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Abstract—ShaheenII supercomputer provides 268 Burst
Buffer nodes based on Cray DataWarp technology. Thus, there
is an extra layer between the compute nodes and the parallel
filesystem by using SSDs. However, this technology is new,
and many scientists try to understand and gain the maximum
performance. We present an auto-tuning I/O framework called
Explore the Performance of Burst Buffer. The purpose of this
project is to determine the optimum parameters to acquire
the maximum performance of the executed applications on
the Burst Buffer. We study the number of the used Burst
Buffer nodes, MPI aggregators, striping unit of files, and
MPI/OpenMP processes. The framework aggregates I/O per-
formance data from the Darshan tool and MPI I/O statistics
provided by Cray MPICH, then it proceeds to the study of the
parameters, depending on many criteria, till it concludes to
the maximum performance. We report results, where in some
cases we achieved speedup up to 4.52 times when we used this
framework.

Keywords-DataWarp, Burst Buffer, I/O, performance, opti-
mization

I. INTRODUCTION

Nowadays, the rapid increase in processorsâĂŹ perfor-
mance, improves the execution of applications significantly
but does not happen the same with the memory and stor-
age technology; thus some bottlenecks remain. ShaheenII
supercomputer at KAUST includes in its architecture 268
Bust Buffer (BB) nodes based on Cray DataWarp (DW)
[1] technology providing a total capacity of 1.52PB. Cray
DataWarp applications I/O accelerator adds another layer
between the compute nodes and the parallel filesystem by
using SSDs disks. In this paper, we present an auto-tuning
I/O framework called Explore the Performance of Burst
Buffer (ExPBB). We extensively study how to use the Burst
Buffer efficiently from many aspects and demonstrate the
performance that we achieve with benchmarks/applications.
From the results, we also illustrate the need for advanced
I/O libraries to achieve high performance on Burst Buffer.

II. MOTIVATION

During the exploration of the DataWarp technology and
the effort to achieve the better performance, there were
many challenges with the most important, to understand how
this technology works. National Energy Research Scientific
Computing Center (NERSC) have done significant work
through NERSC Burst Buffer Early User Program [2]. They

have shown cases where the Burst Buffer achieves better per-
formance than Lustre. Moreover, they have identified various
challenges to achieve better performance. We experienced
similar challenges.

In the first DataWarp software there a few issues that were
solved with the Cray support. However, it was obvious that
achieving good performance was not quite straight forward
and especially for a user who has no previous experience on
I/O optimization. There are plenty of optimization param-
eters that could be used to improve the I/O performance.
A scientist needs to use an appropriate software stack to
take advantage of some developments but is also required to
understand how they work in order to take decisions for their
values. Thus, it was decided that it is important to develop
a framework that could propose to the user the optimum
values for his application. This way, the Burst Buffer will
be used more efficient from the users.

III. APPLICATIONS

During this work, we use one benchmark and two appli-
cations. The first one is called NAS Parallel Benchmarks
Block-Tridiagonal (BT) I/O [3], and it presents a block-
tridiagonal partitioning pattern on a three-dimensional array
across a square number of processes. Each process handles
multiple Cartesian subsets of the entire data set, and they
increase with the square root of the number of processes
participating in the computation. Multiple global arrays are
consecutively written to a shared file by appending one after
another. The number of global arrays can be adjusted; more
information is provided in [4]. We are interested in studying
the I/O performance withs Parallel NetCDF (PnetCDF)
format. Thus we chose an implementation of BT I/O which
employs this format [5]. Weather Research and Forecasting
Model (WRF) [6] is one of the most used models in Earth
Sciences related fields. WRF code consumes a significant
amount of core-hours on many supercomputers, and we
study WRF-CHEM which is WRF coupled with chemistry.
For this study, we use a WRF-CHEM v3.7.1 and a domain
that is a real case of a user. Finally, the demonstration of
Parallel version of IDX, called PIDX [7], shows that more
advanced I/O libraries are required for better performance.
For our experiments, we compile the applications with Cray-
MPICH v7.4.2, Cray compiler v8.5.2 for the NAS BT I/O



Figure 1. Example of 8 MPI processes writing data on Lustre file system
without striping files.

Figure 2. Example of 8 MPI processes writing data on Lustre file system
with striping equal to 2.

and PIDX, and Intel v16 for WRF. We are also using and
Parallel-NetCDF 1.7.0.

IV. IDENTIFYING PARAMETERS TO BE STUDIED

A. MPI processes

There are many parameters that can influence an applica-
tion’s performance and especially I/O. Depending on if an
application is developed with pure MPI or MPI/OpenMP, we
could have more or less MPI processes per compute node.
The link from the compute node on Aries network can be
influenced by many MPI requests that share links as also if
the network is used significantly by other applications etc.

B. MPI I/O aggregators

Many parallel applications save data to hard disks by
using MPI I/O directly or through libraries such as Parallel
NetCDF (PnetCDF) [8], Parallel HDF5 (PHDF5) [9], or
ADIOS [10]. It is a common technique that when there is
MPI I/O, and it is under collective mode, a part of the MPI
processes gather data, and then they save the final shared
file. These MPI processes are called MPI I/O aggregators.
On Cray supercomputers with Lustre filesystem, the default
number of the MPI I/O aggregators is the number of the
Lustre stripes that is used for the files. So, if we do not
stripe the files, then one MPI process aggregates all the data
and saves them to the hard disk as shown in Fig. 1. This
is a critical drawback as except that there is communication
towards one MPI process only, the I/O occurs only from
one MPI process even if a parallel I/O is implemented by
all MPI processes.

In the case that the files are striped through the appropriate
procedure, then the MPI I/O aggregators are more than one
for Lustre, and more than the number of BB nodes for Burst
Buffer. In Fig. 2 we use 8 MPI processes, and the file striping
is equal to 2. In this case, two MPI processes are aggregating
the data and writing the files on hard disks.

The information on the two previous Figures was vali-
dated by CrayPAT [11] profiling tool where we could acquire

the number of how many MPI processes are writing files on
the hard disks. There are two ways to stripe files; either by
the command setstripe on the folder that I/O takes place, or
by using the environment variable MPICH_MPIIO_HINTS
and declaring which files should be striped. However, on
Burst Buffer the filesystem internally is different than Lustre.
So, by default, the number of file striping, is equal to the
number of reserved BB nodes. This means that if we reserve
one BB node, which is constituted by 2 SSD hard disks,
then one MPI process saves data, so we cannot achieve high
I/O bandwidth. Starting on Cray MPICH 7.4.0, Burst Buffer
supports the environment variable MPICH_MPIIO_HINTS,
so we can declare more MPI I/O aggregators per BB node. In
addition to the previous information, with the environment
variable shown in Listing 1 we can extract a list of nodes
which include MPI I/O aggregators.

e x p o r t MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1

Listing 1. Printing in the output all the nodes who are handled as MPI
I/O aggregators

Usually, in order to stress further the I/O bandwidth, we
need to use at least four MPI I/O aggregators per BB node,
for example, the command in Listing 2 declares that all
the filenames starting with the word output, will be striped
over four BB instances. It is important that the number of
compute nodes could be divided by the number of MPI I/O
aggregators to avoid any I/O imbalance.

e x p o r t MPICH_MPIIO_HINTS= ‘ ‘ o u t p u t ∗ : cb_nodes =4"

Listing 2. Declaring the striping of all the output files over 4 DataWarp
nodes

In order to have a better load balance of I/O data ag-
gregation, it is necessary that the number of used compute
nodes is multiple of the number of the BB nodes. The
jobs using BB nodes have to compete with all other jobs
for utilizing the bandwidth of the Aries interconnect. The
highest number of BB nodes does not always mean a better
I/O performance, as the Cray Aries interconnect network and
its non-dedicated usage could provide poor results. If the
output file is not big enough, then increasing the number of
BB nodes, will not deliver the expected performance. In Fig.
3 we show the results when we save one PnetCDF file of
50 GB, by using 256 MPI processes on 8 compute nodes,
we use one BB node, and we increase the number of the
MPI I/O aggregators. We observe that the default value of
the MPI I/O aggregators achieves I/O bandwidth around to
640 MB/s, while for 32 aggregators, we have 2260 MB/s,
3.5 times better performance. Thus, the MPI I/O aggregators
are quite important for performance study on Burst Buffer.

C. Number of Burst Buffer Nodes

It is already mentioned that ShaheenII is constituted by
268 BB nodes. However, it does not mean that more BB
nodes, better the performance. Except, that the performance
depends on the Aries interconnection if there are not enough



Figure 3. I/O Bandwidth using one DataWarp node and increasing the
MPI I/O aggregators.

Figure 4. I/O Bandwidth using one Burst Buffer node and increasing the
number of BB nodes.

data to be distributed across the BB nodes and if the
parameters are not optimized, then we will not achieve the
expected performance. For example, in Fig. 4, we increase
the number of the Burst Buffer nodes, while we use the
best value for the MPI I/O aggregators in each case. We
observe that the I/O bandwidth from almost 3000 MB/s
becomes around to 6600 MB/s by increasing 32 times the
used resources, a result which is not impressive considering
the usage of the extra resources.

One significant phase of the ExpBB tool is to investigate
what is the most efficient number of BB nodes for an
executed application and problem size.

D. Striping Unit

The stripe units are the segments of sequential data written
to or read from a disk before the operation continues to the
next disk. The amount of the data in one stripe unit is called
stripe size. The default value of the stripe size on Lustre is
1 MB and on Burst Buffer is 8 MB. In Fig. 3 an example is
presented how to change the striping unit for the files with
filename output* to 4 MB, the value is declared in bytes.

Figure 5. I/O Bandwidth using one BB node and decreasing the striping
unit.

e x p o r t MPICH_MPIIO_HINTS=" o u t p u t ∗ : s t r i p i n g _ u n i t =4194304"

Listing 3. Declaring the striping unit of all the output files to 4 MB (unit
in bytes)

Smaller the striping unit, more write or read operations
are required. Depending on the case, this can improve the
performance up to one point that the SSDs are stressed, and
more resources should be used. In Fig. 5 we show the I/O
bandwidth by using one BB node and decreasing the striping
unit of the output file.

E. Striping Buffer

During MPI I/O, as we mentioned above, the data are
aggregated to the MPI I/O aggregators. When the buffer is
full, then the actual I/O operation occurs. Thus, increasing
the size of the buffer, more I/O calls will be aggregated and
will have less write/read operations. In Fig. 4 an example
is presented how to change the striping buffer for the files
with a filename starting with output* to 16 MB, the value
is declared in bytes.

e x p o r t MPICH_MPIIO_HINTS=" o u t p u t ∗ : s t r i p i n g _ b u f f e r =16777216"

Listing 4. Declaring the striping of all the output files over 16 MB of
striping buffer

The change of the value of striping buffer does not always
help significantly, but on large files across many BB nodes
we have seen improvements up to 25% because of doubling
the default striping buffer, which is 16MB.

V. METHODOLOGY

The ExpBB tool handles all the previous presented param-
eters in order to conclude to the most efficient combination
with regard to the application’s performance. This problem
is multi-parametric, and the main target is to decrease the
I/O time but at the same time to decrease the total execution
time. The second one is more important, and we will explain
later what does this mean. In order to describe better how
the tool works, we’ll provide an example step by step of



what data it investigates. We assume that a user of this tool
is not experienced with the Burst Buffer.

A. Preparation and Restrictions

The first version of tool, which is still under development,
is available in [12]. The current work corresponds to ExpBB
v1.0. The user is responsible for two initial steps of prepara-
tion before the execution of the tool. Initially, the application
should be compiled with CRAY-MPICH 7.4.0 and later, and
also the Darshan [13] tool should be activated. Darshan is a
profiling tool that provides insights into the I/O performance.
It is used from the presented framework for various metrics.
The second step is to define into the main script of the
framework, called expbb, the first parameters. For example,
the name of the executable, the required arguments, and
the minimum size of BB space in GB which is required
to save all the input and output files. The user should
define if an investigation of the MPI/OpenMP parameters
should take place, the minimum compute nodes necessary
for this problem size, and the stage-in and stage-out paths.
The current restriction of the tool is that we can study
the I/O for one file per experiment. This is done because
the studied parameters can be different per file, especially
when they do not have similar size and makes the problem
more complicated. For the sake of simplicity, we study more
detailed the benchmark NAS BT I/O, because the submission
script is smaller. In Listing 5 we present a simple submission
script of NAS BT I/O which works for Lustre filesystem
where its filename is btio.sh.

# ! / b i n / bash
#SBATCH −−p a r t i t i o n =workq
#SBATCH −t 06
#SBATCH −A k01
#SBATCH −−n t a s k s =256
#SBATCH −−n t a s k s−per−node=32
#SBATCH −J b t i o
#SBATCH −o b t i o _ o u t _%j
#SBATCH −e b t i o _ e r r _%j

cp t e m p _ i n p u t i n p u t b t 1 . d a t a
export c u r r _ p a t h =$PWD
echo $ c u r r _ p a t h >> i n p u t b t 1 . d a t a

s r u n −−n t a s k s =256 −−n t a s k s−per−node =32 \
−−t h r e a d s−per−c o r e =1 −−h i n t = n o m u l t i t h r e a d \
. / b t i o i n p u t b t 1 . d a t a

Listing 5. Initial submission script for executiong NAS BT I/O on 256
MPI processes.

B. Executing the ExpBB tool

Now the user executes the main script to prepare the new
submission scripts

. / expbb b t i o . sh

Listing 6. Executing the ExpBB tool

During the execution of the ExpBB, we have two main
phases. In the first phase, the application is executed two
times, one on Lustre and one on Burst Buffer with default
values, taken under consideration the minimum requirements

from the user. Moreover, for all the scripts that this tool
uses, we add automatic the environment variables presented
in Listing 7.
e x p o r t MPICH_VERSION_DISPLAY=1
e x p o r t MPICH_ENV_DISPLAY=1
e x p o r t MPICH_MPIIO_HINTS_DISPLAY=1
e x p o r t MPICH_MPIIO_STATS=2
e x p o r t MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1

Listing 7. MPI environment variables that provide extra information relate
to the MPI-I/O of the application

The variable MPICH_ENV_DISPLAY displays the
values of all the adjustable MPI variables that a user
can modify. This is useful for reproducible reasons when
someone wants to repeat an experiment, and maybe a
value was optimized by the user during the execution.
The variable MPICH_MPIIO_HINTS_DISPLAY prints
the I/O hints and their values. So we could identify
the default values and know every moment what values
we are using. The variable MPICH_MPIIO_STATS
activates more MPI I/O statistics that we can analyze
and are useful to identify I/O issues. The variable
MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY
displays all the MPI I/O aggregators. This helps a user to
identify any issue that declared less or more aggregators by
mistake. With the first two initial executions and the output
files, the tool extracts the default values of the file systems
for the environment variables, such as striping unit and
buffer. Then, these values are used to explore approaches
for better performance. When these executions finish,
the framework extracts the available BB nodes from the
system (excluding the drained ones). Then it creates new
submission scripts, with the minimum required BB nodes,
and doubling them till it reaches the maximum number of
available BB nodes. For example on ShaheenII, we have
268 BB nodes, if the minimum requested BB nodes is 1,
then we’ll have submission scripts for 1, 2, 4, 8, 16, 32,
64, 128, 256 BB nodes. For each submission script, the
corresponding SLURM DataWarp commands are declared
by the tool without the user being familiar with them, the
commands before the srun call remain, and we add all the
new code just before and after the srun call. The original
code which was after the srun command, is added in the
end of the script.

After the execution of the command in Listing 6, we have
new submission files, for example for 32 BB nodes, is called
expbb_1_32_btio.sh, where 32 defines the number of the BB
nodes, and the number 1 is internal variable of the tool.

The new submission file for the 32 BB nodes looks like
in Listing 8. This is a part of the real file which is more than
140 lines. The lines 11-15 include the SLURM DataWarp
commands to reserve the appropriate space and declare
the stage-in/out paths without the user knowing anything
about Burst Buffer, except declaring the related paths in
the expbb script. The lines 17-23 include commands that
declare variables. Line 25 is calling a script that a user



is responsible for preparing for the application in the case
that is required to execute an executable from Lustre while
is using Burst Buffer, this is called hybrid mode and is
explained later. From line 28 are declared MPI processes,
OpenMP threads, and a loop with MPI I/O aggregators
starting with minimum one aggregator per BB node and
stressing them till 8 aggregators per BB node (totally 256).
This limit is because we have 256 MPI processes, so there
is no point to having more MPI I/O aggregators than the
MPI processes. Using so many MPI I/O aggregators, in this
case, does not seem to be efficient, but we want to capture
any case that an application performs better. We have nested
loops for all the previously mentioned studied parameters
that the range of their values is arranged according to the
extracted default values from initial execution and the user’s
requirements.

1# ! / b i n / bash
2#SBATCH −−p a r t i t i o n =workq
3#SBATCH −t 06
4#SBATCH −A k01
5#SBATCH −−n t a s k s =256
6#SBATCH −−n t a s k s−per−node=32
7#SBATCH −−n t a s k s−per−s o c k e t =16
8#SBATCH −J b t i o
9#SBATCH −o b t i o _ o u t _%j
10#SBATCH −e b t i o _ e r r _%j
11#DW jobdw t y p e=s c r a t c h access_mode= s t r i p e d c a p a c i t y =12704GiB
12#DW s t a g e _ i n t y p e= d i r e c t o r y s o u r c e =/ p r o j e c t / k01 / markomg / d e v e l o p m e n t / expbb \
13d e s t i n a t i o n =$DW_JOB_STRIPED
14#DW s t a g e _ o u t t y p e= d i r e c t o r y d e s t i n a t i o n =/ p r o j e c t / k01 / markomg / back2 \
15source =$DW_JOB_STRIPED
16
17cd $DW_JOB_STRIPED
18chmod +x b t i o
19export f o l d e r =${SLURM_SUBMIT_DIR } / e x p e r i m e n t s
20export b e s t _ r u n _ i d = ‘ c a t ${SLURM_SUBMIT_DIR } / b e s t _ r u n _ i d . t x t ‘
21export execu = b t i o
22export ex p_ id =1
23export r u n _ i d =1
24
25cp t e m p _ i n p u t i n p u t b t 1 . d a t a
26export c u r r _ p a t h =$PWD
27echo $ c u r r _ p a t h >> i n p u t b t 1 . d a t a
28
29export MPICH_MPIIO_HINTS=" b t i o . nc "
30l e t expbb_mpi_ t a sks =256
31l e t expbb_omp_tasks =1
32i f [ " $expbb_mpi_ t a sks " −g t " $nodes " ] ; then
33l e t s o c k t = $expbb_mpi_ t a sks / $ ((2∗ $nodes ) )
34f i
35f o r ( ( e x p b b _ i o _ a g g r =32; expbb_ io_aggr <=256; e x p b b _ i o _ a g g r =2∗$ e x p b b _ i o _ a g g r ) ) ;
36do
37export MPICH_MPIIO_HINTS="$MPICH_MPIIO_HINTS : cb_nodes = $ e x p b b _ i o _ a g g r "
38. . .
39export START=$ ( d a t e +%s .%N)
40t ime s r u n −−n t a s k s = $expbb_mpi_ t a sks −−nodes = $nodes \
41−−n t a s k s−per−node=$ ((2∗ $ s o c k t ) ) −−cpus−per−t a s k =${ expbb_omp_tasks } \
42−−t h r e a d s−per−c o r e =1 −−h i n t = n o m u l t i t h r e a d . / b t i o i n p u t b t 1 . d a t a
43END=$ ( d a t e +%s .%N)
44DIFF=$ ( echo $END − $START | bc )
45
46. / p a r s e _ d a r s h a n . sh $SLURM_JOBID $ r u n _ i d $ f o l d e r $DIFF
47. . .
48
49done
50. . .
51done

Listing 8. Initial submission script for executiong NAS BT I/O on 256
MPI processes and 32 BB nodes.

The values of the environment variables that were men-
tioned in section IV, are declared to be used during the
execution of an application, through also the environment
variable MPICH_MPIIO_HINTS. There is a general rule,
for every execution, we compare the I/O time for the studied
file, and the total execution time of the previous execution.
In theory, if the main I/O time decreases, then the total
execution time will decrease. However, with the current
DataWarp software (CLE 5.2), this does not happen always.
We present an example with WRF-CHEM application.

Figure 6. Darshan results on WRF-CHEM with 2 BB nodes.

Figure 7. Darshan results on WRF-CHEM with 40 BB nodes.

While the execution time of WRF-CHEM, with 2 BB
nodes, is 102 seconds and is presented in Fig. 6, the
execution with 16 Lustre OSTs, which is the best result,
takes 114 seconds. In Fig. 6, on the left side, is the average
I/O cost per process, with the percentage of POSIX and
MPI-I/O, while on the right side is the total number of the
operations across all the MPI processes and their type.

However, we need to test how this application scales on
Burst Buffer. It is quite interesting that while we were trying
to test more BB nodes, the missing DVS client of CLE 5.2
caused issues. In Fig. 7 we can see the performance with
40 BB nodes, which is almost 50% worse than 2 BB nodes.
This is caused by metadata issues with small size shared
access files (blue color on the left side of Fig. 7).

In Fig. 8, we can see the slowest and faster times across
the ranks per file and the file size. However, in some cases,
the file size is not right. The file namelist.input, which its
size is 12KB, needs between 20 and 36 seconds to be read,
which is extremely slow. This is caused because of the
missing DVS client, which it could be fixed with CLE 6.0
that currently, is not available on ShaheenII.

At this point, we thought to use a hybrid technique, the
small files are using Lustre and the large files the BB.
However, this approach depends on the application. For
WRF-CHEM was possible for most of the files. In Fig. 9,
we present the results with 40 BB nodes, that the significant
load of metadata of Fig. 7, is not created anymore.

Moreover Fig. 10 shows the range of the slowest and



Figure 8. Darshan results on WRF-CHEM per file with 40 BB nodes.

Figure 9. Darshan results on WRF-CHEM in hybrid mode with 40 BB
nodes.

fastest ranks across the files where the duration of the small
shared files is similar to Lustre and the large files use the
Burst Buffer. The total execution time is similar to the usage
of the smaller number of BB nodes, but this is normal as the
specific problem size is not big enough to take advantage of
the extra resources.

From all the previous steps, a new rule was created for
the ExpBB framework, when the tool starts testing a larger
number of BB nodes, then expect the I/O time of the files,
should be checked the total execution time. If there is one
file with small size, with shared access, where its I/O time,
according to Darshan, is significant, the tool creates a hybrid
script, where the application is executed from Lustre, but
paths are declared to save large files on Burst Buffer through
the prepare_hybrid.sh script. However, it is required to be
supported by the application, for example, some applications
demand that the executable and the files are on the same
path. The user should edit the script prepare_hybrid.sh and
add the necessary commands. Then, the tool it will execute
this script when it is necessary. When the hybrid solution is
not efficient, the application will be executed again on Burst

Figure 10. Darshan results on WRF-CHEM per file in hybrid mode with
40 BB nodes.

Buffer mode only.
During all the steps the best values are saved in files.

Moreover when another number of the BB nodes should be
tested, then another job will be submitted which reads from
the files the previous optimum results

C. MPI statistics

Cray MPI-I/O provides a way of collecting statistics on
the actual read/write performed operations during collective
buffering, and it is activated with the environment variable
MPICH_MPIIO_STATS when is equal to 2. By using this
variable, we also create one CSV file per MPI process
that can extract in-depth details about an application’s I/O
with the cray_mpiio_summary tool. Listing 9 illustrates the
corresponding MPI I/O statistics for writing the file btio.nc
on Burst Buffer. We know that the file is located on the Burst
Buffer because of the path on the first line. More details are
provided, such as the number of independent and collective
writes, how many independent writers, the number of the
aggregators, the stripe count, and the stripe size. From the
variable stripe count, we know how many BB nodes we use
for this execution. From the variable aggregators, the number
of the MPI I/O aggregators is extracted. In this case is the
default, which is one MPI I/O aggregator for each BB node.
The stripe size, in this case, is the default one of 8 MB,
and usually, we change its value through the striping_unit
variable. Moreover, two important information are provided
by the variables system writes and stripe sized writes. The
first one declares how many write operations occur for this
file and the second one how many of them are striped, thus
we can extract the efficiency. The ExpBB framework uses
the ratio of stripe sized writes/system writes to identify the
percentage of striped writes (or reads) and conclude to what
should be the next step. The variable total bytes for writes
declares the total amount of the file, while the variable ave
system write size declares the average system write size and
should be close to the stripe size. If it is not, then the tool
modifies the stripe size. The number of the gaps and the
size is related to how many seek operation happens and how
much is the size of the file in bytes that is skipped to read
the next part.
| MPIIO w r i t e a c c e s s p a t t e r n s f o r
| / v a r / o p t / c r a y / dws / mounts / b a t c h / 3 1 2 9 7 7 2 / s s / / b t i o . nc
| i n d e p e n d e n t w r i t e s = 11
| c o l l e c t i v e w r i t e s = 40960
| i n d e p e n d e n t w r i t e r s = 1
| a g g r e g a t o r s = 1
| s t r i p e c o u n t = 1
| s t r i p e s i z e = 8388608
| sys tem w r i t e s = 6411
| s t r i p e s i z e d w r i t e s = 6400
| t o t a l b y t e s f o r w r i t e s
= 53687091532 = 51200 MiB = 50 GiB
| ave sys tem w r i t e s i z e = 8374214
| read−modify−w r i t e c o u n t = 0
| read−modify−w r i t e b y t e s = 0
| number o f w r i t e gaps = 21
| ave w r i t e gap s i z e = 23336707978

Listing 9. MPI statistics for NAS BT IO



VI. STUDY CASES

A. NAS BT I/O

In this section, we study the performance of NAS BT I/O
benchmark on Burst Buffer from user perspective point of
view. We will follow a simple methodology which shows
how the framework works. We start with a small number
of BB nodes, and we will try to increase and observe the
performance. However, we will test some optimizations. We
know that all the data are not over than 51 GB, so one
BB node, is enough. This application reports its I/O write
bandwidth for saving 50 GB of data with PnetCDF library,
and it is 913 MB/sec with the default settings. In this point,
we should mention the practical efficiency of the BB node.
By practical efficiency, we mean what performance should
we expect by each BB node. We know that IOR benchmark
[14] provides around 1.5-1.6 TB/s on 268 BB nodes. In the
case, of 1.5 TB/s the practical performance of each node is
around to 5.7 GB/s. Just to mention that these results are
from an IOR configuration, where its MPI process saves
one file, so there is not one single file through collective
operations. This means that the practical efficiency of the
previous results is around to 15.6% which is quite low. The
first step is to investigate if using more MPI I/O aggregators,
can provide better performance. We did that already in Fig.
3, and using 64 aggregators provides 2897 MB/s, which
means 3.17 times speedup and 50.7% practical efficiency.
A user who is not familiar with these technical details, can
not achieve this performance. In the continuation, we test the
decrease of the striping unit. The second step is again done in
Fig. 5 where we decrease the value of the striping unit, and
the optimum performance is gained with stripe unit equal to
2 MB and it is 3177 MB/s, almost 10% improvement and
the practical efficiency is 54.3%. However, we would like
to test why the performance does not increase with striping
unit equal to 1 MB in Fig. 5. According to MPI statistics, for
striping unit equal to 1 MB, we have the output of Listing
10.

| MPIIO w r i t e a c c e s s p a t t e r n s f o r
| / v a r / o p t / c r a y / dws / mounts / b a t c h / 3 1 5 1 0 9 9 / s s / / b t i o . nc
| i n d e p e n d e n t w r i t e s = 11
| c o l l e c t i v e w r i t e s = 40960
| i n d e p e n d e n t w r i t e r s = 1
| a g g r e g a t o r s = 64
| s t r i p e c o u n t = 1
| s t r i p e s i z e = 1048576
| sys tem w r i t e s = 51211
| s t r i p e s i z e d w r i t e s = 51200
| t o t a l b y t e s f o r w r i t e s
= 53687091532 = 51200 MiB = 50 GiB
| ave sys tem w r i t e s i z e = 1048350
| read−modify−w r i t e c o u n t = 0
| read−modify−w r i t e b y t e s = 0
| number o f w r i t e gaps = 21
| ave w r i t e gap s i z e = 23297910666

Listing 10. MPI statistics for NAS BT IO - 1 BB node - 64 MPI IO
aggregators - 1 MB striping unit

We observe that the system writes have been increased
from 6411, which were initially, to 51211 for striping unit

Figure 11. Comparing Lustre vs Burst Buffer and with ExpBB tool for 8
compute nodes

of 1 MB. In this case, our assumption is that one BB node,
can not handle all the load and we should use a second
one. By using two BB nodes, the I/O performance for 1
MB striping unit becomes 3850 MB/s, while it was 2165
MB/s for one BB node. However, for striping unit of 2 MB,
the I/O write bandwidth with 2 BB nodes, is 4604 MB/s.
Thus, the practical efficiency, in this case, is 39.4% and is
better to use striping unit equal to 2 MB. We should mention
that without the previous optimizations the I/O performance
is 1934 MB/s, thus the performance was improved by 2.38
times. All of these procedures occur automatic through the
ExpBB framework.

In Fig. 11 we compare the performance of Lustre and
Burst Buffer with and without the ExpBB tool. With the
framework activated, the performance of Burst Buffer is
always better than Lustre from 3.9% for 16 OSTs/BB nodes
till 3.39 times for 1 OST/BB node. The comparison of Burst
Buffer with and without the tool activated varies from almost
similar results till 3.11 times better with first one. From
these results, we observe that the default BB settings are
quite efficient for 8 BB nodes, where in this case we also
use 8 compute nodes, thus we have one MPI I/O aggregator
per compute node and corresponds to a dedicated BB node.
For this reason, we present more experiments by using same
problem size with 32 compute nodes in Fig. 12. In this case,
the default settings of BB, work efficient for 32 BB nodes,
while we use 32 compute nodes and it seems that this pattern
works for this test case. The Burst Buffer with ExpBB
is faster than without by 6.2% till 3.28 times. Also the
framework provides 1.28 till 4.52 times better performance
than Lustre for 64 OSTs/BB nodes and 1 OST/BB node
respectively. We did experiments on Lustre for up to 144
OSTs, and it can not achieve so good performance as Burst
Buffer for 64 BB nodes.



Figure 12. Comparing Lustre vs Burst Buffer and with ExpBB tool for
32 compute nodes

B. WRF-CHEM

This is a real study case which was provided by a user
who wanted to test WRF-CHEM on Burst Buffer. However,
the domain size is not big enough neither the number of
the compute nodes. The user uses 40 compute nodes and
produces 2.8 GB output file for one hour of simulation.
The total execution time is 164,8 seconds and Listing 11
presents the default statistics by executing this case on 1
BB node where it needs 31,69 seconds to write one output
file. The best performance of Lustre takes 112 seconds, so
initially, there was no reason to use Burst Buffer for these
experiments.

| MPIIO w r i t e a c c e s s p a t t e r n s f o r
| wrfout_d01_2007 −04−03_00_00_00
| i n d e p e n d e n t w r i t e s = 2
| c o l l e c t i v e w r i t e s = 552960
| i n d e p e n d e n t w r i t e r s = 1
| a g g r e g a t o r s = 1
| s t r i p e c o u n t = 1
| s t r i p e s i z e = 8388608
| sys tem w r i t e s = 797
| s t r i p e s i z e d w r i t e s = 114
| t o t a l b y t e s f o r w r i t e s = 3045341799=2904 MiB=2 GiB
| ave sys tem w r i t e s i z e = 3821006
| read−modify−w r i t e c o u n t = 0
| read−modify−w r i t e b y t e s = 0
| number o f w r i t e gaps = 3
| ave w r i t e gap s i z e = 8351037

Timing f o r W r i t i n g wrfout_d01_2007 −04−03_00_00_00 f o r
domain 1 : 31 .69 e l a p s e d s e c o n d s

Listing 11. MPI statistics for WRF-CHEM on 1 BB node

We can observe that the variable average system write size
is a bit less than 4MB, and the percentage of the striped sized
writes is only 14,3% . The tool modifies the value of the
striping unit to 2 MB and increases the MPI I/O aggregators
to 2. Then, we have Listing 12 where the percentage of the
striped sized writes is 62,7% and the average system write
size is closer to the stripe size. Moreover, now it takes 14,24
seconds to save the file, which means it is 2,22 times faster,
and the total execution is 143,8 seconds.

Figure 13. Presenting the MPI I/O bandwidth with time intervals of one
simulation hour on Burst Buffer without and with ExpBB

| MPIIO w r i t e a c c e s s p a t t e r n s f o r
| wrfout_d01_2007 −04−03_01_00_00
| i n d e p e n d e n t w r i t e s = 2
| c o l l e c t i v e w r i t e s = 552960
| i n d e p e n d e n t w r i t e r s = 1
| a g g r e g a t o r s = 2
| s t r i p e c o u n t = 1
| s t r i p e s i z e = 2097152
| sys tem w r i t e s = 1886
| s t r i p e s i z e d w r i t e s = 1183
| t o t a l b y t e s f o r w r i t e s = 3045341799=2904 MiB=2 GiB
| ave sys tem w r i t e s i z e = 1614709
| read−modify−w r i t e c o u n t = 0
| read−modify−w r i t e b y t e s = 0
| number o f w r i t e gaps = 2
| ave w r i t e gap s i z e = 1048572

Timing f o r W r i t i n g wrfout_d01_2007 −04−03_00_00_00 f o r
domain 1 : 14 .24 e l a p s e d s e c o n d s

Listing 12. MPI statistics for WRF-CHEM on 1 BB node

Finally, the tool concludes that the best value for the MPI
I/O aggregators is 40 and the striping unit should be equal
to 256 KB, with total execution time 97 seconds for using
1 BB node. This result is 13.4% better than the best Lustre
execution time with 64 OSTs. The importance of the BB
is significant, as we use only one BB node to have better
results than Lustre, and for 24 hours of simulation, BB
is 14.8% faster than Lustre which means less core-hours
consumption. As we have activated the advanced CRAY-
MPICH statistics, we use the tool cray_mpiio_summary. In
Fig. 13 we can observe on the x-axis the time intervals and
on the y-axis the write bandwidth for this study case. The
BB results without and with ExpBB tool are presented in
the upper and lower part respectively. Reading the input file
is faster with the ExpBB tool, that’s why the writing of
the file starts after around to 50 time intervals while they
are required more than 100 time intervals without using the
tool. Moreover, the write bandwidth is improved 4-5 times.
Thus the total execution time is close to 50% faster (less
total time intervals).

In Fig. 14 we compare the execution of WRF-CHEM
on one node of Burst Buffer without and with ExpBB,
using 40 compute nodes, where we have 41.1% performance
improvement for the total execution, and around to 73.2%



Figure 14. Executing WRF-CHEM on one BB node without and with
ExpBB

Figure 15. Executing WRF on one BB node without and with ExpBB

for both reading the input and writing the output files.

C. WRF

For this study, we use a benchmark with high-resolution
domain - the Alaska domain with 1km resolution [15]. We
use WRF v3.7.1 with Cray compiler, MPICH v7.4.2, 256
compute nodes, 4 MPI processes per node and 8 OpenMP
threads. WRF can be configured to save the simulation data
in history and restart files. The former includes simulation
data for specific time steps and the later can be used to restart
the simulation. We configure WRF for intensive I/O, so we
save the history and restart files every 30 simulation minutes.
The size for history and restart files is around 81 GB and
361 GB, respectively. The size of input file (wrfinput_d01)
is 77 GB. We stage-in around 110 GB of data, and the stage-
out phase after one hour of simulation yields almost 1 TB
of data. For the case that we save the data to one single file,
we use PnetCDF. In Fig. 15 we study mainly the writing
of the restart file, and we present the comparison between
DataWarp with default settings and with ExPBB.

The performance is improved 3,8 times on single BB
node, and it is 1,28 times faster on 64 BB nodes. As we
increase the number of BB nodes, the time percentage of I/O

gets smaller and the optimizations gain is smaller. However,
the total execution time with 16 BB nodes, is 722 seconds
and is faster than 64 BB nodes with default BB settings,
which is 737 seconds. So a user can reserve less resources
and be charged accordingly. In Listing 13, we present the
optimum MPICH_MPIIO_HINTS variable for the execution
on 64 BB nodes.

e x p o r t MPICH_MPIIO_HINTS=" w r f i ∗ : cb_nodes = 1 2 8 : \
s t r i p i n g _ u n i t =4194304 , wrfo ∗ : cb_nodes = 2 5 6 : \
s t r i p i n g _ u n i t =4194304 , w r f r ∗ : cb_nodes = 2 5 6 : \
s t r i p i n g _ u n i t =4194304"

Listing 13. Optimum MPICH_MPIIO_HINTS for WRF on 64 BB node

We observe that some files, need different number of MPI
I/O aggregators (cb_nodes) and in some cases will be needed
different striping_unit also.

D. Summary

It should be noted that although we present some opti-
mizations analytically, all of these happen automatic with the
ExpBB tool. One thing that requests some parts to be done
manually is that the tool does not support yet the study of
different files on the same execution, so multiple executions
should be done per studied file, this will be fixed in a future
version. The workflow of the ExpBB tool is presented in
Fig. 16. The part of the generated report is not developed
yet, but a text file is created with the performance data.

The user executes the ExpBB tool which generates other
submission files and then are submitted with dependency
mechanism to avoid any overlaps. The framework is tested
under CLE 5.2 and Darshan v2.3. For more information
check [12]. This framework leads to more efficient execution
of an application on Burst Buffer but supports also Lustre.
We believe that the users of every level could get advan-
tage of a such auto-tuning tool. This framework integrates
sophisticated approaches to stop or advance the search for
optimum values of the corresponding parameters.

VII. PIDX

The IDX format provides efficient, cache oblivious, and
progressive access to large-scale scientific data by storing the
data in a hierarchical Z (HZ) order [16]. In order to study
large datasets a parallel version of IDX, called PIDX [7],
was developed. To achieve high scalability, the developers of
the PIDX framework did implement the total I/O procedure
in three phases. Initially, we have the restructuring; blocks
of data are created to optimize the layout for I/O. In the
continuation, we have the in-core reorganization of data in
a read-friendly format following by the data aggregation
to optimize disk access. During data restructuring, there
is high utilization of the network between the participated
processes, and only a subset of them have the required data
to participate in next phase. Then, HZ encoding is applied
locally on all processes of phase 1. The data aggregation
occurs, and the data are written to many IDX files. The



Figure 16. ExpBB workflow

data aggregation is constituted by steps, in which the first
one, data are gathered to the I/O aggregators using one-
sided MPI communication, and then each aggregator writes
its IDX file. This method combines an aggregation strategy
that the final phase does not create contention because many
files are produced instead of one shared file. We only use a
PIDX tutorial that the developers include in the distribution,
and they call it checkpoint_simple.

This benchmark reproduces the I/O that could be inte-
grated in a real application. In order to produce an average
I/O workload per MPI process, that could correspond to a
real application, we declare in our experiment that each MPI
process handles 64MB of data, so all together the 32 cores,
are going to save 2GB of data in a file. Moreover, the 64
MB per process are constituted by 32 variables (2MB for
each variable), which illustrate the case that we save in a
file the values of 32 variables and each of this one, needs
2MB hard disk space. Fig. 17 presents the results using 144
OSTs on Lustre and 16 to 256 BB nodes.

Moreover, we use 256 compute nodes for 16 BB nodes,
till 1024 compute nodes for 256 BB nodes. For 256 compute
nodes, we save 512 GB files, while for 1024 compute nodes,
we save 2TB files. The requested size of I/O per MPI
process remains 64 MB for all the experiments. Although,
till 64 BB nodes, the Burst Buffer and Lustre have similar
write I/O performance, for more BB nodes, Burst Buffer
is scaling while Lustre does not, but it can be a network
issue because of other users. More accurate for 256 BB

Figure 17. Comparison of Burst Buffer and Lustre for PIDX



nodes, Burst Buffer, achieves 900 GB/s which is three times
faster than Lustre’s peak, 300 GB/s. All the experiments took
place in non dedicated mode, and peak performance can be
influenced. The right part of Fig. 17 shows the PIDX I/O
efficiency based on IOR peak results. Till 144 BB nodes, the
I/O efficiency is above 75%, and it drops a bit more than
60% for 256 BB nodes. As we scale on the system, and with
regard to the phase of PIDX that utilizes the network, if the
system is busy the results can vary because of the Aries
network on XC-40. Thus, we believe that some experiments
could be better with dedicated mode and newer compute
node Linux which will be available on this system in a
few months. From the results, we understand that PIDX is
efficient I/O library and it is quite scalable. Thus, it is evident
that adapting the I/O approach with other libraries can lead
to better results.

VIII. CONCLUSION

In this work, we present a framework that explores the
performance of the Burst Buffer through the study of various
I/O parameters. We use parameters that a beginner user
maybe is not familiar with them. Thus it can provide support
to use Burst Buffer efficiently. This means faster execution
time and less core-hours consumption. We know that this
tool needs some more development, but it is an ongoing
work with promising results. In all the cases using BB
with the ExpBB tool lead to better results and in some
cases the difference is significant. We do explain some basic
functions of BB and which parameters to study as also how
to read some performance statistics data. Finally, the study
of the NAS BT I/O benchmark and WRF-CHEM model,
demonstrated the utilization and the success of the ExpBB
tool to improve the performance up to 4.52 times compared
to Lustre and 3.28 times compared to Burst Buffer without
the activation of the framework.

IX. FUTURE WORK

Significant future work is planned, although the tool is
already operational. It is required to handle more efficient
the perfromance study of multiple files. Moreover, the
generation of a report is required to have a summary of
all the experiments gathered. Some rules that are identified
through the study of other applications are going to be
integrated. The most significant development will be the
integration of some online learning with database. It will
be useful if through important criteria we can decrease the
range of searching and based to the integrated history of
an application to identify the range of some parameters to
conclude faster to the optimum solution.
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