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Abstract— The High Performance Conjugate Gradients 
(HPCG) and High Performance Geometric Multi-Grid 
(HPGMG) benchmarks are alternatives to the traditional 
LINPACK benchmark (HPL) in measuring the performance of 
modern HPC platforms. We performed HPCG and HPGMG 
benchmark tests on a Cray XE6/XK7 hybrid supercomputer, 
Blue Waters at National Center for Supercomputing 
Applications (NCSA). The benchmarks were tested on CPU-
based and GPU-enabled nodes separately, and then we 
analyzed characteristic parameters that affect their 
performance. Based on our analyses, we performed HPCG and 
HPGMG runs in Multiple Program, Multiple Data (MPMD) 
mode in Cray Linux Environment in order to measure their 
hybrid performance on both CPU-based and GPU-enabled 
nodes. We observed and analyzed several performance issues 
during those tests. Based on lessons learned from this study, we 
provide recommendations about how to optimize science 
applications on modern hybrid HPC platforms.  

Keywords-HPC benchmark; MPMD mode; heterogeneous 
computing; GPU; hybrid HPC platforms 

I.  INTRODUCTION 
Since 1979, LINPACK benchmark (HPL) [1] has been 

used to measure the performance of HPC systems and the 
TOP500 list has been accordingly updated to rank the 
world’s most powerful supercomputer. However, there have 
been many opinions criticizing whether HPL is a good 
metric to measure modern HPC performance or not. One of 
the main criticisms is its low memory to flop (Byte/Flop) 
ratio. Byte/Flop ratios of many applications in molecular 
dynamics, weather forecasting, astrophysics, particle 
physics, structural analysis and fluid dynamics are between 
10-1 to 10, while the ratio of HPL benchmark is less than 10-

3. Since 2014, HPC community has shared the High 
Performance Conjugate Gradients (HPCG) [2,3] and High 
Performance Geometric Multi-Grid (HPGMG) [4,5] 
benchmark results in order to represent modern HPC 
performance for many science and engineering HPC 
applications, at least, in terms of Byte/Flop ratios.  

This study is an extension of our continuing effort [6] to 
find out appropriate benchmarks for modern HPCs. In this 
study, we employed HPCG and HPGMG benchmarks to 
measure the performance of the Blue Waters system located 
at National Center for Supercomputing Application (NCSA). 
Blue Waters [7,8] is a Cray XE6/XK7 hybrid supercomputer 
with 22,640 CPU-based XE6 nodes and 4,228 GPU-enabled 

XK7 nodes. The XE6 dual-socket nodes are populated with 2 
AMD Interlargos model 6276 CPU processors with a 
nominal clock speed of at least 2.3 GHz and 64 GB of 
physical memory, while the XK7 accelerator nodes are 
equipped with one Interlagos model 6276 CPU process and 
one NVIDIA GK110 “Kepler” accelerator K20X with 32 GB 
of CPU memory and 6 GB of GPU memory. We first tested 
HPCG and HPGMG on dual-socket CPU-based nodes and 
single-socket GPU-enabled nodes separately. After 
analyzing numerous configurations for the optimal 
performance, we moved on Multiple Program, Multiple Data 
(MPMD) runs to evaluate the performance on CPU-based 
XE6 nodes and GPU-enabled XK7 nodes together. We 
provide performance analyses results based on MPMD runs 
and our recommendations for other HPC applications on 
modern hybrid HPC platforms.  

 

II. HPCG BENCHMARK ON BLUE WATERS 

A. General Description 
The HPCG [2,3] implementation contains crucial 

computational and communicational patterns present in 
various methods for discretization and numerical solutions of 
PDEs, such as dense and sparse computations, dense and 
sparse collectives, multi-scale execution of kernels through 
truncated multi-grid V cycles, and data-driven parallelism for 
unstructured sparse triangular solves. It synthetically 
discretizes an elliptic Partial Differential Equation (PDE) in 
3 dimensions with zero Dirichlet boundary conditions (BCs) 
and a synthetic right hand side (RHS) vector.  A local 
domain, nx×ny×nz is distributed into all available MPI ranks 
with a process layout npx×npy×npz; as a result, the global 
domain size becomes (npx×nx)×(npy×ny)×(npz×nz). The global 
sparse matrix is a symmetric positive definite matrix 
assembled by element-wise 27-point stencil operator. It is 
solved via the CG iterations including a local and symmetric 
Gauss-Seidel pre-conditioner, which computes a forward and 
a backward solve with a triangular matrix. The HPCG 
benchmark subsequently rewards investments in high-
performance collective operations, local memory system 
performance and low latency cooperative threading [3]. At 
SC16, the 6th HPCG performance list was announced. Five 
systems in the top 10 are GPU- or XEON Phi-based systems, 
while other five systems are CPU-based systems.  

 
 



 

In this section, we first present HPCG benchmark results 
on CPU-based XE nodes or GPU-enabled XK nodes. We 
tested them for several different configurations in terms of 
local block sizes, process layouts, number of threads, and 
number of nodes. Based on analyses of the numerous test 
results, we performed MPMD runs using XE and XK nodes 
together for HPCG benchmark. At the end of this section, we 
discuss load-balancing issues between XE and XK nodes, 
and provide recommendations for HPC applications on 
hybrid systems. 

B. HPCG on CPU-based XE nodes 
We downloaded source files of HPCG revision 3.0 from 

the official HPCG GitHub repository (https://github.com 
/hpcg-benchmark/hpcg). We first built an executable with 
gcc/4.9.3 and cray-mpich/7.3.0 on Blue Waters (i.e., HPCG-
CPU-GitHub-GNU), and then tested it for a variety of MPI-
rank and thread combinations, and for various sizes of local 
blocks. Based on these results, we performed a scaling test 
with up to 4 % of Blue Waters XE nodes with HPCG-CPU-
GitHub-GNU. In addition, we built the second executable 
binary with intel/16.0.3.210 with cray-mpich/7.3.0 on Blue 
Waters (i.e., HPCG-CPU-GitHub-Intel), and then conducted 
an additional scaling test with the new binary.  

A single XE node on Blue Waters has 16 floating-point 
units (FPUs) with two integer cores sharing a single FPU 
(i.e., total 32 integer cores in an XE node). Depending on 
usage rates of FPUs, some applications may optimally 
perform by assigning a single core for a thread, while others 
may perform better with a single FPU per thread. Figure 1 
and Table I show HPCG-CPU-GitHub-GNU performance 
for multiple threads on 4 XE nodes in weak scaling for MPI 
rank. Each MPI rank has 1043 local blocks; therefore, the 
global domain size as well as memory usage decreases as the 
number of threads increases. The red line shows HPCG 
performance when we assigned one integer core per thread. 
The blue line shows results when one FPU is assigned for a 
thread. The case with 128 MPI ranks and 1 integer core per 
thread shows the best performance, though other cases with 
64 MPI ranks and 1 integer core or FPU per thread show 
similar results to the best case. It means HPCG on Blue 
Waters shows an optimal performance when its OpenMP 
threads share a single FPU, not multiple FPUs. In other cases 
where each MPI rank uses multiple FPUs through threading, 
HPCG performance noticeably drops even on the same 
number of XE nodes.  

Figure 2 and Table II show HPCG-CPU-GitHub-GNU 
performance for multiple threads on 4 XE nodes in strong 
scaling for MPI rank. We configured that the global domain 
has 832×4162 blocks for all cases. As number of threads 
increases, we assigned larger blocks to each MPI rank. All 
cases, consequently, used around 103 GB in memory that is 
approximately 40% of memory on 4 XE nodes. When each 
MPI used a single FPU, HPCG showed the best performance 
as observed in the previous tests. The performance of strong 
scaling tests in Figure 2 shows a little bit more drops with 
many threads than weak scaling tests in Figure 1, but the 
difference between weak and strong scaling tests was not 
significant.  

  

 
 

 

 
Figure 1. HPCG-CPU-GitHub-GNU for multiple threads on 4 XE nodes – 

weak scaling for MPI rank (the same number of equations per MPI rank) 

TABLE I. HPCG-CPU-GITHUB-GNU RESULTS FOR MULTIPLE 
THREADS ON 4 XE NODES IN WEAK SCALING FOR MPI RANK 

Core 
type per 
thread 

MPI 
rank 

Number 
of 

threads 

HPCG 
(GFLOP/s) 

Number of 
Equations 

in total 

Memo
ry 

(GB) 

1 integer 
core per 
thread 

128 1 21.4798 143,982,592 102.99 
64 2 21.1808 71,991,296 51.50 
32 4 15.6547 35,995,648 25.75 
16 8 9.47234 17,997,824 12.87 
8 16 4.53633 8,998,912 6.44 
4 32 2.2442 4,499,456 3.22 

1 FPU 
per 

thread 

64 1 20.7478 71,991,296 51.50 
32 2 15.5168 35,995,648 25.75 
16 4 9.50418 17,997,824 12.87 
8 8 4.45687 8,998,912 6.44 
4 16 2.24646 4,499,456 3.22 

 

 
Figure 2. HPCG-CPU-GitHub-GNU for multiple threads on 4 XE nodes – 

strong scaling for MPI rank (the same number of equations in total) 



 

 
 

 

 
 
Figure 3 and Table III present HPCG-CPU-GitHub-GNU 

performance for different local block sizes on 4 XE nodes. 
Since HPCG in the previous tests shows the best 
performance with 128 MPI ranks on 4 XE nodes, we again 

used the same configuration for this test.  The x-axis shows 
number of local blocks along each direction (i.e., nx=ny=nz) 
and y-axis shows HPCG results in GFLOP/s and 
corresponding memory usages in GB. As nx increases, the 
memory usage on 4 XE nodes exponentially grows (i.e., blue 
line in Figure 3). However, HPCG performance (i.e., red line 
in Figure 3) keeps constant after sharp drops for cases with 
very small numbers of equations. The green dotted line in 
Figure 3 shows a quarter of full memory on 4 XE nodes that 
is the required minimum memory usage for official HPCG 
results. Through this test, it turns out that local block size 
does not significantly affect HPCG performance once it 
satisfies the official HPCG requirement for memory usage.  

 

 

 
 

We chose nx = ny = nz = 104 for a scaling test for HPCG-
CPU-GitHub-GNU, and conducted it with up to 800 XE 
nodes (i.e., around 3.6% of Blue Waters XE nodes). Based 
on our previous test results, we assigned 32 MPI ranks per 
node (i.e., 1 MPI rank to 1 integer core); therefore, number 
of MPI ranks used in this test was from 32 to 25,600. The 
memory usage was around 40% of assigned XE nodes. As 
shown in Table IV, HPCG-CPU-GitHub-GNU shows an 
impressive scaling on Blue Waters, and it keeps more than or 
equal to 95% of parallel efficiency in all of the cases.  

We conducted an additional scaling test for HPCG-CPU-
GitHub-Intel with up to 1,024 XE nodes (i.e., around 4.6% 

TABLE II. HPCG-CPU-GITHUB-GNU RESULTS FOR MULTIPLE 
THREADS ON 4 XE NODES IN STRONG SCALING FOR MPI RANK 

Core 
type per 
thread 

MPI 
rank 

Number 
of 

threads 

HPCG 
(GFLOP/s) 

Number of 
Equations 

in total 

Memo
ry 

(GB) 

1 integer 
core per 
thread 

128 1 21.8334 143,982,592 102.99 
64 2 21.1425 143,982,592 102.98 
32 4 15.3969 143,982,592 102.96 
16 8 9.95385 143,982,592 102.95 
8 16 4.34153 143,982,592 102.94 
4 32 2.09014 143,982,592 102.92 

1 FPU 
per 

thread 

64 1 20.74 143,982,592 102.98 
32 2 15.5413 143,982,592 102.96 
16 4 9.45932 143,982,592 102.95 
8 8 4.23567 143,982,592 102.94 
4 16 2.00099 143,982,592 102.92 

 

 
Figure 3. HPCG-CPU-GitHub-GNU performance for various local block 

sizes on 4 XE nodes 

TABLE III. HPCG-CPU-GITHUB-GNU PERFORMANCE FOR VARIOUS 
LOCAL BLOCK SIZES ON 4 XE NODES 

nx ny nz 
HPCG 

(GFLOP/s) 
Number of 

equations in total 
Memory 

(GB) 
16 16 16 26.5972 524,288 0.38 
24 24 24 24.5402 1,769,472 1.27 
32 32 32 23.0211 4,194,304 3.01 
40 40 40 22.9008 8,192,000 5.87 
48 48 48 22.5263 14,155,776 10.14 
56 56 56 22.0341 22,478,848 16.09 
64 64 64 21.6028 33,554,432 24.02 
72 72 72 21.7075 47,775,744 34.19 
88 88 88 21.3858 87,228,416 62.41 
96 96 96 21.3235 113,246,208 81.01 

104 104 104 21.8639 143,982,592 102.99 
112 112 112 21.8343 179,830,784 128.63 
120 120 120 21.6664 221,184,000 158.20 
128 128 128 21.5274 268,435,456 191.98 

TABLE IV. SCALING TEST FOR HPCG-CPU-GITHUB-GNU WITH UP 
TO 3.6% BLUE WATERS XE NODES 

XEs MPI 
ranks 

HPCG 
(GFLOP/s) 

Number of 
equations in 

total 

Memory 
(GB) 

Effici-
ency 
(%) 

1 32 5.43104 35,995,648 25.75 100 
2 64 11.355 71,991,296 51.50 105 
4 128 21.9875 143,982,592 102.99 101 
8 256 43.5148 287,965,184 205.99 100 

16 512 86.6853 575,930,368 411.97 100 
32 1024 170.412 1,151,860,736 823.94 98 
50 1600 268.921 1,799,782,400 1,287.40 99 
100 3200 538.826 3,599,564,800 2574.81 99 
200 6400 1057.59 7,199,129,600 5149.62 97 
400 12800 2154.29 14,398,259,200 10299.2 99 
800 25600 4137.76 28,796,518,400 20598.50 95 

 
TABLE V. SCALING TEST FOR HPCG-CPU-GITHUB-INTEL WITH UP 

TO 4.6% BLUE WATERS XE NODES 

XEs MPI 
ranks 

HPCG 
(GFLOP/s) 

Number of 
equations in 

total 

Memory 
(GB) 

Effici-
ency 
(%) 

1 32 7.02902 35,995,648 25.75 100 
2 64 13.0688 71,991,296 51.50 93 
4 128 27.9278 143,982,592 102.99 99 
8 256 55.3573 287,965,184 205.99 98 

16 512 104.433 575,930,368 411.97 93 
32 1024 218.144 1,151,860,736 823.94 97 
64 2048 435.228 2,303,721,472 1,647.88 97 
128 4096 817.343 4,607,442,944 3,295.75 91 
256 8192 1646.64 9,214,885,888 6591.51 92 
512 16384 3103.43 18,429,771,776 13183 86 
1024 32768 6218.57 36,859,543,552 26366 86 

 



 

of Blue Waters XE nodes) with the same configuration (i.e., 
nx = ny = nz = 104 and 32 MPI/node). The range of MPI 
ranks is from 32 to 32,768 as shown in Table V. The parallel 
efficiency of HPCG-CPU-GitHub-Intel is more than or equal 
to 86%, which is lower than results of HPCG-CPU-GitHub-
GNU. The overall performance of HPCG-CPU-GitHub-
Intel, however, is much better than the performance of 
HPCG-CPU-GitHub-GNU, as compared in Figure 4.  

 

 
C. HPCG on GPU-enabled XK nodes 

The official HPCG webpage (i.e., www.hpcg-benchmark. 
org) provides HPCG 3.0 binary from NVIDIA optimized for 
NVIDIA GPUs. It requires CUDA and OpenMPI 1.6.5 
libraries. However, in [6], it turned out that executable 
binaries built for the OpenMPI library could not perform 
optimally on Blue Waters. In this study, we instead 
employed a Cray-MPICH compatible HPCG binary provided 
by NIVIDA (i.e., HPCG-GPU-NVIDIA).  

Each XK node on Blue Waters has one CPU processor 
with 32GB memory and one K20X GPU with 6 GB device 
memory. In this section, we assigned one MPI rank per 
GPU; as a result, one MPI rank was assigned to each node. 
Since GPUs do most of computations for HPCG, we kept an 
eye on GPU memory capacity for assigned XK nodes, 
instead of CPU memory capacity. Figure 5 and Table VI 
show HPCG-GPU-NVIDIA performance for various local 
block sizes on 8 XK nodes. The x-axis of Figure 5 is a local 
cubic block size along each direction (i.e., nx, ny, and nz). As 
it grows, the memory used for data exponentially increases 
(i.e., red line in Figure 5).  The green dotted line in Figure 5 
shows the minimum required memory usage for the official 
HPCG results that is a quarter of GPU memory of 8 XK 
nodes. The blue line in Figure 5 shows HPCG results. The 
HPCG performance linearly increases from 243 to 883 of 
local blocks, since communication overheads between CPU 
and GPU in these cases rapidly tails off. After that, HPCG 
results look converged into some range. One interesting 
observation is that memory used for cases with 2083 and 

2163 local cubes are larger than the total GPU memory of 8 
XK nodes (i.e., 48 GB). It seems HPCG-GPU-NVIDIA 
somehow re-uses GPU memory during the computation.  For 
the larger local domain than 2163, the out-of-memory error 
occurred. In summary, HPCG-GPU-NVIDIA shows the 
most optimal performance with 1283, 1683, and 1763 local 
blocks on 8 XK nodes.  
 

 

 
 
With 1283, 1683 and 1763 local blocks, we carried out 

scaling tests with up to 6.1% Blue Water XK nodes (i.e., 256 
XK nodes). Table VII shows HPCG results in GFLOP/s and 

 
Figure 4. Scaling tests for HPCG-CPU-GitHubs up to 4.6% Blue Waters 

XE nodes 

 
Figure 5. HPCG-GPU-NVIDIA for various local block sizes on 8 XK 

nodes 

TABLE VI. HPCG-GPU-NVIDIA PERFORMANCE FOR VARIOUS LOCAL 
BLOCK SIZES ON 8 XK NODES 

nx ny nz 
HPCG 

(GFLOP/s) 
Number of 

equations in total 
Memory 

(GB) 
24 24 24 15.5542 110,592 0.079 
32 32 32 38.661 262,144 0.188 
40 40 40 55.1535 512,000 0.367 
48 48 48 83.3617 884,736 0.634 
56 56 56 102.637 1,404,928 1.006 
64 64 64 134.636 2,097,152 1.501 
72 72 72 126.136 2,985,984 2.137 
80 80 80 150.928 4,096,000 2.931 
88 88 88 157.044 5,451,776 3.900 
96 96 96 172.29 7,077,888 5.063 

104 104 104 169.535 8,998,912 6.437 
112 112 112 177.864 11,239,424 8.039 
120 120 120 174.563 13,824,000 9.887 
128 128 128 204.912 16,777,216 11.999 
136 136 136 179.439 20,123,648 14.392 
144 144 144 191.406 23,887,872 17.083 
152 152 152 187.779 28,094,464 20.091 
160 160 160 190.252 32,768,000 23.432 
168 168 168 209.338 37,933,056 27.125 
176 176 176 207.152 43,614,208 31.187 
184 184 184 167.078 49,836,032 35.635 
192 192 192 164.078 56,623,104 40.487 
200 200 200 178.81 64,000,000 45.761 
208 208 208 185.213 71,991,296 51.474 
216 216 216 180.76 80,621,568 57.644 

 



 

parallel efficiency in percentile for three cases. Figure 6 
shows plots for number of XK nodes versus HPCG results 
for 1283, 1683 and 1763 local blocks. The purple dotted line 
describes a linear scaling. The case with 1683 local blocks 
shows the best HPCG performance on 8, 16 and 32 XK 
nodes, while the case with 1283 local blocks was the best on 
other numbers of XK nodes. The parallel efficiency is more 
than or equal to 83%, which is worse than the parallel 
efficiency of HPCG-CPU-GitHub-Intel  (i.e., 92% with 256 
XE nodes). We think this happens because of two reasons: 

 
• Additional communicational overhead between the 

host (i.e., CPU) and the device (i.e., GPU) on XK 
nodes reduces the network performance for MPI 
communications.  

• Higher HPCG performance of a single XK node 
(i.e., 27 GFLOP/s/node for GPU version in Table 
VII) than of a single XE node (i.e., 7 GFLOP/s/node 
for CPU version in Table V). 

 

 
 

 
 

D. HPCG on CPU-based XE and GPU-enabled XK nodes 
on MPMD mode 
For Multiple Program, Multiple Data (MPMD) mode, 

binary combinations for CPU-based XE nodes and GPU-
enable XK nodes should be built from the same base code. In 
this section, we used two new binaries provided by NVIDIA: 
HPCG-MPMD-CPU for XE nodes and HPCG-MPMD-GPU 
for XK nodes.  

Since the base code is slightly different from our 
previous studies on XE or XK node, we briefly performed a 
series of single node test for different local block sizes (e.g., 
723, 1043, 1283 and 128×642) and various combinations of 
MPI ranks and threads (e.g., 1 to 32 MPIs with a thread per 
an integer core on XE, and 1 to 16 MPIs on XK). Table VIII 
and Figure 7 shows HPCG performance of HPCG-MPMD-
CPU on a single XE node and HPCG-MPMD-GPU on a 
single XK node. Because of different memory capacity of 
CPUs (i.e., 64 GB) on XE and GPU (i.e., 6 GB) on XK, 
some cases with a large number of MPI ranks and big local 
blocks did not complete due to the out-of-memory error. The 
best XE node performance was 8.3 GFLOP/s with 128×642 
local blocks when 16 MPI ranks with 2 threads were 
assigned on the XE node. The best XK node performance 
was 22.8 GFLOP/s with 128×642 local blocks when 14 MPI 
ranks are assigned to the XK node. According to comparison 
of the best performances, HPCG on an XK node is 2.7 times 
faster than HPCG on an XE node. This difference can result 
in a serious load imbalance between XE and XK nodes; as a 
result, the performance on MPMD mode can be degraded.  

Our approach to minimize the load imbalance between 
CPU-only XE and GPU-enable XK nodes is to synchronize 
XE nodes’ HPCG performance per MPI rank with XK 
nodes’. Figure 8 presents HPCG performance per MPI rank 
of HPCG-MPMD-CPU on an XE node and HPCG-MPMD-
GPU on an XK node. As number of MPI ranks increases, 
HPCG performance per MPI on the XK node linearly 
decreases. On the XE node, HPCG performance per MPI 
rank linearly increases as number of threads increase up to 8 
threads per MPI rank.  

 

TABLE VII. SCALING TEST FOR HPCG-GPU-NVIDIA WITH UP TO 6.1% 
BLUE WATERS XK NODES 

XKs MPI 
ranks 

nx=ny=nz= 128 nx=ny=nz= 168 nx=ny=nz= 176 
HPCG 
(GFL
OP/s) 

Effici-
ency 
(%) 

HPCG 
(GFLO

P/s) 

Effici-
ency 
(%) 

HPCG 
(GFLO

P/s) 

Effici-
ency 
(%) 

1 1 27.029 100 23.544 100 23.734 100 
2 2 53.353 99 46.811 99 48.960 103 
4 4 103.84 96 93.085 99 95.674 101 
8 8 204.87 95 209.33 111 207.19 109 
16 16 397.87 92 415.67 110 412.30 109 
32 32 790.06 91 827.76 110 692.05 91 
64 64 1493.0 86 1347.1 89 1365.9 90 

128 128 2941.0 85 2741.2 91 2724.6 90 
256 256 5756.2 83 5365.2 89 5359.8 88 

 
Figure 6. Scaling tests for HPCG-GPU-NVIDIA up to 6.1% Blue Waters 

XK nodes 

TABLE VIII. HPCG PERFORMANCE OF HPCG-MPMD-CPU AND 
HPCG-MPMD-GPU ON A SINGLE XE OR XK NODE(UNIT: GFLOP/S) 

Node 
type 

MPI 
ranks Threads nx=ny= 

nz=72 
nx=ny= 
nz=104 

nx=ny= 
nz=128 

nz=128, 
ny=nz=64 

XE 

1 32 1.0335 1.13907 1.39787 1.43499 
2 16 2.28724 2.2585 2.76631 2.98869 
4 8 5.3681 5.78568 7.21688 7.14705 
8 4 5.94444 6.4733 7.73771 7.88999 
16 2 7.04848 6.74828 8.02983 8.32372 
32 1 6.69432 6.31722 OOM(1) 7.97788 

XK 

1 1 12.7187 17.2333 22.9948 17.2444 
2 1 15.2734 18.4187 24.5339 20.31 
4 1 15.9005 18.9973 24.5516 21.899 
6 1 17.0141 19.2494 OOM(1) 22.3401 
8 1 16.0738 OOM(1) OOM(1) 22.3905 
10 1 17.1923 OOM(1) OOM(1) 22.7505 
12 1 17.3912 OOM(1) OOM(1) 22.5492 
14 1 17.2224 OOM(1) OOM(1) 22.7725 
16 1 17.4242 OOM(1) OOM(1) OOM(1) 

(1) OOM : Out of Memory  
 



 

 

 
 
Before moving on MPMD runs, we performed scalability 

tests for HPCG-MPMD-CPU and HPCG-MPMD-GPU with 
128×642 local block per MPI rank, as presented in Table IX. 
We considered two different combinations of MPI rank and 
thread on XE and three different MPI ranks per GPU on XK. 
In Figure 9, all of the cases show good scalability parallel to 
ideal linear scaling (i.e., orange dotted line). All cases on XK 
nodes performed similarly to each other except that results 
with 12 MPI/GPU on 16 and 32 XK nodes were relatively 
lower than others. On XE nodes, the case with 2 thread/MPI 
was 14 to 20% faster than the case with 8 thread/MPI. Figure 
9 also shows that a XK node is approximately 4 times faster 
than an XE node, consistent with the ratios of XK to XE 
peak FLOPs and memory bandwidths. 

In order to minimize load imbalance between XE and 
XK nodes during MPMD runs, we want to synchronize per-
MPI performance on XE nodes with that on XK nodes. Table 
X and Figure 10 show HPCG performance per MPI rank of 

HPCG-MPMD-CPU and HPCG-MPMD-GPU. The per-MPI 
performance of 8 thread/MPI on XE nodes (i.e., 1.6 to 1.8 
GFLOP/s) is much closer to cases of 10MPI/GPU (i.e., 2.0 to 
2.3 GFLOP/s) and 12 MPI/GPU (i.e., 1.4 to 1.9 GFLOP/s) 
on XK nodes than the per-MPI performance of 2 thread/MPI 
on XE nodes (i.e., 0.45 to 0.52 GFLOP/s); therefore, we 
expect that 8 thread/MPI on XE nodes would perform more 
optimally for MPMD runs than 2 thread/MPI on XE nodes. 
Since the per-MPI performance of 12 MPI/GPU on XK 
nodes (i.e., 2.4 to 2.8 GFLOP/s) is too high to be 
synchronized with 8 thread/MPI on XE nodes, we did not 
consider it for further HPCG benchmarking on MPMD 
mode.  

 

 

 

 
Figure 7. HPCG performance of HPCG-MPMD-CPU and HPCG-

MPMD-GPU on a single XE or XK node 

 
Figure 8. HPCG performance per MPI rank of HPCG-MPMD-CPU and 

HPCG-MPMD-GPU on a single XE or XK node 

TABLE IX. HPCG PERFORMANCE OF HPCG-MPMD-CPU AND 
HPCG-MPMD-GPU WITH UP TO 128 XE OR XK NODES(UNIT: GFLOP/S) 

Number 
of nodes 

HPCG-HPMD-CPU HPCG-MPMD-GPU 
2thr/mpi(1) 8thr/mpi 8mpi/gpu(2) 10mpi/gpu 12mpi/gpu 

1 8.31327 7.14167 22.2208 22.5616 22.3774 
2 16.2669 14.1543 43.985 44.5186 44.4957 
4 32.4941 28.0463 87.3184 88.2059 86.0493 
8 65.1978 54.7415 170.352 175.311 170.902 
16 124.731 108.783 339.408 338.977 282.692 
32 248.387 216.612 648.375 692.816 525.783 
64 493.589 409.541 1266.32 1273.18 1173.86 

128 930.88 812.448 2498.76 2529.21 2245.37 
(1) thr/mpi: number of threads per MPI rank,  (2) mpi/gpu: number of MPI ranks per GPU  

 

 
Figure 9. HPCG performance of HPCG-MPMD-CPU and HPCG-

MPMD-GPU with up to 128 XE or XK nodes 

TABLE X. HPCG PERFORMANCE PER MPI OF HPCG-MPMD-CPU 
AND HPCG-MPMD-GPU WITH UP TO 128 XE/XK NODES(UNIT: GFLOP/S) 

Number 
of nodes 

HPCG-HPMD-CPU HPCG-MPMD-GPU 
2thr/mpi(1) 8thr/mpi 8mpi/gpu(2) 10mpi/gpu 12mpi/gpu 

1 0.5196 1.7854 2.7776 2.2562 1.8648 
2 0.5083 1.7693 2.7491 2.2259 1.8540 
4 0.5077 1.7529 2.7287 2.2051 1.7927 
8 0.5094 1.7107 2.6618 2.1914 1.7802 
16 0.4872 1.6997 2.6516 2.1186 1.4724 
32 0.4851 1.6923 2.5327 2.1651 1.3692 
64 0.4820 1.5998 2.4733 1.9893 1.5285 

128 0.4545 1.5868 2.4402 1.9759 1.4618 
(1) thr/mpi: number of threads per MPI rank,  (2) mpi/gpu: number of MPI ranks per GPU  

 



 

 
 
We considered four cases for HPCG performance test on 

MPMD mode with up to 128 XE nodes and 128 XK nodes. 
Case I was tested with 8 thread/MPI on XE and 10 
MPI/GPU on XK. In Cases II and III, we assigned 2 
thread/MPI on XE with 10 MPI/GPU on XK and 12 
MPI/GPU on XK, respectively. As a reference, the case IV 
used only CPUs on XE (i.e., 2 CPUs/node) and XK nodes 
(i.e., 1 CPU/node) with 2 thread/MPI. In Table XI and 
Figure 11, case I shows the best HPCG performance that is 
around 60% to 100% faster than other cases.  

Table XII shows their per-MPI performance in GFLOP/s. 
The per-MPI performance of case I is similar to the per-MPI 
performance of 8 thread/MPI on XE nodes in Table X; 
besides, the per-MPI performance of cases II, III and IV is 
similar to the per-MPI performance of 2 thread/MPI on XE 
nodes in Table X. Since the per-MPI performance of GPUs 
was better than the per-MPI performance of CPUs in all 
cases, the overall performance was always bounded by the 
CPU performance. Due to the limited size of GPU memory, 
we could not assign more MPI rank per GPU in order to 
lower the per-MPI performance on XK nodes. In addition, 
we could not assign more threads per MPI ranks on XE 
node, because of the limited threading performance between 
NUMA cores on XE nodes. The followings are summary of 
HPCG performance on the MPMD mode:  

 
• The overall HPCG performance on the MPMD 

mode is determined by the minimum per-MPI 
performance on XE and XK nodes.  

• The HPCG performance on XK nodes is around 2.7 
times higher than that on XE nodes.  

• In order to decrease the per-MPI performance on XK 
nodes, multiple MPI ranks is assigned to GPUs, but 
the number of MPI ranks is bounded by the memory 
size of GPUs (i.e., 6 GB/GPU). 

• In order to improve the per-MPI performance on XE 
nodes, multiple threads is assigned to CPUs; 
however, the maximum number of threads is 

bounded by the number of integer cores in NUMA 
core on XE nodes (i.e., 8 threads/MPI) 

• As a result, the MPMD run with the combination of 
8 thread/MPI on XE and 10 MPI/GPU on XK shows 
an optimal performance on Blue Waters.  
 

 
 

 
 

 

 
Figure 10. HPCG performance per MPI rank of HPCG-MPMD-CPU and 

HPCG-MPMD-GPU with up to 128 XE or XK nodes 

TABLE XI. HPCG PERFORMANCE OF MPMD RUNS WITH UP TO 128 
XE AND 128 XK NODES (UNIT: GFLOP/S) 

XE 
nodes 

XK 
nodes Case I(1) Case II(2) Case III(3) Case IV(4) 

1 1 24.0831  14.2045 12.2138 
2 2 46.7258 26.6157 28.2871 24.3066 
4 4 92.937 53.0355 55.8481 48.7609 
8 8 182.796 105.505 106.092 93.1538 
16 16 350.558 201.75 208.912 159.893 
32 32 693.168 402.937 417.709 371.003 
64 64 1366.53 803.817 815.194 725.243 

128 128 2599.56 1571.16 1609.91 1461.7 
(1) 8 thread/MPI @ XE + 10 MPI/GPU @ XK, (2) 2 thread/MPI @ XE + 10 MPI/GPU @ XK,  

(3) 2 thread/MPI @ XE + 12 MPI/GPU @ XK, (4) 2 thread/MPI @ XE and XK w/o GPU 
Gray cell: HPCG could not initialize the global domain with the given number of MPI ranks. 

 

 
Figure 11. HPCG performance of MPMD runs with up to 128 XE nodes 

and 128 XK nodes 

TABLE XII. HPCG PERFORMANCE PER MPI RANK OF MPMD RUNS 
WITH UP TO 128 XE AND 128 XK NODES (UNIT: GFLOP/S) 

XE 
nodes 

XK 
nodes Case I(1) Case II(2) Case III(3) Case IV(4) 

1 1 1.7202  0.5073 0.5089 
2 2 1.6688 0.5118 0.5051 0.5064 
4 4 1.6596 0.5100 0.4986 0.5079 
8 8 1.6321 0.5072 0.4736 0.4852 
16 16 1.5650 0.4850 0.4663 0.4164 
32 32 1.5473 0.4843 0.4662 0.4831 
64 64 1.5251 0.4831 0.4549 0.4722 

128 128 1.4506 0.4721 0.4492 0.4758 
(1) 8 thread/MPI @ XE + 10 MPI/GPU @ XK, (2) 2 thread/MPI @ XE + 10 MPI/GPU @ XK,  

(3) 2 thread/MPI @ XE + 12 MPI/GPU @ XK, (4) 2 thread/MPI @ XE and XK w/o GPU 
Gray cell: HPCG could not initialize the global domain with the given number of MPI ranks. 

 



 

III. HPGMG BENCHMARK ON BLUE WATERS 

A. General Description 
HPGMG [4,5] is another effort for HPC performance 

benchmarking based on geometric multi-grid methods with 
emphasis on community-driven development process, long-
term durability, scale-free specification and scale-free 
communication. It provides two implementations, Finite 
Element (HPGMG-FE) and Finite Volume (HPGMG-FV) 
implementations; HPGMG-FE is compute-intensive and 
cache-intensive, while HPGMG-FV is memory bandwidth-
intensive. HPGMG-FV has been used for the official list, and 
it solves an elliptic problem on isotropic Cartesian grids with 
fourth-order accuracy in the max norm. It calculates a flux 
term on each of the 6 faces on every cell in the entire 
domain. The fourth-order implementation [5] requires 4 
times the floating-point operations, 3 times the MPI 
messages per smoother and 2 times the MPI message size 
without additional DRAM data movement compared to the 
second-order implementation [4] proposed originally. The 
solution process employs the Full Multi-grid (FMG) F-cycle 
that is a series of progressively deeper geometric multi-grid 
V-cycles. There are several dozen stencils that vary in shape 

and size, sweep per step, and the grid sizes vary 
exponentially. Coarse grid solution process can occur on a 
single core of a single node, and then the coarse grid solution 
is propagated to every thread in the system. At SC16, the 5th 
HPGMG-FV performance list was announced and it has two 
GPU-enabled systems. In the list, those GPU-enabled 
systems provide GPU-based and CPU-based performance 
separately.  

In this section, we first performed HPGMG tests on 
CPU-based or GPU-enabled nodes on Blue Waters, and then 
analyzed several major components that affected the 
performance. We then conducted MPMD runs on CPU-
based and GPU-enabled nodes together for HPGMG. We 
provide our analyses and recommendations for other 
geometric multi-grid applications on hybrid HPC platforms.  

B. HPGMG on CPU-based XE nodes 
We downloaded HPGMG-FV source files from the 

official HPGMG Bitbucket repository (i.e., https://bitbucket. 
org/hpgmg/hpgmg/). We used them (i.e., commit: 8a2f0e1) 
to build a HPGMG binary for CPU-based XE nodes (i.e., 
HPGMG-CPU-8a2f0e1) with gcc/4.9.3 and cray-mpich/7.3.3 
on Blue Waters. HPGMG-FV requires two input parameters 

TABLE XIII. HPGMG PERFORMANCE ON 16 XE NODES (UNIT: GDOF/S) 

nthr k nB Max 1 2 3 4 5 6 7 8 16 32 

1 

4 0.0820 0.0956 0.0596 0.1489 0.1514 0.1367 0.1369 0.2007   

0.4756 

5 0.2435 0.2517 0.1977 0.2931 0.2924 0.2864 0.2873 0.3320   
6 0.3788 0.3731 0.3396 0.3741 0.3730 0.3826 0.3833 0.4127   
7 0.4445 0.4344 0.4044 0.4131 0.4131 0.4293 0.4297 0.4588   
8 0.4756 OOM(1) OOM OOM OOM OOM OOM OOM   
9 OOM OOM OOM OOM OOM OOM OOM OOM   

2 

4 0.0453 0.0997 0.0696 0.1111 0.1111 0.0823 0.1608 0.1606   

0.4804 

5 0.1623 0.2664 0.2184 0.2712 0.2711 0.2341 0.3134 0.3147   
6 0.3109 0.4005 0.3670 0.3914 0.3915 0.3634 0.4081 0.4083   
7 0.3768 0.4508 0.4269 0.4412 0.4410 0.4129 0.4490 0.4488   
8 0.4041 0.4804 OOM OOM OOM OOM OOM OOM   
9 OOM OOM OOM OOM OOM OOM OOM OOM   

4 

4 0.0216 0.0298 0.0414 0.0726 0.0739 0.0540 0.0541 0.0872   

0.4496 

5 0.0975 0.1216 0.1505 0.2177 0.2177 0.1817 0.1813 0.2322   
6 0.2633 0.2680 0.2979 0.3653 0.3649 0.3347 0.3345 0.3613   
7 0.3893 0.3503 0.3719 0.4271 0.4270 0.4039 0.4040 0.4185   
8 0.4288 0.3765 0.3978 0.4493 0.4496 OOM OOM OOM   
9 OOM OOM OOM OOM OOM OOM OOM OOM   

8 

4 0.0141 0.0159 0.0160 0.0214 0.0214 0.0346 0.0346 0.0581   

0.4494 

5 0.0634 0.0733 0.0733 0.0919 0.0921 0.1278 0.1279 0.1826   
6 0.2103 0.2237 0.2238 0.2377 0.2377 0.2776 0.2778 0.3416   
7 0.3770 0.3728 0.3728 0.3444 0.3443 0.3720 0.3720 0.4267   
8 0.4346 0.4230 0.4232 0.3744 0.3745 0.3984 0.3983 0.4494   
9 0.4352 OOM OOM OOM OOM OOM OOM OOM   

16 

4 0.0028 0.0081 0.0081 0.0103 0.0102 0.0103 0.0137 0.0137   

0.3335 

5 0.0147 0.0380 0.0379 0.0486 0.0485 0.0484 0.0633 0.0637   
6 0.0701 0.1319 0.1318 0.1465 0.1463 0.1463 0.1695 0.1694   
7 0.1873 0.2597 0.2600 0.2615 0.2615 0.2614 0.2733 0.2732 0.3003 0.3006 
8 0.2644 0.3239 0.3241 0.3160 0.3161 0.3161 0.3167 0.3168 0.3335 OOM 
9 0.2706 0.3219 0.3221 OOM OOM OOM OOM OOM   

32 

4 0.0012 0.0015 0.0015 0.0060 0.0051 0.0051 0.0051 0.0064   

0.2495 

5 0.0056 0.0080 0.0081 0.0244 0.0245 0.0244 0.0244 0.0317   
6 0.0258 0.0410 0.0411 0.0920 0.0921 0.0922 0.0921 0.1045   
7 0.0732 0.1194 0.1196 0.1772 0.1774 0.1773 0.1773 0.1771 0.1864 0.2072 
8 0.1132 0.1877 0.1875 0.2387 0.2386 0.2386 0.2387 0.2342 0.2371 0.2495 
9 0.1146 0.1934 0.1932 0.2358 0.2357 0.2359 0.2357 OOM   

(1) OOM: Out-of-Memory, Configurations in gray cells were not tested.  



 

(i.e., k and nB at the following bullets) to construct the global 
cubic geometry and distribute local boxes to each MPI ranks. 
In addition, number of thread per MPI rank (i.e., nthr at the 
following bullets) needs to be set to concurrently solve 
assigned local boxes on MPI ranks using the MPI-OpenMP 
hybrid implementation. The followings are notations for 
three parameters with their brief definitions:  

 
• k: the log base 2 of the dimension of each box on the 

finest grid  
• nB: target number of boxes per process: a loose 

bound on memory per process.  
• nthr: number of thread for OpenMP 

 
At first, we tested HPGMG-CPU-8a2f0e1 on 16 XE 

nodes for a large number of sets for three parameters (i.e., k 
= 4, 5, 6, 7, 8, 9, and nB = 1, 2, 3, 4, 5, 6, 7, 8, 16, 32, and 
nthr = 1, 2, 4, 8, 16, 32), and Table XIII presents HPGMG 
results for the finest resolution (i.e., 1h). Figure 12 shows 
plots for HPGMG performance vs. number of thread per 
MPI rank (i.e., nthr). Blue circles in Figure 12 expresses the 
maximum HPGMG performance for each nthr. They are 
very close to a red line in the figure that represents HPGMG 
results with 2563 boxes per thread (i.e., k=8 with nthr=nB). 
In the figure, there are four additional lines for 1283 boxes 
per thread (i.e., k=7 with nthr=nB), 643 boxes per thread (i.e., 
k=6 with nthr=nB), 323 boxes per thread (i.e., k=5 with 
nthr=nB), and 163 boxes per thread (i.e., k=4 with nthr=nB). 
In the cases for 2563 and 1283 boxes per thread, we tested 
them with 16 thread/MPI rank and 32 thread/MPI rank. We 
observed significant performance loss on those cases due to 
inefficiencies in OpenMP implementations over NUMA 
nodes  (i.e., 16 thread/MPI) or CPU sockets (i.e., 32 thread 
/MPI). We note that HPGMG performance improves as the 
number of boxes per thread increases (see Figure 13). This is 
understandable because, as local box sizes grow, local 
calculations for fine grid solutions become enriched and 
communication costs for coarse grid solutions can rapidly 
drop. Figure 14 shows plots for HPGMG performance vs. 
target number of boxes per MPI rank (i.e., nB). Depending 
on the ratio of actually distributed boxes per MPI rank that is 
usually less than nB, HPGMG performance fluctuates a little 
bit for the same size of local boxes; however, the 
performance difference between 1283 and 643 local boxes is 
more obvious than the oscillation of the performance with 
the same size of local boxes.  

With 2563 boxes per thread, we performed scalability 
tests with up to 36% Blue Waters XE nodes (i.e., 2, 16, 128, 
1024 and 8192 XE nodes). Table XIV presents selected input 
parameters (i.e., nthr, k and nB), number of employed XE 
nodes, number of MPI ranks, number of boxes assigned to 
each thread, total number of boxes, HPGMG performance 
for three resolutions (i.e., 1h, 2h and 4h), and parallel 
efficiency based on 2 XE-node performance of each nthr. On 
8192 XE nodes, HPGMG-CPU-8a2f0e1 shows the best 
performance with 1 thread/MPI rank, and its parallel 
efficiency is 93% that is very impressive. In other cases, 
parallel efficiency is more than or equal to 87% on more than 

 

 

 

 
Figure 12. HPGMG performance vs. number of threads/MPI-rank of 

HPGMG-CPU-8a2f0e1 on 16 XE nodes 

 
Figure 13. HPGMG performance vs. number of boxes/thread of HPGMG-

CPU-8a2f0e1 on 16 XE nodes 

 
Figure 14. HPGMG performance vs. target number of boxes/MPI rank of 

HPGMG-CPU-8a2f0e1 on 16 XE nodes 



 

one third of Blue Waters XE nodes. The HPGMG 
performance per MPI rank improves as the number of 
threads increases, and its range is between 0.9 and 7.1 
MDOF/s.  Figure 15 illustrates HPGMG performance for the 
finest resolution (i.e., 1h). Four solid lines show HPGMG 
performance with 2563 boxes per thread for 1 thread/MPI 
rank (i.e., blue line), 2 thread/MPI rank (i.e., red line), 4 
thread/MPI rank (i.e., green line) and 8 thread/MPI rank (i.e., 
purple line). Light blue dotted line represents an ideal linear 
scaling. In most cases, blue or red line shows the best 
performance. Green and purple lines are lower than blue or 
read lines but the difference between the best and the worst 
cases is less than 11 %.  Figure 16 shows HPGMG 
performance for different resolutions with 1 thread/MPI 
rank. Blue line is for the finest resolution (i.e., 1h), while red 
and green lines are for 2h and 4h, respectively. Purple dotted 
line shows an ideal linear scaling. Blue and red lines for 1h 

and 2h are almost parallel to the purple dotted line. The 
green line for 4h is sub-linear.  
 

C. HPGMG on GPU-enabled XK nodes 
NVIDIA has shared HPGMG with GPU acceleration via 

Bitbucket (i.e., https://bitbucket. org/nsakharnykh/hpgmg-
cuda). It is based on HPGMG v0.3 compliant MPI version 2, 
OpenMP version 3 and CUDA version 7. Among multi-grid 
F-cycles, top levels with fine resolutions run on GPUs, while 
bottom levels with coarse resolutions run on host CPUs that 
has less latency than GPUs. We downloaded HPGMG-
CUDA source file (commit: 02c7ea214ce8) and built an 
HPGMG-CUDA binary (i.e., HPGMG-GPU-02c7ea2) with 
CUDA 7.5 and cray-mpich/7.3.3 on Blue Waters.  

 

TABLE XIV. HPGMG PERFORMANCE OF HPGMG-CPU-8A2F0E1 WITH UP TO 36% OF BLUE WATERS XE NODES (UNIT: GDOF/S) 

nthr k nB XE 
nodes 

Number of 
MPI ranks 

Number of cells per 
thread 

Number of 
cells in global 

HPGMG (GDOF/s) Parallel 
efficiency (%) 

HPGMG 
/MPI rank 1h 2h 4h 

1 8 1 2 64 2563 10243 0.06016 0.05753 0.04387 100 0.000940 
1 8 1 16 512 2563 20483 0.474 0.4441 0.3767 98 0.000926 
1 8 1 128 4096 2563 40963 3.762 3.466 2.752 98 0.000918 
1 8 1 1024 32768 2563 81923 29.35 26.18 18.62 95 0.000896 
1 8 1 8192 262144 2563 163843 229.6 198 126.3 93 0.000876 
2 8 2 2 32 2563 10243 0.06054 0.05777 0.05312 100 0.001892 
2 8 2 16 256 2563 20483 0.4708 0.4493 0.3952 97 0.001839 
2 8 2 128 2048 2563 40963 3.784 3.496 2.884 98 0.001848 
2 8 2 1024 16384 2563 81923 28.85 25.39 19.03 93 0.001761 
2 8 2 8192 131072 2563 163843 223.7 189.5 125.1 90 0.001707 
4 8 4 2 16 2563 10243 0.05672 0.05449 0.04811 100 0.003545 
4 8 4 16 128 2563 20483 0.4473 0.4245 0.3591 99 0.003495 
4 8 4 128 1024 2563 40963 3.526 3.286 2.654 97 0.003443 
4 8 4 1024 8192 2563 81923 26.63 23.3 17.08 92 0.003251 
4 8 4 8192 65536 2563 163843 205.9 172.8 112.5 89 0.003142 
8 8 8 2 8 2563 10243 0.05662 0.05462 0.04338 100 0.007078 
8 8 8 16 64 2563 20483 0.4485 0.4244 0.3367 99 0.007008 
8 8 8 128 512 2563 40963 3.503 2.312 2.463 97 0.006842 
8 8 8 1024 4096 2563 81923 26.3 22.86 15.59 91 0.006421 
8 8 8 8192 32768 2563 163843 201.5 165.7 100.4 87 0.006149 

 

 
Figure 15. HPGMG performance for various number of thread per MPI rank 

with up to 36% of Blue Waters XE nodes 

 
Figure 16. HPGMG performance in terms of resolutions (i.e., 1h, 2h and 4h) 

with up to 36% of Blue Waters XE nodes 

 



 

 

 
In this section, we consider an additional parameter, 

number of MPI rank per GPU (i.e., nMPI/GPU) that affects 
the HPGMG-CUDA performance. Table XV and Figure 17 
present the performance of HPGMG-GPU-02c7ea2 on 16 

XK nodes for several sets of parameters (i.e., nMPI/GPU, k 
and nB). Similarly to our discussion in the previous section, 
HPGMG performance on XK nodes is proportional to total 
number of boxes. The sets with k=6 show the best HPGMG 
performance on 16 XK nodes.  

We performed scalability tests for HPGMG-GPU-
02c7ea2 with up to 24% Blue Waters XK nodes with the 
most optimal configurations (i.e., k=6, nMPI/GPU = 1, 2, 4 
and nB = 108, 54, 27) from the tests on 16 XK nodes. While 
cases with nMPI/GPU=2 and 4 on 1024 XK nodes failed to 
create levels due to "malloc failed” error, other cases ran 
smoothly, as presented in Table XVI and Figure 18.  Parallel 
efficiency drops very rapidly as number of XK nodes 
increases. In the worst case, it is 63% on 1024 XK nodes, 
which is much lower than the worst case on 8192 XE nodes 
(i.e., 87% in Table XIV). The blue dotted line in Figure 18 
represents an ideal linear scaling, and all cases in Figure 18 
show sub-linear scaling. We note that the HPGMG 
performance drops between different resolutions (i.e., 1h vs. 
2h vs. 4h) are significantly large compared to our XE 
scalability tests (see Figure 16). It looks smaller local blocks 
on XK nodes than on XE nodes results in the huge 
performance drops. It follows the relation of HPGMG 
performance and number of boxes per thread shown in 
Figure 13. HPGMG performance per MPI rank decreases as 
nMPI/GPU increases. It ranges from 9.7 to 32 MDOF/s.  

 

TABLE XV. HPGMG PERFORMANCE OF HPGMG-GPU-02C7EA2 ON 
16 XK NODES (UNIT: GDOF/S) 

nMPI 
/GPU(1) k nB XK 

nodes nMPI(2) Boxes 
/MPI(3) 

Total 
boxes  

HPGMG 
(1h) 

1 8 1 16 16 1 5123 0.3304 
1 8 2 16 16 1.688 7683 0.5639 
1 8 3 16 16 1.688 7683 0.5636 
2 8 1 16 32 1.688 7683 0.589 
3 8 1 16 48 0.562 7683 0.5909 
1 7 8 16 16 7.812 6403 0.545 
1 7 9 16 16 7.812 6403 0.5447 
1 7 14 16 16 13.5 7683 0.6195 
1 7 16 16 16 13.5 7683 0.6194 
7 7 2 16 112 1.929 7683 0.5837 
7 7 3 16 112 1.929 7683 0.5829 
1 6 112 16 16 108 7683 0.6433 
1 6 108 16 16 108 7683 0.6433 
2 6 54 16 32 54 7683 0.6442 
4 6 27 16 64 27 7683 0.646 
8 6 14 16 128 13.5 7683 0.5937 

(1) Number of MPI rank assigned to each GPU 
(2) Number of total MPI rank, (3) Number of boxes per MPI rank 

 

 
Figure 17. Performance of HPGMG-GPU-02c7ea2 on 16 XK nodes 

 
Figure 18. HPGMG performance of HPGMG-GPU-02c7ea2 with up to 

24% Blue Waters XK nodes 

TABLE XVI. HPGMG PERFORMANCE OF HPGMG-GPU-02C7EA2 WITH UP TO 24% OF BLUE WATERS XK NODES (UNIT: GDOF/S) 

nMPI/
GPU(1) k nB XK 

nodes 
Number of 
MPI ranks 

Number of cells per 
MPI ranks 

Number of 
cells in global 

HPGMG (GDOF/s) Parallel 
efficiency (%) 

HPGMG 
/MPI rank 1h 2h 4h 

1 6 108 2 2 108 × 643 3843 0.08475 0.04496 0.0144 100% 0.042375 
1 6 108 16 16 108 × 643 7683 0.6433 0.3325 0.1043 95% 0.040206 
1 6 108 128 128 108 × 643 15363 4.611 2.271 0.697 85% 0.036023 
1 6 108 1024 1024 108 × 643 30723 27.24 13.11 4.104 63% 0.026602 
2 6 54 2 4 54 × 643 3843 0.08539 0.0486 0.01677 100% 0.021348 
2 6 54 16 32 54 × 643 7683 0.6446 0.3463 0.1133 94% 0.020144 
2 6 54 128 256 54 × 643 15363 4.734 2.419 0.7401 87% 0.018492 
2 6 54 1024 2048 54 × 643 30723 malloc failed - create_level/level->my_boxes 
4 6 27 2 8 27 × 643 3843 0.08531 0.05022 0.01801 100% 0.010664 
4 6 27 16 64 27 × 643 7683 0.6492 0.366 0.1217 95% 0.010144 
4 6 27 128 512 27 × 643 15363 4.972 2.675 0.8368 91% 0.009711 
4 6 27 1024 4096 27 × 643 30723 malloc failed - create_level/level->my_boxes 

(1) Number of MPI rank assigned to each GPU 

 



 

D. HPGMG on CPU-based XE and GPU-enabled XK 
nodes on MPMD mode 
MPMD mode requires the same base code for CPU-

based and GPU-enabled executable binaries; therefore, we 
downloaded HPGMG v0.3 (commit: 26f74a2120ce) that is 
an older version than HPGMC-CPU-8a2f0e1. We then built 
an additional CPU based binary (i.e., HPGMG-CPU-
26f74a2) for our MPMD runs. As we discussed in the 
previous section for HPCG MPMD mode tests, we wanted to 
synchronize HPGMG performance per MPI rank on XE and 
XK nodes. For that, we needed to increase nthr (number of 
thread) to improve the per-MPI performance of CPU-based 
binary. We also increased nMPI/GPU (number of MPI rank 
per GPU) in order to reduce the per-MPI performance of 
GPU-enabled binary. Since the GPU memory per XK node 
(i.e., 6 GB) was much smaller than CPU memory per XE 
node (i.e., 64 GB), we also reduced the box size assigned to 
each XE node to the level of each XK node. After several 
parametric tests, we selected a set of parameters (i.e., nthr=8, 
nMPI/GPU=7, k=7 and nB=2) for an optimal MPMD run by 

synchronizing per-MPI performances on XE and XK nodes. 
As references, we selected two sets of parameters; one is for 
the best CPU-based binary (i.e., nthr=1, k=8 and nB=1) and 
the other is for the best GPU-enable binary (i.e., 
nMPI/GPU=1, k=6 and nB=108).  

Table XVII, Figures 19 and 20 show HPGMG 
performance on MPMD mode, XE-only mode and XK-only 
mode. We tested with 16 XE and 16 XK nodes, and then 
with 128 XE and 128 XK nodes. Unfortunately, one of the 
reference sets for the best CPU-based binary (i.e., nthr=1, 
k=8 and nB=1) encountered out-of-memory errors. It seems 
the recent HPGMG (commit: 8a2f0e1123c7) is better at the 
memory usage for the same size of problems than HPGMG 
v0.3 (commit: 26f74a2120ce).  

With the first set of parameters for the synchronized per-
MPI performance (i.e., nthr=8, nMPI/GPU=7, k=7 and 
nB=2), it turned out HPGMG performance on MPMD mode 
was similar to summation of HPGMG performances of XE-
only and XK-only modes. On 16 XE and 16 XK nodes, 
HPGMG at each MPI rank (i.e., 4.516 MDOF/s) was 

TABLE XVII. BOXESHPGMG PERFORMANCE  OF HPGMG-CPU-26F74A2 AND HPGMG-GPU-02C7EA2 ON MPMD MODE (UNIT: GDOF/S) 

Run type (nthr, nMPI/GPU, k, nB) XE 
nodes 

XK 
nodes 

nMPI 
@XE(1) 

nMPI 
@XK(2) 

Number 
of cells 

Boxes 
/MPI(3) 

HPGMG (GDOF/s) HPGMG 
/MPI rank(4) 1h 2h 4h 

MPMD (8,7,7,2) 16 16 64 112 896 1.949 0.7949 0.2997 0.0768 0.004516 
XE only (8,7,7,2) 16  64  640 1.953 0.3525 0.2084 0.063 0.005508 
XK only (8,7,7,2)  16  112 768 1.929 0.4828 0.1578 0.03365 0.004311 

MPMD (2,1,6,108) 16 16 256 16 1792 80.706 0.4002 0.3257 0.2294 0.001471 
XE only (2,1,6,108) 16  256  768 85.75 0.426 0.3437 0.2363 0.001664 
XK only (2,1,6,108)  16  16 1792 108 0.6433 0.3325 0.1043 0.040206 

MPMD (1,1,8,1) 16 16 512 16 2048 0.97 Out of memory 
MPMD (8,7,7,2) 128 128 512 896 1792 1.949 5.818 1.917 0.433 0.004132 
XE only (8,7,7,2) 128  512  1280 1.953 2.618 1.417 0.3976 0.005113 
XK only (8,7,7,2)  128  896 1536 1.929 3.557 1.026 0.2039 0.003970 

MPMD (2,1,6,108) 128 128 2048 128 3584 80.706 3.171 2.539 1.69 0.001457 
XE only (2,1,6,108) 128  2048  1536 85.75 3.373 2.682 1.764 0.001647 
XK only (2,1,6,108)  128  128 3584 108 4.611 2.271 0.697 0.036023 

MPMD (1,1,8,1)  128  128 3584 108 Out of memory 
(1) nMPI/XE: number of MPI ranks assigned to XE nodes, (2) nMPI/XE:  number of MPI ranks assigned to XK nodes,  

(3) Boxes/MPI: number of boxes (2k cells) assigned to each MPI rank, (4) HPGMG/MPI rank: HPGMG performance per MPI rank 

 
Figure 19. HPGMG performance on MPMD mode with 16 XE nodes and 16 

XK nodes 

 
Figure 20. HPGMG performance on MPMD mode with 128 XE nodes and 

128 XK nodes 



 

between those of XE-only (i.e., 5.508 MDOF/s) and XK-
only (i.e., 4.311 MDOF/s) modes. The per-MPI performance 
of MPMD mode on 128 XE and 128 XK nodes (i.e., 4.132 
MDOF/s) was also between those of XE-only (i.e., 5.113 
MDOF/s) and XK-only (i.e., 3.97 MDOF/s).   

HPGMG performances on MPMD mode with the second 
set of parameters for the best GPU-enable performance (i.e., 
nMPI/GPU=1, k=6 and nB=108) were much lower than 
those with the first set of parameters. They were even lower 
than HPGMG performances on XE-only or XK-only mode. 
It is because the performances on MPMD mode were 
bounded by lower per-MPI performance that was of CPU 
based binary with the second set of parameters. On 16 XE 
and 16 XK nodes, the per-MPI performance on MPMD 
mode (i.e., 1.471MDOF/s) was slightly lower than that on 
XE-only mode (i.e., 1.664 MDOF/s) and much lower than 
that on XK-only mode (i.e., 40.21 MDOF/s). The HPGMG 
performance per MPI rank on MPMD mode with 128 XE 
and 128 XK nodes (i.e., 1.457 MDOF/s) was also lower than 
that on XE-only mode (i.e., 1.647 MDOF/s) and much lower 
than that on XK-only mode (i.e., 36.02 MDOF/s).  

 

IV. CONCLUDING REMARKS 
HPCG and HPGMG benchmarking are new metrics to 

measure modern HPC performance. They include many 
featured aspects representing important science and 
engineering HPC applications popularly used in modern 
HPC community. We performed HPCG and HPGMG 
benchmarking tests on CPU-based XE nodes, GPU-enabled 
XK nodes, and both XE and XK nodes with MPMD mode 
on Blue Waters.  

HPCG benchmarking on CPU-based XE nodes showed 
consistent performance for various numbers of equations per 
MPI process, and the parallel efficiency kept more than or 
equal to 86% on tested cases (up to 4.6% Blue Waters XE 
nodes, 1024 XE nodes). We tested HPCG on GPU-enabled 
XK nodes with up to 6.1% Blue Waters XE nodes (i.e., 256 
XK nodes). Its performance increased exponentially with 
number of equations per MPI process at the beginning, and 
then it converged to a certain level. The parallel efficiency of 
HPCG on XK nodes was more than or equal to 88% that was 
a little bit lower than that on the same number of XE nodes 
(i.e., 92%). HPCG performance on XK nodes was around 2.7 
times faster than HPCG on the same number of XE nodes.  
For an optimal performance on MPMD mode, we tried to 
synchronize HPCG performance per MPI process on XE and 
XK nodes. For that, we increased number of threads on XE 
nodes and increased number of MPI ranks per GPU on XK 
nodes. As a result, we selected a set of parameters with 
128×643 local blocks per MPI process, 8 threads per MPI 
process on XE nodes and 10 MPI processes per GPU on XK 
nodes. It resulted in around 60% to 100% better performance 
than other reference cases that were chosen for the best CPU-
based performance or the best GPU-based performance.  

HPGMG performance on XE nodes rapidly increased 
with number of cells assigned to each compute node, and 
then it was converged. Its OpenMP implementation was 
efficient enough to keep the performance at a certain level 

with threading in a NUMA core. The parallel efficiency of 
HPGMG on XE nodes is impressive, at more than 87% with 
up to 36% of the available XE nodes (i.e., 8192 XE nodes). 
HPGMG on GPU-enabled XK nodes was sensitive to 
number of cells per MPI process, since the assignable 
number of cells on GPU was not big enough for HPGMG 
performance to be converged. Its performance on 16 XK 
nodes was around 34% faster than HPGMG on 16 XE nodes, 
but the parallel efficiency on XK nodes rapidly dropped to 
63% on 1024 XK nodes (i.e., 24% Blue Waters XK nodes). 
That was much lower than the parallel efficiency of HPGMG 
on 1024 XE nodes (i.e., 91%). For MPMD mode, we again 
tried to synchronize HPGMG performance per MPI process 
on XE and XK nodes. After several parametric studies, we 
selected an optimal set of parameters (i.e., 8 thread per MPI 
process on XE nodes, 7 MPI processes per GPU on XK 
nodes and 2×1283 cells per MPI process). It turned out that 
HPGMG on MPMD mode with the selected set of 
parameters shows around 100% better performance than a 
reference case that was optimized for the best HPGMG 
performance with GPU-enabled executable binary.  

In summary, we performed HPCG and HPGMG 
benchmarking tests on Blue Waters with various 
configurations. We analyzed each benchmark on CPU-based 
nodes, GPU-enabled nodes, and both of heterogeneous nodes 
with MPMD mode. In both benchmarks, the performance on 
GPU-enabled nodes was better than those on CPU-based 
nodes. To obtain an optimal performance on MPMD mode, 
we tried to synchronize performance per MPI process on 
CPU-based and GPU-enable nodes. It turned out the 
synchronization of the per-MPI performance resulted in 60% 
to 100% better performance than other reference cases. We 
hope this study will help Cray users optimize their 
applications for science and engineering projects on modern 
hybrid HPC systems.  
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