
Regression Testing on Shaheen Cray XC40: Implementation and Lessons Learned

Bilel Hadri1, Samuel Kortas1, Robert Fiedler2, George S. Markomanolis1

1 KAUST Supercomputing Laboratory (KSL)
King Abdullah University of Science and Technology (KAUST)

Thuwal, Saudi Arabia
email: bilel.hadri@kaust.edu,sa; samuel.kortas@kaust.edu.sa, georgios.markomanolis@kaust.edu.sa

2 Cray Inc,

Seattle, WA, USA
e-mail:rfiedler@cray.com

Abstract—Leadership-class supercomputers are becoming
larger and more complex tightly integrated systems consisting
of many different hardware components, tens of thousands of
processors and memory chips, kilometers of networking cables,
large numbers of disks, and hundreds of applications and
libraries. To increase scientific productivity and ensure that
applications efficiently and effectively exploit a system’s full
potential, all the components must deliver reliable, stable, and
performant service. Therefore, to deliver the best computing
environment to our users, system performance assessments are
critical, especially after an unplanned downtime or any
scheduled maintenance session. This paper describes the
design and implementation of the regression testing
methodology used on the Shaheen2 XC40 to detect and track
issues related to the performance and functionality of compute
nodes, storage, network, and programming environment. We
also present an analysis of the results over 24 months, along
with the lessons learned.

Keywords: Cray XC40, Regression Testing, Performance,
Lesssons learned

I. MOTIVATION
For many years, regression testing has been an essential

step of any software development or integration cycle.
However, for HPC systems, regression testing is typically
performed in a more ad-hoc fashion, and is focused on the
basic functionality of the various hardware components. For
example, for the previous HPC systems at KAUST, the
actual coverage of the tests done after maintenance was not
rigorously known, due to the lack of a systematic procedure.
Back then, the basic functionality of some system
components was checked only before releasing the system
back to the users as soon as possible. Under this scenario, the
performance of all components was measured only
occasionally, and despite some actions taken in response to
user complaints regarding functionality and performance
issues, tracking down the cause of any observed degradation
was challenging.

Since the acceptance of Shaheen 2 [1], a 36-cabinet Cray
XC40 supercomputer installed in March 2015, a clear
regression procedure has been adopted in order to identify

potential hardware or software issues in a more rational and
methodical way. After each maintenance session or
unscheduled downtime, a set of well-defined tests is
systematically run to assess the actual state of the system. A
careful analysis of the obtained results is used as crucial
input to the decision by the KAUST Supercomputing Lab
(KSL) team on whether or not to release the system to the
users, based on the criticality of any issues detected.

In the last 24 months, our use of this regression
procedure has provided four essential benefits:

1. a drastic decrease of user tickets received soon
after a downtime: our objective is to have not a
single hardware or software ticket related to the
system for the next 24 hours after it is released
to users, and we have received only a few in that
time frame.

2. a significant gain in performance due to the
“trimming” of the nodes, as well fixing weak
network links: we observed up to a 10%
performance improvement on a full scale code.

3. an improved reproducibility of user experiments
run at large scale.

4. a more detailed history of observed hardware
and software problems, allowing us to provide
more accurate data to vendors about any
performance degradation

After presenting the overall regression protocol (section

II), unit tests (addressing single-node performance checking
and interconnect capacity), and component tests are
discussed in section III and IV. Section V focuses on
integration and tests: by using actual applications running at
medium or full scale, we validate the performance of the
system as a whole. Finally, section VI details the first
implementation of an automated framework for assembling
all of the tests and triggering their execution to enable 'on-
the-fly' regression testing of the system.

II. TESTING PROTOCOL
From our experience, a regression testing approach is

successful if the tests selected are sufficiently reproducible,

and if they provide the most exhaustive coverage possible of
the system features that must be tested. In this respect, a
systematic testing protocol appeared essential. The set of
tests we assembled allowed us to reach a decent coverage
with minimum redundancy. In addition, the order in which
we execute them has helped guarantee early detection and
straightforward localization of any problems observed. Of
course, the optimization of this protocol is a never-ending
task, and having it carefully documented is of great help.
Here we describe our current testing protocol.

First, we test the regular and basic of functionality of the
scheduler and programming environments. Tagged as
'Component Tests', they are documented with a clear
description of each command to run as well as the expected
result. A comprehensive list of these tests is given in section
IV. They can easily be automated, and will be included in
our automated regression framework in the near future.

Second, we perform extremely well-localized
performance runs with synthetic tests validating each crucial
component of the system. In detail we test:

• the health and decent performance of any
compute node in the system. To do so, we
submit a one-node LINPACK test, wrapped into
an MPI job to launch it across all nodes and
check both performance and accuracy.

• the behavior of the interconnect by evaluating
the bandwidth of all links in any allocation of
nodes. A Cray-developed topology-aware MPI
program is used along with environment
variable settings that enforce minimal-path
routing.

• the global throughput of the parallel file system
(both Lustre and DataWarp nodes) using IOR.
The goal is to check the bandwidth of the
parallel file systems to be above 500 GBs/ and
1.5TB/s for Lustre and DataWarp respectively.

Last, we run some typical user jobs (real applications for
only couple of iterations, such as WRF, SPECFEM, and
other in-house codes) to stress the system at larger scales and
guarantee good integration of all components (file system,
compute nodes, and interconnect) while corroborating the
synthetic test results.

Most of the time, this regression testing protocol occurs
in a single session after maintenance, but it has also been
designed to be run on-the-fly on Shaheen2. Additional
implementation details of our regression protocol are given
in Section V.

III. UNIT TESTS ASSESSING NODE AND INTERCONNECT
PERFORMANCE

In our regression process, we consider compute nodes,
the interconnect, and the file system as the smallest testable
parts of our environment. Indeed, during this whole testing
process, we never require any system administrator
privileges and always remain at a user level. In agreement
with the terminology used in software engineering, we
therefore named them 'unit tests'.

The purpose of the present section is to describe them
further.

A. Node Performance
Shaheen Cray XC40 is composed of 6,174 dual-socket

compute nodes based on 16-core Intel Haswell processors
running at 2.3GHz. Each node has 128GB of DDR4 memory
running at 2300MHz. In order to evaluate individual node
performance and computational correctness, we use the
binary xlinpack_xeon64, the Intel optimized LINPACK
Benchmark for Linux [2] that solves a dense linear system of
linear equations (Ax=b) in double precision and measures
the required time to factor and solve the system. In the end,
this time is converted into a performance rate, and the
accuracy of the solution obtained is also validated.

Node nid00008
Intel(R) Optimized LINPACK Benchmark dataCurrent
date/time: Wed Mar 22 14:10:11 2017

CPU frequency: 3.599 GHz
Number of CPUs: 2
Number of cores: 32
Number of threads: 32

Parameters are set to:

Number of tests: 1
Number of equations to solve (problem size) : 55000
Leading dimension of array : 55000
Number of trials to run : 1
Data alignment value (in Kbytes) : 1

Maximum memory requested that can be used=24201101024, at
the size=55000

========= Timing linear equation system solver ========

Size LDA Align. Time GFlops Residual Residual(norm) Check
55000 55000 1 113.094 980.796 1.7961e-09 2.11745e-02
pass

Performance Summary (GFlops)

Size LDA Align. Average Maximal
55000 55000 1 980.7967 980.7967

Residual checks PASSED

Figure 1. Intel LINPACK Benchmark output for one node.

The Linux function execl[3] is wrapped into an MPI
program that runs separate, identical LINPACK benchmark
on each node, and gathers and sorts the results depending on
performance. This process also identifies nodes that perform
significantly worse (by a specified margin) than the best (or,
optionally, the average) node of a given type (i.e., nodes
having same core count, clock frequency, memory
frequency, etc). The interconnect is used only to determine
the node on which each rank is running and to collect results
for analysis and outlier identification. Since all nodes are
tested concurrently, the overall test run time is determined by
the slowest node in the system; it increases only slowly with
number of nodes tested due to the longer time required to
start up the job and to gather results. In order to have
consistent performance results, and to fully stress the CPU
and memory of the nodes, we have chosen a matrix size N =
55,000, even though this large problem size takes longer to
run. This size tests most of the memory and consistently
yields near-asymptotic performance on the Haswell nodes.

On average, the test of node performance lasts around 6
minutes for all Shaheen2 nodes at once.

Figure 2. Node performance variability on Shaheen March 2016.

From the output of the benchmark, as shown in Figure 1,
we parse the node number, the CPU frequency, the GFLOP/s
performance and the residual (accuracy) test. These are the
variables that help us detect weak or faulty nodes that need
to be fixed. Early in production in July 2015, the node
performance variability of Shaheen2 used to range from 930
GFLOP/s to 965 GFLOP/s, with an average performance of
940 GFLOP/s. Over time, it has been noticed that more and
more nodes are performing below this range, and some of the
nodes reached a poor performance of 879 GFLOP/s as
noticed in March 2016 and plotted in Figure 2, with around
100 nodes with a performance lower than 930 GFLOP/s.
This is far from the expected performance, and thus the
scientists aiming at applications targeting performance would
not be able to exploit fully the potential of the Cray XC40.
Indeed, the HPL number per node is less than 75% of the
theoretical peak of a Shaheen Haswell node (1177.9
GFLOP/s). Consequently, on April 2016, at our request,
Cray on-site engineers performed the trimming procedure[4]
on all Shaheen nodes, and much improved performance was
reached, with an enhancement up to 10%, with a range of
performance distribution from 935 to 1025 GFLOP/s with an
average of 980 GFLOP/s as shown in Figure 3.

Figure 3. Node performance variability on Shaheen April 2016 after

triming.

This critical performance test has helped the KSL team
detect major issues during the regression testing:

• Performance issue: After each maintenance, a
couple of nodes are generally detected with
performance lower than 935 GFLOP/s, the
threshold set by the KSL team. An individual
test is performed, and if the observed
performance is confirmed, the node is drained
and can be returned to the pool of available
nodes after a trimming procedure, provided the
performance exceeds 935 GFLOP/s. The weak
performance can come from the memory; it has
indeed been observed that the memory issue is
related to either runs with a performance around
and worse than 550 GFLOP/s or when the
execution time exceeds the wall clock limit of
10 minutes.

• Power capping issue: There was a phase (from
July 2015 until December 2016) where Shaheen
was running under power and cooling
constraints, using initially two static queues
(workq_high with uncapped nodes, and
workq_low with nodes capped at 275W) and
later adopting SLURM dynamic power capping
[5]. During this period, we were always able to
detect nodes that were not correctly configured.
With a performance under 800 GFLOP/s, this
correspond to a node that is behaving as capped,
while it belongs to the set of uncapped nodes.
These issues lead to updates on CAPMC[6] and
SLURM since randomly some nodes were set to
a lower frequency (below 2.3GHz, while the
test should show around 3.6 GHz as shown in
Figure 1).

• CPU frequency issue: More recently, with the
release of SLURM 17.02, a critical issue has
been detected thanks to this test, where at the
beginning of each batch step, the command srun
would inadvertently set the CPU frequency
maximum to the minimum value supported on
the node. The result obtained by the node
performance test showed only one node that was
capped at 1.2GHz, while the rest of nodes
reached expected performance. Nevertheless,
when testing several nodes individually, all of
them reported a low performance with a CPU
frequency set at 1.2GHz. This problem has been
detected with the applications, like SPECFEM
and WRF, where only one weak node increased
considerably the time to solution of the
application.

• Correctness: Thanks to the residual check in
the LINPACK test, it sometimes occurs that the
performance of a given node is in the acceptable
range, however the residual is above the
threshold, which means that the answer is
incorrect. This typically corresponds to a faulty
socket with inaccurate results that will impact
dramatically any scientific results. Since

production, 12 sockets have been detected as
faulty and sent back to Intel for further analysis
by Cray on-site engineers.

• Thermal issue: examining the performance data
stored so far, the overall performance of the
nodes is quite stable and does not vary.
Nevertheless, we observe, during the iteration of
tests of the same node to validate the results,
variation from 910 back to 990 GFLOP/s and
again down to 910. This issue is typically linked
with a thermal issue and the detected node is
reported and further tests are run by Cray on-site
engineers to determine the faulty socket needing
to be replaced. These sockets impact application
performance reproducibility.

This process has an excellent advantage to provide to

particular users the list of the best nodes (above 1 TFLOP/s)
for their performance study.

Figure 4. Node performance variability on Shaheen comparison between

April 2016 and February 2017.

This test is done almost monthly following a
maintenance and all the data are stored. This allows us to
observe the performance variability and degradation over
time as shown in Figure 4 comparing the result in April 2016
and February 2017. Even tough the average of all nodes is
quite stable (only 0.4% of variation, from 980 to 976
GFLOP/s), we clearly observe a shift of the majority of
nodes towards a lower value, toward the left side for the
February 2017 node performance in blue as plotted in Figure
4. This is also shown in Figure 5, where the performance of
each node is plotted. February 2017 performance is lower
than April 2016, and on the left side of the plot, we spot
several hundred of nodes that lost close to 8% of their
original performance from as high as 1015 GFLOP/s down
to 940 GFLOP/s.

Consequently, the threshold limit is lowered to 930
GFLOP/s, since further trimming process on the node with a
performance of 931 to 935 GFLOP/s does not fix the issue. It
seems that this is expected normal degradation according to
Intel engineers.

Figure 5. Node performance variability on Shaheen comparison between

April 2016 and February 2017.

B. Link Performance Test
The HSN on Shaheen is configured with 8 optical

network connections between every pair of cabinets
achieving therefore 57% of the maximum global bandwidth
between the 18 groups of two cabinets. This will allow the
design of a future upgrade with additional cabinets to
accommodate more optical links between all cabinets with
the same level of connectivity, i.e. 8 optical network
connections between every pair of cabinets.

In order to evaluate individual interconnect link
performance, we employ the test_links tool developed at
Cray. Test_links was originally developed for the Gemini
network on Cray XE/XK systems [2], and was recently
redesigned for Cray XC systems (aries interconnect). Cray
has provided to KSL the test_links binary executable and
batch scripts for the purposes of troubleshooting and
regression testing.

Test_links evaluates the bandwidth of all interconnect
links in any allocation of nodes and identifies links with
lower (by a specified amount) than the best or the average
bandwidth for links of the same type. Bandwidths for each
link are also recorded in tables for comparison between sets
of results obtained at different times, so that one may
determine whether and how individual link performance has
changed over time. Four different types of links are
evaluated, including:

• the PCIe links from the four compute nodes on a
blade to the single Aries router on that blade,

• the copper links between blades in the same
chassis,

• the copper links between blades in different
chassis of the same group,

• the optical links between groups.

The test_links code is a user-level topology-aware MPI

program in which the physical location on the hardware of
each process (MPI rank) in the allocation is obtained from
Cray PMI library calls. The bandwidth of any link is
determined by timing MPI calls involving messages of a
specified size using an intensive communication pattern

between ranks located on either end of that link. Certain
environment variables are set to disable adaptive routing, i.e.,
the only communication paths allowed are the minimal (most
direct) paths. Thus, all communication in the selected
pattern passes only through the link being evaluated (plus the
PCIe links from the aries routers to the nodes). Note that the
performance impact of a small number of links delivering
somewhat less than the nominal bandwidth (as indicated by
test_links) on a real science application running with
adaptive routing enabled can be expected to be considerably
less than the discrepancy reported by test_links, since the
adaptive routing algorithm can compensate for the presence
slow links by utilizing alternate paths.

Links are evaluated independently but concurrently, in
order to minimize the time it takes to measure the bandwidth
of every link in the allocation. The test algorithm is designed
to handle the presence of any service nodes and down
compute nodes in the system. The run time to test all PCIe
and copper (i.e., intra-group) links in a system is essentially
independent of the number of groups in the system. The run
time for N groups is proportional to N, rather than the
number of optical links, which scales as N*(N-1). Thus, all
link bandwidths for even a very large system can be
measured in ~10 wall clock minutes or less.

When evaluating the optical links between groups,
multiple blades on either end of a given link are utilized. As
a result, only the aggregate bandwidth of a given optical link
can be measured. Nevertheless, the test can readily identify
any slow optical links, which can be further diagnosed by the
system administrators using lower-level Cray-provided tools.

The implemented communication patterns include all-to-
all and one-to-one, in which each core on one end of the link
sends a message to the corresponding core on the other end
using non-blocking point-to-point MPI Isend/Irecv calls.
The one-to-one pattern exhibits higher bandwidths than all-
to-all when evaluating link types at all levels above the PCIe
links, and is therefore considered to be the more sensitive of
the two for detecting performance degradation. We use all-
to-all for the PCIe links, and typically observe wider
variations in performance among PCIe links in the system
compared to variations measured for the other non-optical
link types. We normally use a message size of 2 MB and
repeat the communication pattern thousands of times to
ensure accurate timings. The threshold used for identifying a
slow link is typically 10% below the average measured
bandwidth for a given link type. Lane degrades for non-
PCIE, non-optical link type typically reduces the measured
bandwidth by 20-30% (with adaptive routing disabled), and
therefore is readily detected using a 10% threshold.

Table 1 summarizes the expected performance. Over
time, this test revealed several links in dimension 2 and 3
that needed to be replaced, or in some cases only a reboot of
the nodes in the implicated blade was necessary to resolve
the issue.

Table 1: Expected Performance of the different dimensions

In case of poor performance, misbehaving nodes or links

are either fixed or removed from the available resource, and
the test is re-executed to make sure that the remaining links
are performing as expected.

This test lasts around 6 minutes for evaluating all
Shaheen links. Figure 6 shares few lines of the test_links
report, focusing on the chassis-chassis links where node
nid01775 is reporting the lowest bandwidth. In this example,
the network link associated with the low bandwidth node is
indeed degraded and further troubleshooting was done to
resolve the problem. Moreover, once a node is indicated as a
significant outlier, its corresponding blade is disabled and
another iteration of the link test is performed to confirm that
the disabled blade was the cause of the issue.

ANALYSIS OF RESULTS FOR ARIES DIMENSION 2

 For aries with 3 available compute nodes:
 Highest bandwidth for 3 nodes 8.19175
 Lowest bandwidth for 3 nodes 8.10847
 Average bandwidth for 3 nodes 8.15648
 Std. dev. for 3 nodes 0.241659E-01

 For aries with 4 available compute nodes:
 Highest bandwidth for 4 nodes 8.55541
 Lowest bandwidth for 4 nodes 4.34258
 Average bandwidth for 4 nodes 8.51178
 Std. dev. for 4 nodes 0.772598E-01

OUTLIER(MORE THAN 5.0% BELOW AVERAGE)FOR ARIES DIMENSION 2
NID tx ty tz NID tx ty tz BdwidthGB/s nodes % deviation
1644, 4,1,11, 1775, 4,3,11, 4.34258 4 48.98
1708, 4,2,11, 1775, 4,3,11, 6.59278 4 22.55
1775, 4,3,11, 1644, 4,1,11, 4.34258 4 48.98
1775, 4,3,11, 1708, 4,2,11 6.59278 4 22.55

Figure 6. Extract of test_link for Dimension 2 links.

C. IOR Tests
The primary Shaheen data storage solution is a Lustre

Parallel file system with a usable storage capacity of 17.2 PB
delivering around 500 GB/s of I/O throughput. The Cray
Sonexion 2000 installation is configured using 72 Scalable
Storage Units (SSU) and 144 Object Storage Servers (OSS)
connected to the XC40 via 72 LNET router service nodes.

ShaheenII has 268 Cray DataWarp (DW) accelerator
nodes hosting a total of 536 Intel SSD cards. This
combination provides an aggregate burst buffer capacity of
1.56 PB to Shaheen users. This fast middle storage layer
provides up to three times the performance of the Lustre
parallel file system. Indeed, it achieves 1.54 TB/s and 1.66
TB/s in IOR write and IOR read, respectively.

For both storage systems, the IOR benchmark[8] is used
for measuring the amount of data moved in a fixed time. In
our case, we fix it at 60 seconds, respectively on 1152 and

5628 compute nodes on Lustre and Burst Buffer. Figure 7
shows the history of IOR performance on the Lustre parallel
file system. The performance was over the expected
performance of 500GB/s until September 2016 and kept
decreasing down to 433 GB/s, which corresponds to a
degradation of more than 20%. This was a major issue, but it
is not critical enough to prohibit releasing user jobs.
Nevertheless, the regression testing history of the IOR
benchmark showed a correlation with the WRF application
benchmark with close to a 10% increase in execution time.
After diagnostic analysis, the performance decrease was
determined to be mainly due to increased data usage on
Lustre and fragmentation of OST usage. Indeed, 44% of the
Lustre capacity was used in May 2016, and it reached close
to 70% of capacity in December 2016. A variation on the
load on individual OSTs of up to 20% was observed, and
some of them were at close to 85 % of capacity.

IO throughput performance over 500 GB/s was achieved
again in January 2017, with a decrease of usage (to around
50%) and a defragmentation was performed automatically,
since backup and archiving files are enabled with a Cray
Tiered Adaptive Storage (TAS) system, which consists of a
tape library with a total capacity of 20 PB upgradable.

Figure 7. IOR Benchmark results on Shaheen.

IV. COMPONENT TESTS
In parallel with the unit tests described in the previous

section, a set of basic features can also be tested validating
individually the key components of the environment. By
analogy with the software engineering classical approach, we
call them 'Component Tests'.

Each of these tests entails launching a simple Unix
command that has been well-documented in a checklist as
well as a means to verify whether or not the command was
successful.

The following Table 2 gives an idea of the components
tested:

 Category Purpose How to test?

General

Connection Try to login via ssh (do this test
with each login node)

 promptness of
command line

How long for a regular shell
command to return?

 check X-Windows Does an X11 window open
correctly when spawned from

Shaheen front-end?
check files Are files accessible in /home,

/lustre, /project/, /scratch?

Licenses

Cray compiler Can we compile a toy program
with these compilers? Intel compiler

Commercial software Can we run Totalview, DDT,
Ansys?

Scheduler

Availability Check that all queues are up and
running and record the number

of nodes down
Nominal use Submit (1, 4-512, 510-1000, >

1000) -node jobs
Submit from /project, from

/scratch
Stress Measure the time needed to

submit a job-array of 500 jobs.
When running, cancel all of

them.
Scheduling

policies
It should not be possible to

submit more than 800 jobs per
user, more than 512 nodes

occupied with jobs of 72 hours.

Accounting Check if the accounting is
working

Programming
Environment

Compilers Compile a toy code with Cray,
Intel and GNU compiler

Libraries, modules Link toy codes against petsc,
perftools, hdf5 and netcdf

libraries
 Monitoring Check that the previous

compilations have been recorded
in the xalt database. Check that a

toy program’s IO behavior is
tracked in Darshan.

Burst Buffer Availability Submit a job using the burst-
buffer and check the queue status

Table 2: Expected Performance of various component tests

V. INTEGRATION AND PERFORMANCE TESTS USING
ACTUAL APPLICATIONS

Last but not least, at the end of our testing protocol, here
are some procedures to test the whole environment.
Following a software engineering analogy, they are named
'Integration tests'.

They all involve running typical use cases using actual
applications on actual data sets representative of the Shaheen
workload. All tests have in common the process of
compiling and running through the scheduler, but they stress

diverse components of the environment (I/O, compute power
in memory use, and network). Out of the ten application tests
available we usually pick 4 or 5 of them to confirm the
overall stability and availability of the whole environment.

We here give two examples of these application
benchmarks.

A. SPECFEM3D
Context: SPECFEM3D simulates 3D seismic wave
propagation in any region of the Earth based on the spectral-
element method. This test consists of running a reference
case delivered with the source of the Fortran 90 MPI code. It
uses a CMT solution for a deep earthquake (647.1 km depth)
which took place in Bolivia in June, 1994 and uses the CPU
version 5.1.5 of SpecFEM3D_GLOBE.
This example creates a 3D earth global mesh spectral
element mesh using model S263ANI and runs 8700 time
steps using an explicit integration scheme. All
implementation details of this test can be found at [9].
Test Family: MPI multi-node application, medium scale
Components tested: Execution environment sustainability,
interconnect and compute node overall performance,
scheduler behavior.
Purpose: The executable had been built for the acceptance
test of Shaheen 2 in 2015 and was not recompiled since to
insure not only tracking of the performance of compute
nodes and interconnect on a medium scale but it also
validates the compatibility of the running environment
against an executable built several months ago.
Description: Two runs can be performed on 2336 cores (73
nodes) or 16224 cores (507 nodes). Following the guidance
at [6], we systematically check the accuracy of obtained
results and track the global elapsed time of the whole
simulation (excluding the time spent building the mesh).

Figure 8. SPECFEM3D regression testing result over time.

Results: As shown in Figure 8, SPECFEM3D 16224-core
test has been run systematically after each maintenance
session. The elapsed time observed during Shaheen 2
acceptance testing was 260 seconds.

A significant improvement in the execution environment has
been observed since December 2016. This corresponds to
when SLURM dynamic capping was disabled. Even if the
code was not recompiled, a time below 240 seconds is now
observed as a nominal result.
We can also notice a classical pattern of degraded times
observed at the beginning of a regression step, helping us to
confirm that a problem needs to be fixed, and the nominal
result obtained again once the problem has been solved.
The log run times (400 and 369 s) observed at the end of
February 2017 were related to an issue with the latest
SLURM 17.02 version installed. As described in section III,
the CPU frequency of one node in the same job was
different, leading to a performance close to the lowest
capped node. This problem was immediately identified
thanks to this test and was solved later by SchedMD.

B. WRF

Figure 9. WRF regression testing results over time.

Context: Weather Research and Forecasting (WRF) [9] is
used by many environmental groups and weather centers to
simulate, forecast the weather but also study weather
phenomena. For this case we use WRF version, 3.5.1.
Test Family: MPI multi-node application, medium scale
Components tested: Execution environment sustainability,
interconnect and compute node overall performance,
scheduler behavior.
Purpose: The WRF version is the same with the acceptance
test of Shaheen 2 in 2015 and same flags were used for the
compilation to be able to compare the performance obtained
during the time of acceptance.
Description: We use 304 nodes, we have 1216 MPI
processes and 8 OpenMP threads per node. The domain is
small because we do not want to spend a lot of time on
regression testing. We have 3-nested domains; the large
domain is 701x601 data points. Compared to SPECFEM3D,
this application stresses the network more and the compute
nodes less, and perfoms a small amount of I/O. Sometimes
WRF can identify errors with high speed network (this has

happened on two or more occasions). We use a triply-nested
domain covering a large range outside Saudi Arabia, and the
last nested domain extends close to the red sea.
Results:
As shown in Figure 9, WRF has been run systematically
after each maintenance session.
The elapsed time observed during Shaheen 2 acceptance
testing was 245 seconds. In the figure, we see a variation of
the execution time of the WRF case, depending on compute
node or network connectivity issues.

VI. AUTOMATED REGRESSION FRAMEWORK
In [1], a brief overview of the regression framework was

given. The following paragraphs provide more details about
its implementation. As a medium-term objective, we plan to
release the complete sources of this monitoring and testing
environment as well as the tests not involving confidential or
commercial components to the HPC community.

A. A three-component monitoring environment

Since the first day of Shaheen 2 production, a monitoring

environment has been put in place. It relies on three
components hosted on a unique workstation connected via
SSH to a regular user account:

1. A Jenkins integration server that allows the

continuous monitoring of the Shaheen 2 SLURM
scheduling environment. Every 3 minutes, a shell
script saves in a log file:
• a comprehensive state of the scheduling queue

for compute nodes and allocated burst buffer
spaces (result of squeue -l and dwstat --all
command)

• general information about the resources
available: nodes made available to the queue
(sinfo) or taken out (sinfo -R), list of the
ongoing reservations (scontrol show
reservation), priority of the jobs to be
submitted (sprio) and general diagnoses about
the system (sdiag).

2. A Python extracting script that computes the
current load on Shaheen 2 from Jenkins log files,
and stores this information in a MYSQL table as
tuples (timestamps, load, Jenkins_job). The load is
the ratio of Shaheen nodes hosting a running job to
the total number of nodes available. Jenkins_job
refers to the exact Jenkins log from which
information was computed.

3. A PHP/Jquery based website allowing easy
browsing over time of the load history of Shaheen 2
(see figure 10). The load of the system, taken every
3 minutes, is plotted over time, and clickinig on a
location of the obtained curve leads to the opening
of another window displaying the corresponding
Jenkins log at that time in the history. Via a

clickable arrow, one can also go back in time and
browse a window from 1 h to one week at any
specific date in the last 6 months.

B. A self-described testing framework
To complement these monitoring tools, KTF, (KAUST

Testing framework), written in Python allows one to
describe, store, run, monitor and collect the results of a given
test in a very straightforward way [11].

Figure 10. Shaheen2 load monitoring website.

A test is saved as a Python class (inherited from the ktf
class) where the user defines which command to run and
how to extract result information from the output produced.

This result is saved into a database and examined to
detect any regression of the environment.

The detail of the execution of the test is defined through a
Python function, or by providing a set of sub-directories
containing the executable, a job template, and all the input
files required. Optionally, the Python script or job template
contains parameters to be set at the test launching step: for
example, the number of nodes or cores or any parameter to
pass to the code (size of mesh, convergence threshold …).
These files (Python scripts and/or template files) are stored
in a global directory gathering all the available regression
tests. In order to assure tracking and reproducibility, this
directory is placed under version control with GIT.

For each run carefully indexed by a unique identifier, the
test result is saved in a database as well as the precise time
stamps when the test began and stopped, the GIT checksum
of the source actually used, the measure of the elapsed time,
the list of nodes scheduled, and all information about the
environment that are systematically dumped in an output file
copied in a Text field.

In case of unsatisfying observed performance, all these
data are very useful in order to correlate the obtained result
with the state of execution environment at this very same
time. Via a combined examination of these data and Jenkins
log files, one can see if another particular code was running
simultaneously or if the scheduler was detecting problems on
some nodes partly allocated to the job, etc.

In addition, the properties of every possible different test
are characterized in a single table. There, apart from a unique
identifier, the following items are specified:

[1] the list of components stressed during this test
(compute nodes, interconnect, Luster file
system, Burst Buffer, Scheduler, Compiling or
Running environment),

[2] the classification of the test: short, medium or
large scale, sequential or MPI executable, load
dependent or not, etc.

[3] the possible combinations of resources and
parameters on which that test can be run. For
example if a test can be run on 1, 16 and 64
nodes, on a small, medium or large size
problem, this field could be [(1, small), (1,
medium), (16, small), (16, medium), (64,
medium), (64, large)]

[4] the pool of resources on which the tests can be
run. For the LINPACK and SPECFEM3D tests,
it consists of a set composed of all available
nodes. For the test_links code, it may be a set of
all the point-to-point connections in the
interconnect. A complete regression cycle is
completed when all the resource components
appearing in the pool have been used at least
one time by a regression test.

D. The on-the-fly regression process triggered by the
observed load of Shaheen2
Based on the information gathered, processed and stored

in the monitoring components and the testing framework, the
regression tests can then be launched automatically.

• After each run of the Jenkins script gathering
the scheduling environment of Shaheen, a
threshold test on the current load is performed
and triggers a regression test if Shaheen is under
75% utilized for the last 1 hour.

• When this trigger is activated, a Python script
scans the tests available in KTF database and
decides which one to submit to the scheduler.
Priority is given to test mobilizing resources
from the available pool that have been
unsolicited so far. In the example of the
LINPACK test described at section III, this
program tests the performance of each node
executing LINPACK. By taking the intersection
of nodes currently idle and nodes that have not
been tested yet, the script gathers the subset of
candidate compute nodes on which to run
LINPACK next.

• At the end of each job, results are gathered
along with information about the environment.
These are made available in the result database
where a consolidated view of the current
fraction of the resource pool already tested is
also available.

As this approach is still under testing, the database

schemes described here are not definitive, but they give a

rough idea of what can be achieved automatically. The script
computing the next test to schedule is a function attached to
each test encoded in the KTF framework.

VII. CONCLUSION
In this paper, we present the immense benefit of

following a regression testing protocol after every
maintenance or unscheduled downtime on an HPC
environment. By assembling a coherent set of tests and
applying them systematically, it helped us to detect sooner
various problems in the hardware or software environment
and allowed the release of a more reliable and performant
environment to the users.

With this protocol, the KSL team has successfully
provided a clean environment with near-zero ticket issue
received related to software and hardware within 24 hours
following a maintenance. This protocol takes on average one
hour and 30 minutes, and does not require any special system
privileges. Indeed, the tests are performed by the
computational scientist team members as regular users.

Our rigorous approach for measuring key aspects of
system performance lead to a gain of up to 10% in
application performance along with better reproducibility of
user experiments on Shaheen.

Though some of these tests have already been included in
the Cray testing suite and adopted by Cray on-site engineers,
our goal was to give an exhaustive view of the whole
protocol applied. An automated version of this process is
currently under testing, enabling ‘on-the-fly’ performance
evaluation and even earlier detection of potential issues. A
first version of the components of this framework is planned
to be released to the community as soon as it is stable and
documented.

ACKNOWLEDGMENT
For computer time, this research used the resources of the

Supercomputing Laboratory at King Abdullah University of
Science & Technology (KAUST) in Thuwal, Saudi Arabia

REFERENCES

[1] B Hadri, S Kortas, S Feki, R Khurram, G Newby , “Overview of the
KAUST’s Cray X40 System–Shaheen II,” In proceeding of Cray User
Group 2015, Chicago, 2015

[2] Intel Optimized LINPACK Benchmark for Linux:
https://software.intel.com/en-us/node/528615

[3] https://linux.die.net/man/3/execl
[4] Jeff Brooks, “Shifts in the Marketplace And the Exascale Era HPC

SAUDI 2017 Conference
http://www.hpcsaudi.org/graphics/uploads/plenary/day2/5.%20KAUS
T%20Exascale%20Talk%20for%20PDF-%20Brooks.pdf

[5] ScheMD: Power Management Guide (power capping) - Slurm
Workload Manager https://slurm.schedmd.com/power_mgmt.html

[6] S. J. Martin, D. Rush, and M. Kappel. Cray advanced platform
monitoring and control (CAPMC). In Proc. Cray User Group
Conference (CUG) , 2015

[7] C. Mendez, G. Bauer, W. Kramer, and R. Fiedler, “Expanding Blue
Waters with Improved Acceleration Capability”, In Proceedings of
the Cray User Group 2014, CUG 2014, Lugano, 2014

[8] IOR benchmark: http://www.csm.ornl.gov/essc/io/IOR-
2.10.1.ornl.13/USER_GUIDE

[9] SPEFEM3D Globe Tutorial 1: global simulation:
https://wiki.geodynamics.org/software:specfem3d_globe:start

[10] Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker,
M. G Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A
Description of the Advanced Research WRF Version 3. NCAR Tech.
NoteNCAR/TN-475+STR, 113pp. doi:10.5065/D68S4MVH

[11] Samuel Kortas, “KTF (KAUST Testing Framework) presentation at
the workshop 'Boost your efficiency when dealing with multiple jobs
on the Cray XC40 Supercomputer Shaheen II', June 2016, KAUST,
https://www.hpc.kaust.edu.sa/sites/default/files/files/public/many_job
s.pdf

