
ExPBB: A framework to
explore the performance

of Burst Buffer
Cray User Group 2017, Redmond, US

George Markomanolis
Computational Scientist

KAUST Supercomputing Laboratory
georgios.markomanolis@kaust.edu.sa

11 May 2017

Outline

� Motivation

� What should be changed?

� How this framework works?

� Study cases

� Do we need new HPC I/O libraries?

� Conclusions

2

Leading KAUST Burst Buffer Early Access
Program

� Investigation of the relationship between reactivity and aromaticity, Prof. Kuo-Wei Huang, Theo P Goncalves, Kristin Munkerup
(Gaussian)

� Tuning of the I/O of a DART-MITGCM workflow at high number of jobs, Prof. Ibrahim Hoteit, Habib Toye Mahamadou Kele, Samuel
Kortas (DART-MITGCM)

� Large domain of Saudi Arabia on WRF, Prof. Ibrahim Hoteit, Hari Dasari, Yesubabu Viswandhappli, George Markomanolis (WRF,
MATLAB)

� Regional and global modeling of volcanic and dust aerosol impact, Georgiy Stenchikov, Sergey Osipov, Anatolii Anisimov, Mohamed
Abdelkader (WRF, ROMS, WRF-CHEM, EMAC)

� High Performance on Burst Buffer for large scale simulations using PIDX and KARFS, Prof. Hong Im, Prof. Valerio Pascucci, Steve
Petruzza, Sidharth Kumar, Duong Hoang, Bok Jik Lee, Francisco Hernandez Perez (PIDX, KARFS, IOR)

� KVL Development Project - Burst Buffer for In-Situ Analysis and Visualization, Madhu Srinivasan, Glendon Holst, Thomas Theussl
(Paraview, Visualization tools)

� Performance of membrane spacers having different new geometries: A Direct Numerical Simulation (DNS) Investigations, Prof.
Noreddine Ghaffour, Adnan Qamar, Rooh Khuram (ANSYS - Fluent, Tecplot)

� Introducing checkpointing in flow simulations with lattice-Boltzmann code, Prof. Tadeusz Patzek, Shiarhei Khirevich

� Data Offloading for Extreme Scale Simulation

3

Burst Buffer Training

2 hours video of KAUST Bust Buffer training with title
Burst Buffer: From Alpha to Omega
https://www.youtube.com/watch?v=8zLcZmiTweg
slides: https://goo.gl/2Juf24

Markomanolis, George (2017):
Getting started with the Burst Buffer. figshare.
https://doi.org/10.6084/m9.figshare.4871738

4

Motivation

� Burst Buffer (BB) does not provide the expected performance… or
we do not know how to use it?

� A user should be familiar with some technical details and most of
them are science-focus researchers.

� We need a tool that a user can execute and extract the optimized
parameters for his application and the used domain.

� Disclaimer: KAUST site works with CLE v5.2 (May 2017)

5

Applications

� Weather Research and Forecasting Model coupling with
Chemistry

� Small domain: 330 x 275 x 35

� Size of input file: 804 MB

� Size of output file: 2.9GB, it is saved every one hour of
simulation

� Output file quite small

� For all the WRF-CHEM experiments we use 1280 MPI
processes (40 nodes), as this is the optimum for the
computation/communication

� For the default case, we stage-in all the files and we
execute the simulation from BB

� NAS BT I/O

� Domain size: 1024 x 512 x 256

� 256 to 1024 MPI processes, 8 –
32 nodes

� Size of output file: 50 GB

6

Burst Buffer nodes

� A user tries to scale his application on Burst Buffer by just
increasing the BB nodes and this does not always provide the best
results.

� Increasing the BB nodes by 64 times, provide less than 8 times
better performance and the practical efficiency is less than 2%!

7

Burst Buffer nodes

� A user tries to scale his application on Burst Buffer by just
increasing the BB nodes and this does not always provide the best
results.

� Trying to scale WRF-CHEM, the execution time increases while we
increase the number of BB nodes.

8

Collective Buffering – MPI I/O aggregators

� During a collective write, the buffers on the aggregated nodes are buffered
through MPI, then these nodes write the data to the I/O servers.

� The default MPI I/O aggregators on Burst Buffer, is the number of BB nodes. So, if we have 8
MPI processes and 1 BB node, then we have 1 MPI I/O aggregator, if we have 2 BB nodes, then
we have 2 MPI I/O aggregators.

9
export MPICH_MPIIO_HINTS="wrfrst*:cb_nodes=80,wrfout*:cb_nodes=40”
This environment variable is supported on DataWarp since Cray-MPICH v7.4

Collective Buffering – MPI I/O aggregators II

� Using optimized MPI I/O aggregators improved the performance up to 3,11 times on just one BB
node for NAS BT I/O and 15.15% for WRF-CHEM.

� For NAS BT I/O, we achieved best performance with 64 MPI I/O aggregators while for WRF-CHEM
with 8 MPI I/O aggregators.

Use 64 MPI I/O aggregatos for the file btio.nc: export MPICH_MPIIO_HINTS=btio.nc:cb_nodes=64
10

Striping Unit

� The stripe units are the segments of sequential data written to or read from a disk
before the operation continues to the next disk

� For NAS BT IO, decreasing the striping unit up to 2 MB, increases the performance
by 10%, while for WRF-CHEM, decreasing the striping unit to 0.5 MB, increases the
performance by 32%.

Change striping unit of file btio.nc to 2MB:
export MPICH_MPIIO_HINTS=“btio.nc:cb_nodes=64:striping_unit=2097152”

11

Striping Buffer

� Striping buffer improves the performance, specially with cases with
large I/O, for example in one case of WRF, doubling the striping
buffer improved the performance by 25%.

12

MPI I/O Statistics

� CRAY-MPICH supports MPI I/O statistics by using MPICH_MPIIO_STATS=1 or 2

| MPIIO write access patterns for wrfout_d01_2007-04-03_00_00_00
| independent writes = 2
| collective writes = 552960
| independent writers = 1
| aggregators = 1
| stripe count = 1
| stripe size = 8388608
| system writes = 797
| stripe sized writes = 114
| total bytes for writes = 3045341799=2904 MiB
| ave system write size = 3821006
| read-modify-write count = 0
| read-modify-write bytes = 0
| number of write gaps = 3
| ave write gap size = 8351037

797 system writes
14.3% striped writes (low)

13

Framework preparation I

� Fill in the required information in the beginning of the ExPBB script

� export executable="btio”

� #Declare option for the executable (leave empty if no arguments)

export arguments="inputbt1.data"

� #Declare path file with output information such as MPI statistics

export output_file=”output.txt"

� #Declare the minimum requested Burst Buffer size in GB

export min_bb_size=1

� #Should the tool investigate different number of MPI/OpenMP processes? (0 for no, 1 for yes)

export resources=1

14

Framework preparation II

� #MIN nodes that you need for your problem (less or equal to the reserved nodes)

export min_nodes=100

� #Declare stage-in folder, full path

export stage_in="/project/k01/markomg/development/expbb"

� #Declare stage-out folder, full path

export stage_out="/project/k01/markomg/back2"

� #Do you want to use only Lustre (0), only Burst Buffer (1), or both (2)?

export filesystem=1

� The executable is required to have been compiled with the Darshan profiling tool

15

Important MPI environment variables

� export MPICH_ENV_DISPLAY=1
� Displays all settings used by the MPI during execution

� export MPICH_VERSION_DISPLAY=1
� Displays MPI version

� export MPICH_MPIIO_HINTS_DISPLAY=1
� Displays all the available I/O hints and their values

� export MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1
� Display the ranks that are performing aggregation when using MI-I/O collective buffering

� export MPICH_MPIIO_STATS=1 or 2
� Statistics on the actual read/write operations after collective buffering

� export MPICH_MPIIO_HINTS=“…”
� Declare I/O hints

16

Execution of ExPBB

� If your submission script is called run.sh, then execute:

expbb run.sh

� Then the following will happen:
� A parser will extract the compute resources from the original script and it will add

the corresponding #DW commands in a copy of the original script. From the
requested GBs the number of minimum BB nodes will be calculated.

� The previous important MPI environment variables are added to all the new
generated submission scripts

� Two executions will take place, one on Lustre and one on BB. This happens for two
reasons, first to extract the basic execution time for comparison reasons, and
second to extract the default striping unit and buffer for each case.

17

Execution of ExPBB II

� Then the tool will create a new submissions script depending on the number of the BB nodes, for
example on Shaheen II we have 268 BB nodes, if we need 4 BB nodes minimum, then there will be
scripts for 4, 8, 16, 32, 64, 128, and 256 BB nodes, if they are available and not drained.

� Each of the script includes extra code before and after the srun command, where loops change the
values of the parameters, where their range depends on the default values extracted on the first BB
execution.

� After the srun command a command to a parser is called, where it reads the Darshan performance
data and tests the following rules:
� Is the I/O for the studied file faster than the previous execution?

� If yes, is the total execution time faster?
� If yes, continue to the next value of the studied parameter
� If not, extract from Darshan data, if there is a small file with shared access that consumes significant time, start the

hybrid execution.

� The first script will be submitted with the minimum requested nodes and it will start investigating
the results.

� All the results will be written in txt files that are easily accessible

18

ExPBB example – Original script

Original script

19

ExPBB example – Converted script

Script converted with ExpBB
Code not final, to be modified in the
released version

20

NAS BT I/O - Understanding striping unit
2897 MB/s

| MPIIO write access patterns for
|/var/opt/cray/dws/mounts/batch/3129772/ss//btio.nc
| independent writes = 11
| collective writes = 40960
| independent writers = 1
| aggregators = 64
| stripe count = 1
| stripe size = 8388608
| system writes = 6411
| stripe sized writes = 6400
| total bytes for writes = 53687091532 = 51200 MiB = 50 GiB
| ave system write size = 8374214
| read-modify-write count = 0
| read-modify-write bytes = 0
| number of write gaps = 21
| ave write gap size = 23336707978

2165 MB/s
| MPIIO write access patterns for
|/var/opt/cray/dws/mounts/batch/3151099/ss//btio.nc
| independent writes = 11
| collective writes = 40960
| independent writers = 1
| aggregators = 64
| stripe count = 1
| stripe size = 1048576
| system writes = 51211
| stripe sized writes = 51200
| total bytes for writes = 53687091532 = 51200 MiB = 50 GiB
| ave system write size = 1048350
| read-modify-write count = 0
| read-modify-write bytes = 0
| number of write gaps = 21
| ave write gap size = 23297910666

Doubling the number of BB
nodes from 1 to 2, the I/O
bandwidth from 2165 MB/s
becomes 3850 MB/s,
78.2% improvement.

By decreasing the striping
unit by 8 times, the system
writes were increased by 8
times.

21

Understanding metadata issue I

2 BB
nodes

40 BB
nodes

WRF-CHEM

By increasing the
number of BB nodes, the
metadata issue was
significant, and the total
execution time was
increased by 50%! In this
case, we should execute
hybrid simulation

22

Understanding metadata issue II

2 BB
nodes

40 BB
nodes

WRF-CHEM

A shared file called
namelist.input with size
of 12KB, needs 36.6
seconds to be read from
the slowest process!

23

Hybrid simulation

� The user should create a script where is declared what should be
changed to use Burst Buffer only for the large files

� The execution occurs from the Lustre. Small files are saved on Lustre,
large files on BB (does the application support it?)

24

Hybrid simulation - Darshan I

40 BB
nodes

Hybrid, 40
BB nodes

WRF-CHEM

Hybrid simulation,
decreased the execution
time 50%.

25

Rules

� If the performance becomes worse while we decrease the striping unit
and the number of system write/reads is significant large, then submit
a submission script with double number of BB nodes with updated
starting values for parameters, and stop the current execution.

� If the performance becomes worse when we increase the number of
BB nodes, and there is according to Darshan, a small shared file that
all the processes access to it and it takes significant time to read, then
execute hybrid simulation.

26

Results I

We observe that for 8 BB nodes, with ExPBB framework, we have better
performance than 64 BB nodes without ExPBB or Lustre. The maximum speedup
compared to default BB execution, is 4,52. Moreover, 8 BB nodes have better
performance than 64 OSTs

27

Results II

The total execution time is improved 1,7 times with ExPBB and the
I/O is improved up to 3,8 times for 1 BB node. Finally, the total
execution time is 13.4% faster than Lustre with 64 OSTs. 28

Results III

WRF-CHEM – cray_mpiio_summary tool
(MPIIO_STATS=2)

BB
without
ExPBB

BB with
ExPBB

29

Results IV

The I/O was improved with ExPBB between 1,28 till 3,8 times.
The execution on 16 BB nodes with ExPBB is faster than 64 BB nodes without ExpBB
MPICH_MPIIO_HINTS=“wrfi*:cb_nodes=128:striping_unit=4194304,
wrfo*:cb_nodes=256:striping_unit=4194304, wrfr*:cb_nodes=256:striping_unit=4194304”

30

ExPBB workflow

31

PIDX

� PIDX is an efficient parallel I/O library that reads and writes
multiresolution IDX data files

� It can provide high scalability up to 768k cores

� Successful integration with several simulation codes
� KARFS (KAUST Adaptive Reacting Flow Solvers) on Shaheen II
� Uintah with production runs on Mira
� S3D

� Developed by University of Utah

32

PIDX structure

33

0

100

200

300

400

500

600

700

800

900

1000

16 32 64 128 144 256

W
ri

te
 I

/O
 b

an
d

w
id

th
 (

G
B

/s
)

BB nodes/OST

PIDX on BB

BB

Lustre

34

0
10
20
30
40
50
60
70
80
90

100

16 32 64 128 144 256

P
er

ce
nt

ag
e

of
 e

ff
ic

ie
nc

y

BB nodes

Efficiency based on IOR peak

35

Conclusions – Future work

� Many parameters need be investigated for the optimum performance

� Be patient, probably you will not achieve the best performance immediately

� Be careful to compile your application with the appropriate Cray MPICH

� CLE 6.0 will solve some BB issues of KAUST installation

� Always check the output of the application, used MPI version etc.

� Check MPICH_MPIIO_TIMERS with CRAY-MPICH 7.5.1

� Investigate Darshan XT

� Prepare next ExPBB version with online learning

36

37

Thank you!
Questions?

georgios.markomanolis@kaust.edu.sa

38

