implemented 
on both the InfluxDB time series database and the 
Elasticsearch infrastructure. These retention policies allow 
the definition, in number of days, the length of time that data 
is retained for both the time series and logging/event data. 
By default, data is retained for 3 days These values can be 
adjusted via command line interfaces for both InfluxDB and 
Elasticsearch, depending on the combination of the size of 
the storage system used for the database and the policy of the 
site.   

XI. FUTURE WORK 
 

Utilizing the patterns and framework developed for 
Caribou, Cray is exploring other components of the IO 
infrastructure where data can be collected. This work is 
aligned with the Cray XC architecture and requires careful 
understanding of the efficiency of the network fabric, as well 
as the impact on the CPU during the ongoing data collection. 
Areas of specific interest include metrics for Lustre clients, 
LNET, and the Aries interconnect. Cray is also planning to 
extend the Caribou capabilities to DataWarp. This work will 
include gathering data from components like SSDs, DVS, 
and the DataWarp service. Cray is currently investigating 
combining the lightweight distributed metric service[12] 

(LDMS) from Sandia National Laboratories with the Kafka 
message bus in Caribou. Combining the scalability and 
efficiency of the LDMS collection capabilities with the big 
data analytics architecture of Caribou may provide highly 
differentiated value to the Cray system management 
infrastructure. 

   

XII. SUMMARY/CONCLUSIONS 
 
 

Collecting and integrating multiple types of operational 
data has many aspects and benefits. Caribou enables both 
visual and threshold analysis to help Sonexion users and 
administrators better understand the activity of their system. 
By applying big data analysis and architecture to operational 
data, Cray is laying a foundation for new insights and further 
analysis of many types of operational data beyond storage 
systems.  Enriching the experience with events and logs 
provides additional context required to help Cray’s 
customers begin to answer the elusive question repeated by 
so many users: “Why is my system running slow today?” 

 

ACKNOWLEDGMENT 
The Cray Caribou Team: Patti Langer, Allen Stipek, Ben 

Preece, Scott Donoho, Neil Dizon, Dennis Moen, Jonathan 
Hall, Jim Thornsberry, Colleen Martin, Jon Fashingbauer. 

 

REFERENCES 
 

[1]http://www.itoperationsanalytics.net 
[2]https://docs.influxdata.com/influxdb/v1.2/concepts/storage_engi
ne/ 
[3 http://codecarnival.blogspot.com/2016/09/apache-kafka.html 
[4]Zero Copy I: User-Mode Perspective in Linux Journal - January 
1, 2003 
[5] https://tools.ietf.org/html/rfc5424 
[6] https://www.influxdata.com/products/open-source/#influxdb 
[7]https://www.influxdata.com/_resources/ 
[8] ] http://doc.lustre.org/lustre_manual.xhtml#dbdoclet.jobstats 
[10] Visualization –Tamara Munzner — 2009 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.154.7671 
[11] https://cw.infinibandta.org/document/dl/7859 
[12] https://ovis.ca.sandia.gov/mediawiki/index.php/FAQ_Public 

 


