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Abstract—Leadership-class supercomputers are becoming 
larger and more complex tightly integrated systems consisting 
of many different hardware components, tens of thousands of 
processors and memory chips, kilometers of networking cables, 
large numbers of disks, and hundreds of applications and 
libraries. To increase scientific productivity and ensure that 
applications efficiently and effectively exploit a system’s full 
potential, all the components must deliver reliable, stable, and 
performant service. Therefore, to deliver the best computing 
environment to our users, system performance assessments are 
critical, especially after an unplanned downtime or any 
scheduled maintenance session. This paper describes the 
design and implementation of the regression testing 
methodology used on the Shaheen2 XC40 to detect and track 
issues related to the performance and functionality of compute 
nodes, storage, network, and programming environment. We 
also present an analysis of the results over 24 months, along 
with the lessons learned. 

Keywords: Cray XC40, Regression Testing, Performance, 
Lesssons learned  

I.  MOTIVATION 
For many years, regression testing has been an essential 

step of any software development or integration cycle. 
However, for HPC systems, regression testing is typically 
performed in a more ad-hoc fashion, and is focused on the 
basic functionality of the various hardware components. For 
example, for the previous HPC systems at KAUST, the 
actual coverage of the tests done after maintenance was not 
rigorously known, due to the lack of a systematic procedure.  
Back then, the basic functionality of some system 
components was checked only before releasing the system 
back to the users as soon as possible. Under this scenario, the 
performance of all components was measured only 
occasionally, and despite some actions taken in response to 
user complaints regarding functionality and performance 
issues, tracking down the cause of any observed degradation 
was challenging. 

Since the acceptance of Shaheen 2 [1], a 36-cabinet Cray 
XC40 supercomputer installed in March 2015, a clear 
regression procedure has been adopted in order to identify 

potential hardware or software issues in a more rational and 
methodical way. After each maintenance session or 
unscheduled downtime, a set of well-defined tests is 
systematically run to assess the actual state of the system.  A 
careful analysis of the obtained results is used as crucial 
input to the decision by the KAUST Supercomputing Lab 
(KSL) team on whether or not to release the system to the 
users, based on the criticality of any issues detected.  

In the last 24 months, our use of this regression 
procedure has provided four essential benefits: 

1. a drastic decrease of user tickets received soon 
after a downtime: our objective is to have not a 
single hardware or software ticket related to the 
system for the next 24 hours after it is released 
to users, and we have received only a few in that 
time frame. 

2. a significant gain in performance due to the 
“trimming” of the nodes, as well fixing weak 
network links: we observed up to a 10%  
performance improvement on a full scale code.  

3. an improved reproducibility of user experiments 
run at large scale. 

4. a more detailed history of observed hardware 
and software problems, allowing us to provide 
more accurate data to vendors about any 
performance degradation 

 
After presenting the overall regression protocol (section 

II), unit tests (addressing single-node performance checking 
and interconnect capacity), and component tests are 
discussed in section III and IV. Section V focuses on 
integration and tests: by using actual applications running at 
medium or full scale, we validate the performance of the 
system as a whole. Finally, section VI details the first 
implementation of an automated framework for assembling 
all of the tests and triggering their execution to enable 'on-
the-fly' regression testing of the system. 

II.  TESTING PROTOCOL 
From our experience, a regression testing approach is 

successful if the tests selected are sufficiently reproducible, 



and if they provide the most exhaustive coverage possible of 
the system features that must be tested. In this respect, a 
systematic testing protocol appeared essential. The set of 
tests we assembled allowed us to reach a decent coverage 
with minimum redundancy. In addition, the order in which 
we execute them has helped guarantee early detection and 
straightforward localization of any problems observed. Of 
course, the optimization of this protocol is a never-ending 
task, and having it carefully documented is of great help. 
Here we describe our current testing protocol. 

First, we test the regular and basic of functionality of the 
scheduler and programming environments. Tagged as 
'Component Tests', they are documented with a clear 
description of each command to run as well as the expected 
result. A comprehensive list of these tests is given in section 
IV. They can easily be automated, and will be included in 
our automated regression framework in the near future. 

Second, we perform extremely well-localized 
performance runs with synthetic tests validating each crucial 
component of the system. In detail we test: 

• the health and decent performance of any 
compute node in the system. To do so, we 
submit a one-node LINPACK test, wrapped into 
an MPI job to launch it across all nodes and 
check both performance and accuracy.  

• the behavior of the interconnect by evaluating 
the bandwidth of all links in any allocation of 
nodes. A Cray-developed topology-aware MPI 
program is used along with environment 
variable settings that enforce minimal-path 
routing. 

• the global throughput of the parallel file system 
(both Lustre and DataWarp nodes) using IOR. 
The goal is to check the bandwidth of the 
parallel file systems to be above 500 GBs/ and 
1.5TB/s for Lustre and DataWarp respectively.  

Last, we run some typical user jobs (real applications for 
only couple of iterations, such as WRF, SPECFEM, and 
other in-house codes) to stress the system at larger scales and 
guarantee good integration of all components (file system, 
compute nodes, and interconnect) while corroborating the 
synthetic test results. 

Most of the time, this regression testing protocol occurs 
in a single session after maintenance, but it has also been 
designed to be run on-the-fly on Shaheen2. Additional 
implementation details of our regression protocol are given 
in Section V.  

 

III. UNIT TESTS ASSESSING NODE AND INTERCONNECT 
PERFORMANCE 

In our regression process, we consider compute nodes, 
the interconnect, and the file system as the smallest testable 
parts of our environment. Indeed, during this whole testing 
process, we never require any system administrator 
privileges and always remain at a user level.  In agreement 
with the terminology used in software engineering, we 
therefore named them 'unit tests'.  

The purpose of the present section is to describe them 
further. 

A. Node Performance  
Shaheen Cray XC40 is composed of 6,174 dual-socket 

compute nodes based on 16-core Intel Haswell processors 
running at 2.3GHz. Each node has 128GB of DDR4 memory 
running at 2300MHz. In order to evaluate individual node 
performance and computational correctness, we use the 
binary xlinpack_xeon64, the Intel optimized LINPACK 
Benchmark for Linux [2] that solves a dense linear system of 
linear equations (Ax=b) in double precision and measures 
the required time to factor and solve the system. In the end, 
this time is converted into a performance rate, and the 
accuracy of the solution obtained is also validated. 
 
Node nid00008  
Intel(R) Optimized LINPACK Benchmark dataCurrent 
date/time: Wed Mar 22 14:10:11 2017 
 
CPU frequency:    3.599 GHz 
Number of CPUs: 2 
Number of cores: 32 
Number of threads: 32 
 
Parameters are set to: 
 
Number of tests: 1 
Number of equations to solve (problem size) : 55000 
Leading dimension of array                  : 55000 
Number of trials to run                     : 1     
Data alignment value (in Kbytes)            : 1     
 
Maximum memory requested that can be used=24201101024, at 
the size=55000 
 
========= Timing linear equation system solver ======== 
 
Size LDA Align. Time GFlops Residual Residual(norm) Check 
55000 55000 1 113.094 980.796 1.7961e-09 2.11745e-02   
pass 
 
Performance Summary (GFlops) 
 
Size   LDA    Align.  Average  Maximal 
55000  55000  1       980.7967 980.7967 
 
Residual checks PASSED 

Figure 1.  Intel  LINPACK Benchmark output for one node. 

The Linux function execl[3] is wrapped into an MPI 
program that runs separate, identical LINPACK benchmark 
on each node, and gathers and sorts the results depending on 
performance. This process also identifies nodes that perform 
significantly worse (by a specified margin) than the best (or, 
optionally, the average) node of a given type (i.e., nodes 
having same core count, clock frequency, memory 
frequency, etc).  The interconnect is used only to determine 
the node on which each rank is running and to collect results 
for analysis and outlier identification.  Since all nodes are 
tested concurrently, the overall test run time is determined by 
the slowest node in the system; it increases only slowly with 
number of nodes tested due to the longer time required to 
start up the job and to gather results. In order to have 
consistent performance results, and to fully stress the CPU 
and memory of the nodes, we have chosen a matrix size N = 
55,000, even though this large problem size takes longer to 
run.  This size tests most of the memory and consistently 
yields near-asymptotic performance on the Haswell nodes.  



On average, the test of node performance lasts around 6 
minutes for all Shaheen2 nodes at once. 

 
Figure 2.  Node performance  variability on Shaheen March 2016. 

From the output of the benchmark, as shown in Figure 1, 
we parse the node number, the CPU frequency, the GFLOP/s 
performance and the residual (accuracy) test. These are the 
variables that help us detect weak or faulty nodes that need 
to be fixed. Early in production in July 2015, the node 
performance variability of Shaheen2 used to range from 930 
GFLOP/s to 965 GFLOP/s, with an average performance of 
940 GFLOP/s. Over time, it has been noticed that more and  
more nodes are performing below this range, and some of the 
nodes reached a poor performance of 879 GFLOP/s as 
noticed in March 2016 and plotted in Figure 2, with around 
100 nodes with a performance lower than 930 GFLOP/s.  
This is far from the expected performance, and thus the 
scientists aiming at applications targeting performance would 
not be able to exploit fully the potential of the Cray XC40. 
Indeed, the HPL number per node is less than 75% of the 
theoretical peak of a Shaheen Haswell node (1177.9 
GFLOP/s ). Consequently, on April 2016, at our request, 
Cray on-site engineers performed the trimming procedure[4] 
on all Shaheen nodes, and much improved performance was 
reached, with an enhancement up to 10%, with a range of 
performance distribution from 935 to 1025 GFLOP/s with an 
average of 980 GFLOP/s as shown in Figure 3.  

 

 
Figure 3.  Node performance  variability on Shaheen April 2016 after 

triming. 

This critical performance test has helped the KSL team 
detect major issues during the regression testing: 

• Performance issue: After each maintenance, a 
couple of nodes are generally detected with  
performance lower than 935 GFLOP/s, the 
threshold set by the KSL team. An individual 
test is performed, and if the observed 
performance is confirmed, the node is drained 
and can be returned to the pool of available 
nodes after a trimming procedure, provided the 
performance exceeds 935 GFLOP/s. The weak 
performance can come from the memory; it has 
indeed been observed that the memory issue is 
related to either runs with a performance around 
and worse than 550 GFLOP/s or when the 
execution time exceeds the wall clock limit of 
10 minutes.  

• Power capping issue: There was a phase (from 
July 2015 until December 2016) where Shaheen 
was running under power and cooling 
constraints, using initially two static queues 
(workq_high with uncapped nodes, and 
workq_low with nodes capped at 275W) and 
later adopting SLURM dynamic power capping 
[5]. During this period, we were always able to 
detect nodes that were not correctly configured. 
With a performance under 800 GFLOP/s, this 
correspond to a node that is behaving as capped, 
while it belongs to the set of uncapped nodes. 
These issues lead to updates on CAPMC[6] and 
SLURM since randomly some nodes were set to 
a lower  frequency (below 2.3GHz, while the 
test should show around 3.6 GHz as shown in 
Figure 1).   

• CPU frequency issue: More recently, with the 
release of SLURM 17.02, a critical issue has 
been detected thanks to this test, where at the 
beginning of each batch step, the command srun 
would inadvertently set the CPU frequency 
maximum to the minimum value supported on 
the node. The result obtained by the node 
performance test showed only one node that was 
capped at 1.2GHz, while the rest of nodes 
reached expected performance. Nevertheless, 
when testing several nodes individually, all of 
them reported a low performance with a CPU 
frequency set at 1.2GHz. This problem has been 
detected with the applications, like SPECFEM 
and WRF, where only one weak node increased 
considerably the time to solution of the 
application.  

• Correctness: Thanks to the residual check in 
the LINPACK test, it sometimes occurs that the 
performance of a given node is in the acceptable 
range, however the residual is above the 
threshold, which means that the answer is 
incorrect. This typically corresponds to a faulty 
socket with inaccurate results that will impact 
dramatically any scientific results. Since 



production, 12 sockets have been detected as 
faulty and sent back to Intel for further analysis 
by Cray on-site engineers. 

• Thermal issue: examining the performance data 
stored so far, the overall performance of the 
nodes is quite stable and does not vary. 
Nevertheless, we observe, during the iteration of 
tests of the same node to validate the results, 
variation from 910 back to 990 GFLOP/s and 
again down to 910. This issue is typically linked 
with a thermal issue and the detected node is 
reported and further tests are run by Cray on-site 
engineers to determine the faulty socket needing 
to be replaced. These sockets impact application 
performance reproducibility.  

 
This process has an excellent advantage to provide to 

particular users the list of the best nodes (above 1 TFLOP/s) 
for their performance study. 

 
Figure 4.  Node performance  variability on Shaheen comparison between 

April 2016 and February 2017. 

This test is done almost monthly following a 
maintenance and all the data are stored. This allows us to 
observe the performance variability and degradation over 
time as shown in Figure 4 comparing the result in April 2016 
and February 2017. Even tough the average of all nodes is 
quite stable (only 0.4% of variation, from 980 to 976 
GFLOP/s), we clearly observe a shift of the majority of 
nodes towards a lower value, toward the left side for the 
February 2017 node performance in blue as plotted in Figure 
4. This is also shown in Figure 5, where the performance of 
each node is plotted. February 2017 performance is lower 
than April 2016, and on the left side of the plot, we spot 
several hundred of nodes that lost close to 8% of their 
original performance from as high as 1015 GFLOP/s down 
to 940 GFLOP/s.   

Consequently, the threshold limit is lowered to 930 
GFLOP/s, since further trimming process on the node with a 
performance of 931 to 935 GFLOP/s does not fix the issue. It 
seems that this is expected normal degradation according to 
Intel engineers. 

 
Figure 5.  Node performance  variability on Shaheen comparison between 

April 2016 and February 2017. 

B. Link Performance Test 
The HSN on Shaheen is configured with 8 optical 

network connections between every pair of cabinets 
achieving therefore 57% of the maximum global bandwidth 
between the 18 groups of two cabinets. This will allow the 
design of a future upgrade with additional cabinets to 
accommodate more optical links between all cabinets with 
the same level of connectivity, i.e. 8 optical network 
connections between every pair of cabinets. 

In order to evaluate individual interconnect link 
performance, we employ the test_links tool developed at 
Cray.  Test_links was originally developed for the Gemini 
network on Cray XE/XK systems [2], and was recently 
redesigned for Cray XC systems (aries interconnect).  Cray 
has provided to KSL the test_links binary executable and 
batch scripts for the purposes of troubleshooting and 
regression testing. 

Test_links evaluates the bandwidth of all interconnect 
links in any allocation of nodes and identifies links with 
lower (by a specified amount) than the best or the average 
bandwidth for links of the same type.  Bandwidths for each 
link are also recorded in tables for comparison between sets 
of results obtained at different times, so that one may 
determine whether and how individual link performance has 
changed over time.  Four different types of links are 
evaluated, including:  

• the PCIe links from the four compute nodes on a 
blade to the single Aries router on that blade,  

• the copper links between blades in the same 
chassis,  

• the copper links between blades in different 
chassis of the same group, 

• the optical links between groups. 
 
The test_links code is a user-level topology-aware MPI 

program in which the physical location on the hardware of 
each process (MPI rank) in the allocation is obtained from 
Cray PMI library calls.  The bandwidth of any link is 
determined by timing MPI calls involving messages of a 
specified size using an intensive communication pattern 



between ranks located on either end of that link.  Certain 
environment variables are set to disable adaptive routing, i.e., 
the only communication paths allowed are the minimal (most 
direct) paths.  Thus, all communication in the selected 
pattern passes only through the link being evaluated (plus the 
PCIe links from the aries routers to the nodes). Note that the 
performance impact of a small number of links delivering 
somewhat less than the nominal bandwidth (as indicated by 
test_links) on a real science application running with 
adaptive routing enabled can be expected to be considerably 
less than the discrepancy reported by test_links, since the 
adaptive routing algorithm can compensate for the presence 
slow links by utilizing alternate paths. 

Links are evaluated independently but concurrently, in 
order to minimize the time it takes to measure the bandwidth 
of every link in the allocation.  The test algorithm is designed 
to handle the presence of any service nodes and down 
compute nodes in the system.  The run time to test all PCIe 
and copper (i.e., intra-group) links in a system is essentially 
independent of the number of groups in the system.  The run 
time for N groups is proportional to N, rather than the 
number of optical links, which scales as N*(N-1).  Thus, all 
link bandwidths for even a very large system can be 
measured in ~10 wall clock minutes or less. 

When evaluating the optical links between groups, 
multiple blades on either end of a given link are utilized.   As 
a result, only the aggregate bandwidth of a given optical link 
can be measured.  Nevertheless, the test can readily identify 
any slow optical links, which can be further diagnosed by the 
system administrators using lower-level Cray-provided tools.  

The implemented communication patterns include all-to-
all and one-to-one, in which each core on one end of the link 
sends a message to the corresponding core on the other end 
using non-blocking point-to-point MPI Isend/Irecv calls.  
The one-to-one pattern exhibits higher bandwidths than all-
to-all when evaluating link types at all levels above the PCIe 
links, and is therefore considered to be the more sensitive of 
the two for detecting performance degradation.  We use all-
to-all for the PCIe links, and typically observe wider 
variations in performance among PCIe links in the system 
compared to variations measured for the other non-optical 
link types.  We normally use a message size of 2 MB and 
repeat the communication pattern thousands of times to 
ensure accurate timings.  The threshold used for identifying a 
slow link is typically 10% below the average measured 
bandwidth for a given link type.  Lane degrades for non-
PCIE, non-optical link type typically reduces the measured 
bandwidth by 20-30% (with adaptive routing disabled), and 
therefore is readily detected using a 10% threshold. 

Table 1 summarizes the expected performance. Over 
time, this test revealed several links in dimension 2 and 3 
that needed to be replaced, or in some cases only a reboot of 
the nodes in the implicated blade was necessary to resolve 
the issue.  

 

 
Table 1:  Expected Performance of the different dimensions 
 
In case of poor performance, misbehaving nodes or links 

are either fixed or removed from the available resource, and 
the test is re-executed to make sure that the remaining links 
are performing as expected.  

This test lasts around 6 minutes for evaluating all 
Shaheen links. Figure 6 shares few lines of the test_links 
report, focusing on the chassis-chassis links where node 
nid01775 is reporting the lowest bandwidth. In this example, 
the network link associated with the low bandwidth node is 
indeed degraded and further troubleshooting was done to 
resolve the problem. Moreover, once a node is indicated as a 
significant outlier, its corresponding blade is disabled and 
another iteration of the link test is performed to confirm that 
the disabled blade was the cause of the issue. 
 
ANALYSIS OF RESULTS FOR ARIES DIMENSION  2 
  
 For aries with            3  available compute nodes: 
 Highest  bandwidth for   3 nodes      8.19175     
 Lowest   bandwidth for   3 nodes      8.10847     
 Average  bandwidth for   3 nodes      8.15648     
 Std. dev.     for   3 nodes     0.241659E-01 
   
 For aries with            4  available compute nodes: 
 Highest  bandwidth for   4 nodes      8.55541     
 Lowest   bandwidth for   4 nodes      4.34258     
 Average  bandwidth for   4 nodes      8.51178     
 Std. dev.     for   4 nodes     0.772598E-01 
   
  
OUTLIER(MORE THAN 5.0% BELOW AVERAGE)FOR ARIES DIMENSION 2 
NID  tx ty tz  NID  tx ty tz BdwidthGB/s nodes % deviation 
1644, 4,1,11,  1775,  4,3,11,   4.34258      4       48.98     
1708, 4,2,11,  1775,  4,3,11,   6.59278      4       22.55     
1775, 4,3,11,  1644,  4,1,11,   4.34258      4       48.98     
1775, 4,3,11,  1708,  4,2,11    6.59278      4       22.55   

Figure 6.  Extract of test_link for Dimension 2 links. 

 

C. IOR Tests 
The primary Shaheen data storage solution is a Lustre 

Parallel file system with a usable storage capacity of 17.2 PB 
delivering around 500 GB/s of I/O throughput.  The Cray 
Sonexion 2000 installation is configured using 72 Scalable 
Storage Units (SSU) and 144 Object Storage Servers (OSS) 
connected to the XC40 via 72 LNET router service nodes.  

ShaheenII has 268 Cray DataWarp (DW) accelerator 
nodes hosting a total of 536 Intel SSD cards. This 
combination provides an aggregate burst buffer capacity of 
1.56 PB to Shaheen users. This fast middle storage layer 
provides up to three times the performance of the Lustre 
parallel file system. Indeed, it achieves 1.54 TB/s and 1.66 
TB/s in IOR write and IOR read, respectively. 

For both storage systems, the IOR benchmark[8] is used 
for measuring the amount of data moved in a fixed time. In 
our case, we fix it at 60 seconds, respectively on 1152 and 



5628 compute nodes on Lustre and Burst Buffer. Figure 7 
shows the history of IOR performance on the Lustre parallel 
file system. The performance was over the expected 
performance of 500GB/s until September 2016 and kept 
decreasing down to 433 GB/s, which corresponds to a 
degradation of more than 20%. This was a major issue, but it 
is not critical enough to prohibit releasing user jobs. 
Nevertheless, the regression testing history of the IOR 
benchmark showed a correlation with the WRF application 
benchmark with close to a 10% increase in execution time. 
After diagnostic analysis, the performance decrease was 
determined to be mainly due to increased data usage on 
Lustre and fragmentation of OST usage. Indeed, 44% of the 
Lustre capacity was used in May 2016, and it reached close 
to 70% of capacity in December 2016. A variation on the 
load on individual OSTs of up to 20% was observed, and 
some of them were at close to 85 % of capacity.  

IO throughput performance over 500 GB/s was achieved 
again in January 2017, with a decrease of usage (to around 
50%) and a defragmentation was performed automatically, 
since backup and archiving files are enabled with a Cray 
Tiered Adaptive Storage (TAS) system, which consists of a 
tape library with a total capacity of 20 PB upgradable.  

 

 
Figure 7.  IOR Benchmark results on Shaheen. 

IV. COMPONENT TESTS 
In parallel with the unit tests described in the previous 

section, a set of basic features can also be tested validating 
individually the key components of the environment. By 
analogy with the software engineering classical approach, we 
call them 'Component Tests'. 

Each of these tests entails launching a simple Unix 
command that has been well-documented in a checklist as 
well as a means to verify whether or not the command was 
successful.  

The following Table 2 gives an idea of the components 
tested: 
 
 
 
 
 

 Category Purpose How to test? 

General 

Connection Try to login via ssh (do this test 
with each login node) 

 promptness of 
command line 

How long for a regular shell 
command to return? 

  check X-Windows Does an X11 window open 
correctly when spawned from 

Shaheen front-end? 
check files Are files accessible in /home, 

/lustre, /project/, /scratch? 

Licenses 

Cray compiler Can we compile a toy program 
with these compilers? Intel compiler 

Commercial software Can we run Totalview, DDT, 
Ansys? 

Scheduler 

Availability Check that all queues are up and 
running and record the number 

of nodes down 
Nominal use Submit  (1, 4-512, 510-1000, > 

1000) -node jobs 
Submit from /project, from 

/scratch 
Stress Measure the time needed to 

submit a job-array of 500 jobs. 
When running, cancel all of 

them. 
Scheduling 

policies 
It should not be possible to 

submit more than 800 jobs per 
user, more than 512 nodes 

occupied with jobs of 72 hours. 
 

Accounting Check if the accounting is 
working 

Programming 
Environment 

Compilers Compile a toy code with Cray, 
Intel and GNU compiler 

Libraries, modules Link toy codes against petsc, 
perftools, hdf5 and netcdf 

libraries 
 Monitoring Check that the previous 

compilations have been recorded 
in the xalt database. Check that a 

toy program’s IO behavior is 
tracked in Darshan.  

Burst Buffer Availability Submit a job using the burst-
buffer and check the queue status 

Table 2:  Expected Performance of various component tests 
 

V. INTEGRATION AND PERFORMANCE TESTS USING 
ACTUAL APPLICATIONS 

Last but not least, at the end of our testing protocol, here 
are some procedures to test the whole environment. 
Following a software engineering analogy, they are named 
'Integration tests'. 

They all involve running typical use cases using actual 
applications on actual data sets representative of the Shaheen 
workload. All tests have in common the process of 
compiling and running through the scheduler, but they stress 



diverse components of the environment (I/O, compute power 
in memory use, and network). Out of the ten application tests 
available we usually pick 4 or 5 of them to confirm the 
overall stability and availability of the whole environment. 

We here give two examples of these application 
benchmarks. 

A. SPECFEM3D 
Context: SPECFEM3D simulates 3D seismic wave 
propagation in any region of the Earth based on the spectral-
element method. This test consists of running a reference 
case delivered with the source of the Fortran 90 MPI code.  It 
uses a CMT solution for a deep earthquake (647.1 km depth) 
which took place in Bolivia in June, 1994 and uses the CPU 
version 5.1.5 of SpecFEM3D_GLOBE.  
This example creates a 3D earth global mesh spectral 
element mesh using model S263ANI and runs 8700 time 
steps using an explicit integration scheme. All 
implementation details of this test can be found at [9]. 
Test Family: MPI multi-node application, medium scale 
Components tested: Execution environment sustainability, 
interconnect and compute node overall performance, 
scheduler behavior. 
Purpose: The executable had been built for the acceptance 
test of Shaheen 2 in 2015 and was not recompiled since to 
insure not only tracking of the performance of compute 
nodes and interconnect on a medium scale but it also 
validates the compatibility of the running environment 
against an executable built several months ago.   
Description: Two runs can be performed on 2336 cores (73 
nodes) or 16224 cores (507 nodes). Following the guidance 
at [6], we systematically check the accuracy of obtained 
results and track the global elapsed time of the whole 
simulation (excluding the time spent building the mesh). 
 

 
Figure 8.  SPECFEM3D regression testing result over time. 

 
Results: As shown in Figure 8, SPECFEM3D 16224-core 
test has been run systematically after each maintenance 
session. The elapsed time observed during Shaheen 2 
acceptance testing was 260 seconds.  

A significant improvement in the execution environment has 
been observed since December 2016. This corresponds to 
when SLURM dynamic capping was disabled. Even if the 
code was not recompiled, a time below 240 seconds is now 
observed as a nominal result.  
We can also notice a classical pattern of degraded times 
observed at the beginning of a regression step, helping us to 
confirm that a problem needs to be fixed, and the nominal 
result obtained again once the problem has been solved.  
The log run times (400 and 369 s) observed at the end of 
February 2017 were related to an issue with the latest 
SLURM 17.02 version installed. As described in section III, 
the CPU frequency of one node in the same job was 
different, leading to a performance close to the lowest 
capped node. This problem was immediately identified 
thanks to this test and was solved later by SchedMD. 
 

B. WRF  
 

 
Figure 9.  WRF regression testing results over time. 

 
Context: Weather Research and Forecasting (WRF) [9] is 
used by many environmental groups and weather centers to 
simulate, forecast the weather but also study weather 
phenomena. For this case we use WRF version, 3.5.1. 
Test Family: MPI multi-node application, medium scale 
Components tested: Execution environment sustainability, 
interconnect and compute node overall performance, 
scheduler behavior. 
Purpose: The WRF version is the same with the acceptance 
test of Shaheen 2 in 2015 and same flags were used for the 
compilation to be able to compare the performance obtained 
during the time of acceptance.   
Description: We use 304 nodes, we have 1216 MPI 
processes and 8 OpenMP threads per node. The domain is 
small because we do not want to spend a lot of time on 
regression testing. We have 3-nested domains; the large 
domain is 701x601 data points. Compared to SPECFEM3D, 
this application stresses the network more and the compute 
nodes less, and perfoms a small amount of I/O. Sometimes 
WRF can identify errors with high speed network (this has 



happened on two or more occasions). We use a triply-nested 
domain covering a large range outside Saudi Arabia, and the 
last nested domain extends close to the red sea.  
Results:  
As shown in Figure 9, WRF has been run systematically 
after each maintenance session.  
The elapsed time observed during Shaheen 2 acceptance 
testing was 245 seconds. In the figure, we see a variation of 
the execution time of the WRF case, depending on compute 
node or network connectivity issues.  
 

VI. AUTOMATED REGRESSION FRAMEWORK 
In [1], a brief overview of the regression framework was 

given. The following paragraphs provide more details about 
its implementation.  As a medium-term objective, we plan to 
release the complete sources of this monitoring and testing 
environment as well as the tests not involving confidential or 
commercial components to the HPC community. 

A. A three-component monitoring environment 
 
Since the first day of Shaheen 2 production, a monitoring 

environment has been put in place. It relies on three 
components hosted on a unique workstation connected via 
SSH to a regular user account: 

 
1. A Jenkins integration server that allows the 

continuous monitoring of the Shaheen 2 SLURM 
scheduling environment. Every 3 minutes, a shell 
script saves in a log file:  
• a comprehensive state of the scheduling queue 

for compute nodes and allocated burst buffer 
spaces (result of squeue -l and dwstat --all 
command) 

• general information about the resources 
available: nodes made available to the queue 
(sinfo) or taken out (sinfo -R), list of the 
ongoing reservations (scontrol show 
reservation), priority of the jobs to be 
submitted (sprio) and general diagnoses about 
the system (sdiag). 
 

2. A Python extracting script that computes the 
current load on Shaheen 2 from Jenkins log files, 
and stores this information in a MYSQL table as 
tuples (timestamps, load, Jenkins_job). The load is 
the ratio of Shaheen nodes hosting a running job to 
the total number of nodes available. Jenkins_job 
refers to the exact Jenkins log from which 
information was computed. 
 

3. A PHP/Jquery based website allowing easy 
browsing over time of the load history of Shaheen 2 
(see figure 10). The load of the system, taken every 
3 minutes, is plotted over time, and clickinig on a 
location of the obtained curve leads to the opening 
of another window displaying the corresponding 
Jenkins log at that time in the history.       Via a 

clickable arrow, one can also go back in time and 
browse a window from 1 h to one week at any 
specific date in the last 6 months. 

B. A self-described testing framework  
To complement these monitoring tools, KTF, (KAUST 

Testing framework), written in Python allows one to 
describe, store, run, monitor and collect the results of a given 
test in a very straightforward way [11]. 

Figure 10.  Shaheen2 load monitoring  website. 

A test is saved as a Python class (inherited from the ktf 
class) where the user defines which command to run and 
how to extract result information from the output produced.  

This result is saved into a database and examined to 
detect any regression of the environment.  

The detail of the execution of the test is defined through a 
Python function, or by providing a set of sub-directories 
containing the executable, a job template, and all the input 
files required. Optionally, the Python script or job template 
contains parameters to be set at the test launching step: for 
example, the number of nodes or cores or any parameter to 
pass to the code (size of mesh, convergence threshold …).  
These files (Python scripts and/or template files) are stored 
in a global directory gathering all the available regression 
tests. In order to assure tracking and reproducibility, this 
directory is placed under version control with GIT.                       

For each run carefully indexed by a unique identifier, the 
test result is saved in a database as well as the precise time 
stamps when the test began and stopped, the GIT checksum 
of the source actually used, the measure of the elapsed time, 
the list of nodes scheduled, and all information about the 
environment that are systematically dumped in an output file 
copied in a Text field.  

In case of unsatisfying observed performance, all these 
data are very useful in order to correlate the obtained result 
with the state of execution environment at this very same 
time. Via a combined examination of these data and Jenkins 
log files, one can see if another particular code was running 
simultaneously or if the scheduler was detecting problems on 
some nodes partly allocated to the job, etc. 



In addition, the properties of every possible different test 
are characterized in a single table. There, apart from a unique 
identifier, the following items are specified:  

[1] the list of components stressed during this test 
(compute nodes, interconnect, Luster file 
system, Burst Buffer, Scheduler, Compiling or 
Running environment), 

[2] the classification of the test: short, medium or 
large scale, sequential or MPI executable, load 
dependent or not, etc.  

[3] the possible combinations of resources and 
parameters on which that test can be run.  For 
example if a test can be run on 1, 16 and 64 
nodes, on a small, medium or large  size 
problem, this field could be [(1, small), (1, 
medium), (16, small), (16, medium), (64, 
medium), (64, large)] 

[4] the pool of resources on which the tests can be 
run. For the LINPACK and SPECFEM3D tests, 
it consists of a set composed of all available 
nodes. For the test_links code, it may be a set of 
all the point-to-point connections in the 
interconnect. A complete regression cycle is 
completed when all the resource components 
appearing in the pool have been used at least 
one time by a regression test. 

D. The on-the-fly regression process triggered by the 
observed load of Shaheen2 
Based on the information gathered, processed and stored 

in the monitoring components and the testing framework, the 
regression tests can then be launched automatically.  

• After each run of the Jenkins script gathering 
the scheduling environment of Shaheen, a 
threshold test on the current load is performed 
and triggers a regression test if Shaheen is under 
75% utilized for the last 1 hour.  

• When this trigger is activated, a Python script 
scans the tests available in KTF database and 
decides which one to submit to the scheduler. 
Priority is given to test mobilizing resources 
from the available pool that have been 
unsolicited so far. In the example of the 
LINPACK test described at section III, this 
program tests the performance of each node 
executing LINPACK. By taking the intersection 
of nodes currently idle and nodes that have not 
been tested yet, the script gathers the subset of 
candidate compute nodes on which to run 
LINPACK next. 

• At the end of each job, results are gathered 
along with information about the environment. 
These are made available in the result database 
where a consolidated view of the current 
fraction of the resource pool already tested is 
also available. 

 
As this approach is still under testing, the database 

schemes described here are not definitive, but they give a 

rough idea of what can be achieved automatically. The script 
computing the next test to schedule is a function attached to 
each test encoded in the KTF framework. 

 

VII. CONCLUSION 
In this paper, we present the immense benefit of 

following a regression testing protocol after every 
maintenance or unscheduled downtime on an HPC 
environment. By assembling a coherent set of tests and 
applying them systematically, it helped us to detect sooner 
various problems in the hardware or software environment 
and allowed the release of a more reliable and performant 
environment to the users. 

With this protocol, the KSL team has successfully 
provided a clean environment with near-zero ticket issue 
received related to software and hardware within 24 hours 
following a maintenance. This protocol takes on average one 
hour and 30 minutes, and does not require any special system 
privileges. Indeed, the tests are performed by the 
computational scientist team members as regular users.  

Our rigorous approach for measuring key aspects of 
system performance lead to a gain of up to 10% in 
application performance along with better reproducibility of 
user experiments on Shaheen. 

Though some of these tests have already been included in 
the Cray testing suite and adopted by Cray on-site engineers, 
our goal was to give an exhaustive view of the whole 
protocol applied.  An automated version of this process is 
currently under testing, enabling ‘on-the-fly’ performance 
evaluation and even earlier detection of potential issues. A 
first version of the components of this framework is planned 
to be released to the community as soon as it is stable and 
documented. 
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