
A regression framework for checking the health of large HPC systems

Vasileios Karakasis∗ Victor Holanda Rusu† Andreas Jocksch‡ Jean-Guillaume Piccinali§

Guilherme Peretti-Pezzi¶

Swiss National Supercomputing Centre (CSCS),
Via Trevano 131, Lugano, Switzerland

∗ vasileios.karakasis@cscs.ch † victor.holanda@cscs.ch ‡ andreas.jocksch@cscs.ch
§ jeanguillaume.piccinali@cscs.ch ¶ guilherme.peretti-pezzi@cscs.ch

Abstract—In this paper, we present a new framework for
writing regression tests for HPC systems, called REFRAME.
The goal of this framework is to abstract away the complexity
of the interactions with the system, separating the logic of a
regression test from the low-level details, which pertain to the
system configuration and setup. This allows users to write easily
portable regression tests, focusing only on the functionality.

Regression tests in REFRAME are simple Python classes that
specify the basic parameters of the test. The framework will
load the test and will send it down a well-defined pipeline that
will take care of its execution. The stages of this pipeline take
care of all the system interaction details, such as programming
environment switching, compilation, job submission, job status
query, sanity checking and performance assessment.

Writing system regression tests in a high-level modern
programming language, like Python, poses a great advantage
in organizing and maintaining the tests. Users can create their
own test hierarchies, can create test factories for generating
multiple tests at the same time and can also customize them
in a simple and expressive way.

At CSCS we have re-implemented our regression tests in
REFRAME and have put the framework in production since the
last upgrade of the system on December 2016. Our regression
suite comprises 437 test cases that are run daily checking the
system’s behavior. By using REFRAME we were able to reduce
our regression test codebase by almost 5× compared to our
old shell script based solution, covering even more test cases.

I. INTRODUCTION

HPC systems are highly complex systems in all levels
of integration; from the physical infrastructure up to the
software stack provided to the users. A small change in any
of these levels could have an impact on the stability or the
performance of the system perceived by the end users. It is of
crucial importance, therefore, not only to make sure that the
system is in a sane condition after every maintenance before
handing it off to users, but also to monitor its performance
during production, so that possible problems are detected
early enough and the quality of service is not compromised.

Regression testing can provide a reliable way to ensure
the stability and the performance requirements of the system,
provided that sufficient tests exist that cover a wide aspect
of the system’s operations from both the operators’ and
users’ point of view. However, given the complexity of
HPC systems, writing and maintaining regression tests can
be a very time consuming task. A small change in system

configuration or deployment may require adapting hundreds
of regression tests at the same time. Similarly, porting a test
to a different system may require significant effort if the new
system’s configuration is substantially different than that of
the system that it was originally written for.

Most HPC sites use one or another type of regression
testing to check some aspects of their system behavior
before returning it to users. To our knowledge, though,
these efforts are usually custom, in-house solutions that tend
to couple strongly the regression tests, even those at the
user level, with the system configuration. As a result the
maintenance burden increases significantly, which ultimately
makes people reluctant to invest more in a proper regression
testing of the system.

There have been recently some efforts to “standardize” the
deployment and regression testing of HPC systems through
the OpenHPC initiative [1]. This is indeed an ambitious goal
given the diversity in system architectures of large sites and
in the actual needs of their users. Actually, Cray sites could
not benefit much from this initiative, since the Cray Linux
Environment (CLE) differs significantly from a standard
Linux cluster deployment. Nonetheless, OpenHPC offers a
regression suite for checking deployments according to its
standards. Written in M4 and shell scripting, although well
structured, a concrete knowledge of the actual deployment
is still required in order to write a regression test. The way
also of checking and reporting the test result is left upon
each test. Maintaining therefore a common uniform structure
across all regression tests could incur further unnecessary
maintenance overhead. Notwithstanding the advantages of
shell scripting, e.g., abundance of text manipulation utilities
and direct interaction with the system, our experience at
CSCS has shown that maintaining in the long term a large
codebase of shell scripts with interdependencies can be quite
a tedious task.

Another interesting approach to the problem of regression
testing of large HPC systems is the JUBE framework from
Jülich Supercomputing Centre [2]. This framework targets
chiefly benchmarking rather than sanity checking of the
system and uses XML files for configuring new regression
tests. Among others, it offers sandboxing of a regression
test, statistical utilities for reporting the performance of the

benchmarks and a parameter “template” mechanism that
allows to run the same test multiple times with different
parameters. However, since it does not target specifically
sanity checking, it is not as straightforward to run the exact
same check with multiple programming environments. The
portability of a regression test across different systems is
not very easy either, since the only way to differentiate the
behavior of regression test is by masking in or out parts of
the checks using special XML tags. In fact, XML makes the
description of a regression test rather difficult to follow and
maintain, especially for more complex checks.

In CSCS we used to have a shell script based regression
suite that has been developed over the years for testing the
sanity of our systems. The key disadvantage of this suite
was similar to the other suites described above: the logic
of interacting with the system (e.g., job monitoring, result
checking etc.) was exposed to the regression tests. As a result
when the operations team started the migration to native
Slurm, we had to reimplement the new submission logic to
all the regression tests we had. The same had to be done
every time we discovered a bug. It was apparent that this
regression suite could not be maintained properly in the long
term. Besides, people of different teams were quite reluctant
to write new checks due to this complexity whenever they
discovered and fixed something in the system.

In this paper we describe REFRAME the new regression
framework we have developed in CSCS and have put in
production after the upgrade of Piz Daint at the end of last
year. When designing the new framework we have set three
major goals:

1) Productivity. The writer of a regression test should
focus only on the logical structure and requirements of
the test and should not need to deal with any of the low
level details of interacting with the system, e.g., how the
environment of the test is loaded, how the associated
job is created and has its status checked, how the output
parsing is performed etc.

2) Portability. Configuring the framework to support new
systems and system configurations should be easy and
should not affect the existing tests. Also, adding support
of a new system in a regression test should require
minimal adjustments.

3) Robustness and ease of use. The new framework must
be stable enough and easy to use by non-advanced
users. When the system needs to be returned to users
outside normal working hours the personnel in charge
should be able to run the regression suite and verify the
sanity of the system with a minimal involvement.

We have written the new framework entirely in Python
and followed a layered design that abstracts away the
system related details. An API for writing regression tests
is provided to the user at the highest level, allowing the
description of the requirements of the test. The framework

defines and implements a concrete pipeline that a regression
test goes through during its lifetime and the user is given
the opportunity to intervene between the different stages
and customize their behavior if needed. All the system
interaction mechanisms are implemented as backends and
are not exposed directly to the writer of the check. For
example, the exact same test could be run on a system
using either native Slurm or Slurm+ALPS or PBS+mpirun.
Similarly, the same test can run “as-is” on system partitions
configured differently. The writer of a regression test need
not also care about generating a job script, querying the
status of the associated job or managing the files of the
test. All of these are taken care of by the framework
without affecting the regression test. This not only makes a
regression test easier to write, but it increases its readability
as well, since the intent of the test is made clear right from
its high-level description.

To meet the requirement of robustness we have employed
a test-driven development process along with continuous
integration right from the beginning of the framework’s
development, so as to make sure that it is tested thoroughly
as it grows larger. As a matter of fact, the amount of unit
test code accompanying the framework almost matches the
amount of the framework’s code itself. Regarding the ease of
use we have tried to make the common case of invoking the
regression suite as simple as possible by selecting reasonable
defaults or by allowing to set default settings values per
system configuration.

The rest of the paper describes in detail the REFRAME
regression framework and is structured as follows: Section II
presents the pipeline of the regression and discuss in detail
the different phases a regression test goes through. Sec-
tion III presents the API for writing a regression test and
shows several real-life examples from the actual regression
tests running on CSCS’ systems. Section IV describes the re-
gression’s front-end and command-line interface. Section V
discusses the actual use case of CSCS for migrating to
the new framework and, finally, section VI summarizes and
concludes the paper.

II. THE REGRESSION PIPELINE

The backbone of the REFRAME regression framework is
the pipeline of the regression check. This is a set of well
defined phases that each regression test goes through during
its lifetime. Figure 1 depicts this pipeline in detail.

A regression test starts its life after it has been instantiated
by the framework. This is where all the basic information
of the test is set. At this point, although it is initialized, the
regression test is not yet “live”, meaning that it does not run
yet. The framework will then go over all the loaded and ini-
tialized checks (we will talk about the loading and selection
phases later), it will pick the next partition of the current
system and the next programming environment for testing
and will try to run the test. If the test supports the current

Pick next test

Supports system?
NO

Supports
environment?

YES

NO

Setup test Compile test Run test

Check sanity

Check performance

Cleanup test
resources

YES

Figure 1: The regression check pipeline.

system partition and the current programming environment,
it will be run and will go through all the following seven
phases: (a) setup, (b) compilation, (c) running, (d) sanity
checking, (e) performance checking and (f) cleanup. A test
could implement some of them as no-ops. As soon as the test
is finished, its resources are cleaned up and the regression’s
environment is restored. The regression will try to repeat the
same procedure on the same regression test using the next
programming environment until no further environments are
left to be tested. In the following we elaborate on each of
the individual phases of the lifetime of a regression test.

A. The initialization phase

Although this phase is not part of the regression check
pipeline as shown in Fig. 1, it is quite important, since
it sets up the definition of the regression test. It serves
as the “specification” of the check, where all the needed
information to run the test is set. A test could go through
the whole pipeline performing all of its work without the
need to override any of the pipeline stages. In fact, this is
the case for the majority of tests we have implemented for
CSCS production systems.

B. The setup phase

A regression test is instantiated once by the framework and
it is then reused several times for each of the system’s
partitions and their corresponding programming environ-
ments. This first phase of the regression pipeline serves the
purpose of preparing the test to run on the specified partition
and programming environment by performing a number of
operations described below:
(a) Setup and load the test’s environment: At this point

the environment of the current partition, the current

programming environment and any test’s specific en-
vironment will be loaded. For example, if the current
partition requires slurm, the current programming en-
vironment is PrgEnv-gnu and the test requires also
cudatoolkit, this phase will be equivalent to the
following:

module load slurm
module unload PrgEnv-cray
module load PrgEnv-gnu
module load cudatoolkit

Note that the framework automatically detects conflict-
ing modules and unloads them first. So the user need not
to care about the existing environment at all. He only
needs to specify what is needed by his test.

(b) Setup the test’s paths: Each regression test is associated
with a stage directory and an output directory. The stage
directory will be the working directory of the test and all
of its resources will be copied there before running. The
output directory is the directory where some important
output files of the test will be kept. By default these
are the generated job script file, the standard output and
standard error The user can also specify additional files
to be kept in the test’s specification. At this phase, all
these directories are created.

(c) Prepare a job for the test: At this point a job descriptor
will be created for the test, that wraps all the necessary
information for generating a job script for it. However,
no job script is generated yet. The job descriptor is an
abstraction of the job scheduler’s functionality relevant
to the regression framework. It is responsible for submit-
ting a job in a job queue and waiting for its completion.
Currently, the REFRAME framework supports three job
scheduler backends: (a) local, which is basically a
“pseudo-scheduler” that just spawns local OS processes,
(b) nativeslurm, which is the native Slurm [3] job
scheduler and (c) slurm+alps, which uses Slurm for
job submission, but Cray’s ALPS [4] for launching MPI
processes on the compute nodes.

C. The compilation phase

At this phase the source code associated with test is com-
piled with the current programming environment. Before
compiling, all the resources of the test are copied to its stage
directory and the framework changes into it. After finishing
the compilation, the framework returns to its original work-
ing directory.

D. The run phase

This phase comprises two subphases:
(a) Job launch: At this subphase a job script file for the

regression test is generated and submitted to the job
scheduler queue. If the job scheduler for the current
partition is the local one, a simple wrapper shell script

will be generated and will be launched as a local OS
process.

(b) Job wait: At this subphase the job (or local process)
launched in the previous subphase is waited for. This
phase is pretty basic: it just checks that the launched
job (or local process) has finished. No check is made of
whether the job or process has finished successfully or
not. This is the responsibility of the next pipeline stage.

Currently, these two subphases are performed back-to-back
making the REFRAME framework effectively serial, but in
the future we plan to support asynchronous execution of
regression tests.

E. The sanity checking phase

At this phase it is determined whether the check has finished
successfully or not. Although this decision is test-specific,
the REFRAME framework provides the tests with an easy
way for specifying complex patterns to check in the output
files. Multiple output files can be checked at the same time
for determining the final sanity result. Stateful parsing (e.g.,
aggregate operations such as average, min, max, etc.) is also
supported and implemented transparently to the user. We
will present in detail the output parsing mechanism of the
framework in Section III-E.

F. The performance checking phase

At this phase the performance of the regression test is
checked. The framework uses the same mechanism for
analyzing the output of the tests as in the sanity checking
phase. The only difference is that the user can now specify
reference values per system or system partition, as well as
threshold values for the performance. The framework will
take care of the output parsing and the matching of the
correct reference values.

G. The cleanup phase

This is the final stage of the regression pipeline and cleans up
the resources of the environment. Three steps are performed
in this phase:
(a) The interesting files of the test (job script, standard out-

put and standard error and any additional files specified
by the user) are copied to its output directory for later
inspection and bookkeeping,

(b) the stage directory is removed and
(c) the test’s environment is revoked.

At this point the regression’s environment is clean and
in its original state and the regression can continue by
either running the same test with a different programming
environment or moving to another test.

H. Types of regression tests

As mentioned earlier, a regression test may skip any of the
above pipeline stages. The REFRAME framework provides
three basic types of regression tests:

(a) Normal test: This is the typical test that goes through
all the phases of the pipeline.

(b) Run-only test: This test skips the compilation phase. This
is quite a common type of test, especially when you
want to test the functionality of installed software. Note
that in this test the copying of the resources to the stage
directory happens during the run phase and not during
the compilation phase, as is the case of a normal test.

(c) Compile-only test: This test a special test that skips com-
pletely the run phase. However it makes available the
standard output and standard error of the compilation,
so that their output can be parsed during the check sanity
phase in the same way that this happens for the other
type of tests.

III. WRITING A REGRESSION TEST

The regression pipeline described in the previous section
is implemented in a base class called RegressionTest,
from which all user regression tests must eventually in-
herit. There exist also base classes (inheriting also from
RegressionTest) that implement the special regression
test types described in Section II-H. A user test may inherit
from any of the base regression tests depending on the type
of check (normal, run-only or compile-only).

The initialization phase of a regression test is implemented
in the test’s constructor, i.e., the __init__() method
of the regression test class. The constructor of a user
regression test is only required to allow keyword arguments
to be passed to it. These are needed to initialize the base
RegressionTest. Of course, a user regression test may
accept any number of positional arguments that are specific
to the test and are used to control its construction. The fol-
lowing listing shows the boiler plate code for implementing
new regression tests classes:

class HelloTest(RegressionTest):
def __init__(self, **kwargs):

super().__init__(
'test_name',
os.path.dirname(__file__),

**kwargs)
test's specification

The base class’ constructor needs two positional arguments
that must be supplied by the user tests: (a) the name of
the test and (b) its prefix. The prefix of a regression test
is normally the directory it resides in and it will be used
in later phases for resolving relative paths for accessing the
test’s resources.

The rest of the regression pipeline stages are implemented
as different methods by the base class RegressionTest.
Normally, a user test does not need to override them,
unless it needs to modify the default behavior. Even in
this case though, a user test need not care about any of
the phase implementation details, since it can delegate the

actual implementation to the base class after or before its
intervention. We will show several examples for modifying
the default behavior of the pipeline phases in this section.
A list of the actual RegressionTest’s methods that
implement the different pipeline stages follows:

• setup(self,system,environ,**job_opts):
Implements the setup phase. The system and
environ arguments refer to the current system
partition and environment that the regression test
will run. The job_opts arguments will be passed
through the job scheduler backend. This is used by
the front-end in special invocation of the regression
suite, e.g., submit all regression test jobs in a specific
reservation.

• compile(self): Implements the compilation phase.
• run(self) and wait(self): These two imple-

ment the run phase. The first call is asynchronous;
it returns as soon as the associated job or process is
submitted or created, respectively.

• check_sanity(self): Implements the sanity
checking phase.

• check_performance(self): Implements the per-
formance checking phase.

• cleanup(self, remove_files=False):
Cleans up the regression tests resources and unloads
its environment. The remove_files flag controls
whether the stage directory of the regression test
should be removed or not.

As we shall see later in this section, user regression tests
that override any of these methods usually do a minimal
setup (e.g., setup compilation flags, adapt their internal state
based on the current programming environment) and call
the base class’ corresponding method passing through all
the arguments.

The following listing shows a complete user regression
test that compiles a “Hello, World!” C program for different
programming environments:

import os

from reframe.core.checks import \
RegressionTest

class HelloWorldTest(RegressionTest):
def __init__(self, **kwargs):

super().__init__(
'hello_world',
os.path.dirname(__file__),

**kwargs)
self.descr = 'Hello World C Test'
self.sourcepath = 'hello.c'
self.valid_systems = [

'daint:gpu', 'daint:mc']
self.valid_prog_environs = [

'PrgEnv-cray',
'PrgEnv-gnu',
'PrgEnv-intel',
'PrgEnv-pgi']

self.sanity_patterns = {
'-': {'Hello, World\!': []} }

def _get_checks(**kwargs):
return [HelloWorldTest(**kwargs)]

After the base class’ constructor is called with the boiler
plate code we showed before, the specification of the test
needs to be set. The RegressionTest base class makes
available a set of member variables that can be used to set up
the test. All these variables are dynamically type checked; if
they are assigned a value of different type, a runtime error
will be raised and the regression test will be skipped from
execution. Due to space limitations, we will not go into
all of the RegressionTest’s member variables. We will
only discuss the most important ones that come up in our
examples.

The “Hello, World!” example shown above shows a mini-
mal set of variables that needs to be set for describing a test.
descr is an optional arbitrary textual description of the test
that defaults to the test’s name if not set. sourcepath is a
path to either a source file or a source directory. By default,
source paths are resolved against '<testprefix>/src',
where testprefix is stored in the self.prefix mem-
ber variable. If sourcepath refers to a file, it will
be compiled picking the correct compiler based on its
extension (C/C++/Fortran/CUDA). If it refers to a direc-
tory, REFRAME will invoke make inside that directory.
valid_systems and valid_prog_environs are the
variables that basically enable a test to run on certain systems
and programming environments. They are both simple list
of names. The names need not necessarily correspond to
a configured system/partition or programming environment,
in which case the test will be ignored (see Section IV-E
on how a new systems and programming environments
are configured). The system name specification follows the
syntax <sysname>[:<partname>], i.e., you can either
a specify a whole system or a specific partition in that
system. In our example, this test will run on both the “gpu”
and “mc” partitions of Daint. If we specified simply “daint”
in our example, then the above test would be eligible to run
on any configured partition for that system. Next, you need
to define the sanity_patterns variable, which tells the
framework what to look for in the standard output of the test
to verify the sanity of the check. We will cover the output
parsing capabilities of REFRAME in detail in Section III-E.

Finally, each regression test file must provide the spe-
cial method _get_checks(), which instantiates the user
tests of the file. This method is the entry point of the
framework into the user tests and should return a list

of RegressionTest instances. From the framework’s
point of view, a regression test file is simply a Python
module file that is loaded by the framework and has its
_get_checks() method called. This allows for maxi-
mum flexibility in writing regression tests, since a user can
create his own hierarchies of tests and even test factories for
generating sequences of related tests. In fact, we have used
this capability extensively while developing the Piz Daint’s
regression tests and has allowed us to considerably reduce
code duplication and maintenance costs of regression tests.

A. Setting up job submission

REFRAME aims to be job scheduler agnostic and to sup-
port different job options using a unified interface. To the
regression check developer, the interface is manifested by
a simple collection of member variables defined inside the
regression check. These variables are converted internally by
the framework to express the appropriate job options for a
given scheduler. Table I shows a listing of these variables and
their interpretation in SLURM. Normally, these variables
are set during the initialization phase of a regression test.
Since the system that the framework is running on is already
known during the initialization phase of the regression test, it
is possible to customize these variables based on the current
system without the need of overwriting any method. An
example is shown in the following listing:

def __init__(self, **kwargs):
...
if self.current_system.name == 'A':

self.num_tasks = 72
else:

self.num_tasks = 192

An advantage of writing regression tests in a high-level
language, such as Python, is that one can take advantage of
features not present in classical shell scripting. For example,
one can create groups of related tests that share common
characteristics and/or functionality by implementing them in
a base class, from which all the related concrete tests inherit.
This eliminates unnecessary code duplication and reduces
significantly the maintenance cost. An example could be
the implementation of system acceptance tests, where longer
wall clock times may be required compared to the regular
everyday production tests. For such tests, one could define a
base class, like in the example below, that would implement
the longer wall clock time feature instead of modifying each
job individually:

class AcceptanceTest(RegressionTest):
def __init__(self, **kwargs):

...
self.time_limit = (24, 0, 0)

class HPLTest(AcceptanceTest):
...

Even though the set of variables described on Table I
are enough to accommodate most of the common regression
scenarios, some regression tests, especially those related to
a scheduler, may require additional job options. Supporting
all job options from all schedulers is a virtually impossible
task. Therefore REFRAME allows the definition of custom
job options. These options can be appended to the test’s
job descriptor during the test’s setup phase. In the following
example, a memory limit is passed explicitly to the backend
scheduler, here SLURM:

class MyTest(RegressionTest):
...
def setup(self, system,

environ, **job_opts):
super().setup(system,

environ,

**job_opts)
self.job.options += [

'--mem=120000']

Note that the job option1 is appended after the call to the
superclass’ setup() method, since this is responsible for
initializing the job descriptor. Keep in mind that adding
custom job options tights the regression test to the scheduler
making it less portable, unless proper action is taken. Of
course, if there is no need to support multiple schedulers,
adding any job option becomes trivial as shown in the
example above.

B. Setting up the environment

REFRAME allows the customization of the environment of
the regression tests. This can be achieved by loading and
unloading environment modules and by defining environ-
ment variables. Every regression test may define its required
modules using the self.modules variable.

self.modules = ['cudatoolkit',
'cray-libsci_acc',
'fftw/3.3.4.10']

These modules will be loaded during the test’s setup phase
after the programming environment and any other environ-
ment associated to the current system partition are loaded.
Recall from section II-B that the test’s environment setup is
a three-step process. The modules associated to the current
system partition are loaded first, followed by the modules as-
sociated to the programming environment and, finally, the re-
gression test’s modules as described in its self.modules
variable. If there is any conflict between the listed modules
and the currently loaded modules, REFRAME will automat-
ically unload the conflicting ones. The same sequence of
module loads and unloads performed during the setup phase
is generated in the job script that is submitted to the job

1This is not to be confused with the job_opts argument, which is
meant for controlling the job submission from the front-end.

Table I: Regression checks’ member variables related to job options and their SLURM scheduler associated options

RegressionTest’s member variable Interpreted SLURM option
self.time_limit = (10, 20, 30) #SBATCH --time=10:20:30
self.use_multithreading = True #SBATCH --hint=multithread
self.use_multithreading = False #SBATCH --hint=nomultithread
self.exclusive = False #SBATCH --exclusive
self.num_tasks=72 #SBATCH --ntasks=72
self.num_tasks_per_node=36 #SBATCH --ntasks-per-node=36
self.num_cpus_per_task=2 #SBATCH --cpus-per-task=2
self.num_tasks_per_core=2 #SBATCH --ntasks-per-core=2
self.num_tasks_per_socket=36 #SBATCH --ntasks-per-socket=36

scheduler. Note that programming environments modules
need not be listed in the self.modules variable, since
they are defined inside REFRAME’s configuration file and
the framework takes automatically care of their loading
during the test’s setup phase.

Since the actual loading of environment modules hap-
pens during the setup phase of the regression test, it is
important to define the self.modules list before calling
the RegressionTest’s setup() method. The common
scenario is to define the list of modules in the initialization
phase, but on certain occasions, the modules of a test might
need to change depending on the programming environment.
In these situations, it is better to create a mapping between
the module name and the programming environment and
override the setup() method to set the self.modules
according to the current programming environment. Follow-
ing is an actual example from CSCS’ Score-P regression
tests [5]:

def __init__(self, **kwargs):
...
self.valid_prog_environs =

['PrgEnv-cray',
'PrgEnv-gnu',
'PrgEnv-intel',
'PrgEnv-pgi']

self.scorep_modules = {
'PrgEnv-cray' :

'Score-P/3.0-CrayCCE-2016.11',
'PrgEnv-gnu' :

'Score-P/3.0-CrayGNU-2016.11',
'PrgEnv-intel' :

'Score-P/3.0-CrayIntel-2016.11',
'PrgEnv-pgi' :

'Score-P/3.0-CrayPGI-2016.11' }

def setup(self, system,
environ, **job_opts):

self.modules = [

self.scorep_modules[environ.name]]
super().setup(system, environ,

**job_opts)

Of course, one could just differentiate inside the setup()
method, but the approach shown above is cleaner and moves
more information inside the test’s specification.

In addition to custom modules, users can also define
environment variables for their regression tests. In this case,
the variable self.variables is used, which is as a
dictionary where the keys are the names of the environment
variables and the values match the environment variables’
values:

self.variables = { 'VAR' : 'value' }

This dictionary can be used, for example, to define the value
of the OMP_NUM_THREADS environment variable. In order
to set it to the number of cpus per tasks of the regression
test, one can set it as follows:

self.variables = {
'OMP_NUM_THREADS' :
str(self.num_cpus_per_task)

}

C. Customising the compilation phase

REFRAME supports the compilation of the source code
associated with the test. As discussed in the hello world
example, if the provided source code is a single source file
(defined by the member variable self.sourcepath), the
language will be detected from its extension and the file will
be compiled. By default, the source files should be placed
inside a special folder named src/ inside the regression
test’s folder. In the case of a single source file, the name
of the generated executable is the name of the regression
test. REFRAME passes no flags to the programming environ-
ment’s compiler; it is left to the writer of a regression test
to specify any if needed. This can be achieved by overriding
the compile() method as shown in the example below:

def compile(self):

self.current_environ.cflags = '-O3'
self.current_environ.cxxflags = '-O3'
self.current_environ.fflags = '-O3'
super().compile()

Note that it is not possible to specify the compilation flags
during the initialization phase of the test, since the current
programming environment is not set yet.

If the compilation flags depend on the programming en-
vironment, like for example the OpenMP flags for different
compilers, the same trick as with the self.modules
described above can be used, by defining the flag mapping
during the initialization phase and using it during the com-
pilation phase:

def __init__(self, **kwargs):
...
self.prgenv_flags = {

'PrgEnv-cray' : '-homp',
'PrgEnv-gnu' : '-fopenmp',
'PrgEnv-intel' : '-openmp',
'PrgEnv-pgi' : '-mp' }

def compile(self):
flag = self.prgenv_flags[

self.current_environ.name]
self.current_environ.cflags = flag
self.current_environ.cxxflags = flag
self.current_environ.fflags = flag
super().compile()

If the test comprises multiple source files, a Makefile
must be provided and self.sourcepath must refer to
a directory (this is the default behavior if not specified at
all). REFRAME will issue the make command inside the
source directory. Note that in this case it is not possible
for REFRAME to guess the executable’s name, so this must
be provided explicitly through the self.executable
variable. Additional options can be passed to the make
command and even non-standard makefiles may be used as
it is demonstrated in the example below:

def __init__(self, **kwargs):
...
self.executable = './executable'

def compile(self):
self.current_environ.cflags = '-O3'
super().compile(makefile='build.mk',
options="PREP='scorep'")

The generated compilation command in this case will be

make -C <stagedir> -f build.mk \
PREP='scorep' CC='cc' CXX='CC' \
FC='ftn' CFLAGS='' \CXXFLAGS='' \
FFLAGS='' LDFLAGS=''

Finally, pre- and post-compilation steps can be added
through special variables (e.g., a configure step may
be needed before compilation), however, REFRAME is not
designed to be an automatic compilation and deployment
tool.

D. Customising the run of a test
REFRAME offers several other options for customizing the
behavior of regression tests. Due to space limitations, we
only list some of them here. For a complete list, the reader
is referred to the online documentation.

1) Executable options: REFRAME allows a list of options
to be passed to regression check executable.

def __init__(self, **kwargs):
...
self.executable = './a.out'
self.executable_opts = [

'-i inputfile',
'-o outputfile']

These options are passed to the executable, which will be
invoked but the scheduler launcher. In the above example,
the executable will be launched as follows with the SLURM
scheduler:

srun ./a.out -i inputfile -o outputfile

2) Pre- and post-run commands: The framework allows
the execution of additional commands before and/or after
the scheduler launcher invocation. This can be useful for
invoking pre- or post-processing tools. We use this feature
in our Score-P tests, where we need to print out and check
the produced traces:

def setup(self, system, environ,

**job_opts):
super().setup(system, environ,

**job_opts)
self.job.pre_run = [

'ulimit -s unlimited']
...
self.job.post_run = [

'otf2-print traces.otf2']

3) Changing the regression test resources path: RE-
FRAME allows individual regressions tests to define a custom
folder for their resources, different than the default src/
described in Section IV-D. This is especially important for
applications with a large number of input files or large input
files, where these input files may need to be saved in a
different filesystem due to several reasons, such as filesystem
size, I/O performance, network configuration, backup policy
etc. The location of this folder can be changed be redefining
the self.sourcesdir variable:

def __init__(self, **kwargs):
...
self.sourcesdir = '/apps/inputs/'

4) Launcher wrappers: In some cases, it is necessary to
wrap the scheduler launcher call with another program. This
is the typical case with debuggers of distributed programs,
e.g., ddt [6]. This can be achieved in REFRAME by chang-
ing the job launcher using the special LauncherWrapper
object. This object wraps a launcher with custom command:

def __init__(self, **kwargs):
...
self.ddt_options = '--offline'

def setup(self, system,
environ, **job_opts):

super().setup(system,
environ, **job_opts)

self.job.launcher =
LauncherWrapper(

self.job.launcher,
'ddt', self.ddt_options)

Note that this test remains portable across different job
launchers. If it runs on a system with native SLURM it will
be translated to

ddt --offline srun ...

whereas if it run on a system with ALPS it will be translated
to

ddt --offline aprun ...

E. Output parsing and performance assessment

REFRAME provides a powerful mechanism for describing
the patterns to look for inside the output and/or perfor-
mance file of a test without the need to override the
check_sanity() or check_performance() meth-
ods. It allows you to search for multiple different patterns
in different files and also associate callback functions for
interpreting the matched values and for deciding on the
validity of the match. Both the sanity_patterns and
perf_patterns follow the exact same syntax and the
framework’s parsing algorithm is the same as well; the only
difference is that a reference value is looked for in the
case of performance matching. In the following, we will use
sanity_patterns in our examples and we will elaborate
only on the additional traits of the perf_patterns when
necessary.

The syntax of the sanity_patterns is the following:

self.sanity_patterns = {
<filepatt> : {

<pattern_with_tags> : [
(

<tag>,
<conv>,
<action>

),

rest of tags in pattern
],
more patterns to look for in file

},
more files

}

The filepatt is any valid shell file pattern
but it can also take special values for denoting
standard output and error: (a) '&1' or '-' for
standard output and (b) '&2' for standard error. The
pattern_with_tags is a Python regular expression
with named groups. For example, the regular expression
'(?P<lineno>\d+): result: (?P<result>\S+)'
matches a line starting with an integer number followed
by ': result: ', followed by a non-whitespace string.
The integer number is stored in match group named
lineno and the second in a group named result.
These group names will be used as tags by the framework
to invoke different actions on each match. The regular
expression pattern in the sanity_patterns’ syntax is
followed by a list of tuples that associate a tag with a
conversion function (conv) and an action to be taken. For
each of the tags of the matched pattern, the framework
will call action(conv(tagvalue), reference).
The reference is set to None for sanity patterns checking,
but for performance patterns it is looked up in a special
dictionary of reference values (we will discuss this later in
this section). The action callable must return a boolean
denoting whether the tag should be actually considered as
matched or not.

If you are not interested in associating actions with tags,
you can place an empty list instead. In that case, a named
group in the regular expression pattern is not needed either,
as is the case of the “Hello, World” example, where the
parsing mechanism behaves like a simple grep command
invocation:

self.sanity_patterns = {
'-' : { 'Hello, World\!' : [] }

}

To better support stateful parsing (see below), REFRAME
also define a special regex pattern ('\e') that matches
the end-of-file. This pattern can only be associated with a
callback function taking no arguments, which will be called
after the processing of the file has finished.

Figure 2 shows general concept of the algorithm used
by the framework for matching the sanity and performance
patterns. It starts by expanding the file patterns inside
sanity_patterns, and for each file it tries to match all
the regex patterns associated with it. As soon as a pattern is
matched, it is marked and every of its associated tag values
is converted and passed to the action callback along with
its corresponding reference value (or just None for sanity

More file patterns?

Expand file pattern

More files?

Scan next line

Pattern matched?

Tag list empty?

Match pattern

action(conv(tag), ref)

Is tag valid?

More patterns?

All patterns and
tags matched?

Mark pattern

Mark tag

Success

Failure

Pattern matching

Tag matching

File iteration

YES

NO

YES

NO

YES

NO

YES

NO

NO

YES

YES

NO

YES

NO

eof_callback()
succeeded?

Failure

YES

NO

Figure 2: The regression framework’s algorithm for scanning
sanity and performance patterns in the output of regression
tests. The algorithm here is a bit simplified, since it does
not show the resolution of performance references.

checking). If the action callback returns True, then the tag
is marked as matched. The process succeeds if all patterns
and all tags of every file have been matched at least once
and the end-of-file callback, if it has been provided, returns
also True.

A more complex sanity_patterns example is shown
below:

self.sanity_patterns = {
'-' : {

'final result:\s+(?P<res>\d+\.?\d*)':
[

('res', float,
lambda value, **kwargs: \

standard_threshold(
value, (1., -1e-5, 1e-5)))

],
}

}

This is an excerpt from an actual OpenACC regression test
from our suite. The test program computes an axpy product
and prints final result: <number>. Since the output
of different compilers may differ slightly, we need a float
comparison. Achieving that with the sanity_patterns
is quite easy. We tag the matched value with res and
we then associate an action with this tag. The action is a
simple lambda function that checks if the value of the tag is

1.0±10−5. standard_threshold is a function provided
by the framework that checks if a value is between some
tolerance limits. Note that inside the lambda function value
is already converted to a float number by the conversion
callable float.

1) Tag resolution and reference lookup: The only differ-
ence between sanity_patterns and perf_patterns
is that for the latter the framework looks up the tags in
a special dictionary that holds reference values and picks
up the correct one, whereas for sanity_patterns, the
reference value is always set to None. A representative
reference value dictionary is shown below:

self.reference = {
'dom:gpu' : {

'perf' : (258, None, 0.15)
},
'dom:mc' : {

'perf' : (340, None, 0.15)
},
'daint:gpu' : {

'perf' : (130, None, 0.15)
},
'daint:mc' : {

'perf' : (135, None, 0.15)
}

}

This is a real example of the reference value dictionary
for our CP2K [7] regression test. A reference value dic-
tionary consists of sub-dictionaries per system, which in
turn map tags to reference values. A reference value can
be anything that the action callback function could un-
derstand. In this case the reference value required by the
standard_threshold function is a 3-element tuple
containing the actual reference value and lower and upper
thresholds expressed in decimal fractions.

Although reference value dictionaries behave like normal
Python dictionaries, they have an additional trait that makes
them quite flexible: they allow you to define scopes. We call
such dictionaries “scoped dictionaries.” Currently, they are
only used for holding the reference values, but we plan to
expand their use in other API variables. A scoped dictionary
is a two-level dictionary, where the higher level defines
the scope (or namespace) and the lower level holds the
actual key/value mappings for a scope. Scopes are defined
by the outer level dictionary keys, which have the form
's1:s2:...' or '*' for denoting the global scope.
When you request a key from a scoped dictionary, you
can prefix it with a scope, e.g., 'daint:mc:perf'. The
last component of the fully qualified name is always the
key to be looked up, here 'perf'. This key will be first
looked up in the deepest scope, and if not found it will be
looked up recursively in the parent scopes, until the global
scope is reached. If not found even there, a KeyError will

be raised. The reference value dictionary uses two scopes:
the system and the system partition. In the above example,
we provide different reference values for different system
partitions, but one could provide a single reference value
per system. Although the global scope '*' seems not to
offer anything in a reference value dictionary (what would
be the need to have a global reference for any system?), it is
quite useful when we need stateful parsing for performance
patterns.

2) Stateful parsing of output: It is often the case with
the output of a regression test that you cannot judge its
outcome by just looking for single occurrences of patterns
in the output file. Consider the case that you have to count
the lines of the output before deciding about success of
the test or not. You could also only care about the n-
th occurrence of a pattern, in which case you would call
the standard_threshold function for checking the
performance outcome. In such cases, you need to keep a
state of the parsing process and defer the final decision
until all the required information is gathered. In a shell
script world, you would achieve this by piping the grep
output to an awk program that would take care of the state
bookkeeping.

Thanks to the callback mechanism of the REFRAME’s
output parsing facility, you can define your own custom
output parser that would hold the state of the parsing
procedure. The framework provides two entry points to
any custom parser: (a) the action callback function and
(b) the end-of-file callback The action callback must be a
function accepting at least two keyword arguments (value
and reference), whereas the eof callback need not have
any named keyword argument. Below is a concrete example
of how you would count exactly 10 occurrences of the
'Hello, World!' pattern:

class Counter:
def __init__(self, max_patt):

self.max_patt = max_patt
self.count = 0

def match_line(self, value,
reference, **kwargs):

self.count += 1
return True

def match_eof(self, **kwargs):
return self.count == max_patt

parser = Counter(10)
self.sanity_patterns = {

'-' : {
'(?P<line>Hello, World\!)' : [

('line',
str, parser.match_line)

]
},
'\e' : parser.match_eof

}

Note that it is the eof callback that actually decides on the
final outcome of the sanity checking in this case. If you
wouldn’t need to count the exact number of occurrences,
but just a minimum number, you could then omit completely
the match_eof() function and have the match_line()
just return self.count >= self.max_patt.

The ability that the framework offers you to leverage
the callback mechanism of sanity and performance out-
put checking in order to perform stateful parsing is quite
important, since it abstracts away the “boring” details of
managing the output files, thus adding to the clarity of the
regression test description. Additionally, you may not even
need to implement your own parser, since the framework
provides a set of predefined parsers for common aggregate
and reduction operations. A parser is an object carrying
a state and a callback function that will be called if a
match is detected. The default callback function is always
returning True. The parsers offer a simple API that can
be used as an action callback in sanity_patterns or
perf_patterns:

• on(**kwargs): Switches on the parser. By default,
all parsers are in the “off” state, meaning that their
matching functions will always return False.

• off(**kwargs): Switches off the parser.
• match(value, reference, **kwargs): This

is the function that performs the state update and is
to be called when a match is found. The value
is the value of the match and reference is the
reference value for the current system (or None for
sanity checking). It returns True if the match is valid.
All parsers determine the validity of a match in two
stages. First, they check against their state (e.g., “is this
the fifth match?”) and if this check is successful, then
they call their callback function to finally determine
the validity of the match. This allows validity checks
of the form “the average performance of the first 100
steps must be within 10% of the reference value for this
system.”

• match_eof(**kwargs): This function is to be
called as an eof handler. Again, here, the validity of
the match is checked in two stages as in the match()
method. This method clears also parser’s state before
returning.

• clear(**kwargs): Clears the parser’s state.
REFRAME offers the following parsers to the users:

• StatefulParser: This parser is very basic, storing
only an on/off state. Its match() method simply
delegates the decision to the parser’s callback function,
if the parser is on.

• SingleOccurenceParser This parser checks for
the nth occurence of a pattern and calls its callback
function if it’s found.

• CounterParser: This parser counts the number of
occurrences of a pattern and calls its callback function
if a certain count is met. The parser can be configured
to either count a minimum number of occurrences or
an exact number.

• UniqueOccurrencesParser: This parser counts
the unique occurrences of a pattern and calls its call-
back function if a certain count is met.

• MaxParser: This parser applies its callback function
to the maximum value of its matched patterns.

• MinParser: This parser applies its callback function
to the minimum value of its matched patterns.

• SumParser: This parser applies its callback function
to the sum of the values of its matched patterns.

• AverageParser: This parser applies its callback
function to the average of the values of its matched
patterns.

The following listing shows an example usage of the
AverageParser from the actual NAMD check used in
CSCS’ regression test suite for Piz Daint:

self.parser = AverageParser(
standard_threshold)

self.parser.on()
self.perf_patterns = {

'-' : {
'long_pattern (?P<days_ns>\S+) '
'days/ns' : [

('days_ns', float,
self.parser.match)

],
'\e' : self.parser.match_eof,

}
}

F. Check tagging

To facilitate the organization of regression tests inside a test
suite, REFRAME allows to assign tags to regression tests.
You can later select specific tests to run based on their tags.

self.tags = { 'production', 'gpu' }

It is also possible to associate a list of persons that are
responsible for maintaining a regression test. This list will
be printed in case of a test failure.

self.maintainers = ['bob@a.com',
'john@a.com']

IV. RUNNING YOUR TESTS

Before going into any details about the frameworks front-
end and command-line interface, the simplest way to invoke
REFRAME is the following:

./bin/reframe -c /path/to/checks -R --run

This will search recursively for test files in
/path/to/checks and will start running them on
the current system.

The REFRAME’s front-end goes through three phases:
(a) test discovery, (b) test selection and (c) action. In the
following, we will elaborate on these phases and the key
command-line options controlling them. For a complete
reference, the user is referred to the online documentation.

A. Regression test discovery

When REFRAME is invoked, it tries to locate regres-
sion checks in a predefined path. The default path is
<install_prefix>/checks/ and it is searched recur-
sively. As mentioned previously, in REFRAME regression
tests are essentially Python source files that provide the
special _get_checks() function, which returns the actual
regression test instances. The front-end loads the Python
source files and tries to call this special function for each of
them; if this function cannot be found, the source file will
be ignored. At the end of this phase the front-end will have
instantiated all the checks found in the path. The default
check search path can be overriden by specifying the -c
or --checkpath options. Note that by default REFRAME
does not descend recursively into directories specified with
the -c option, so it is necessary to explicitly request that
by using the -R or --recurse options, as we did in the
example above. Multiple -c options can also be chained to
construct a custom search path. Finally, -c option accepts
also regular files. This is very useful when implementing
new regression checks, since it allows to load and run only
the check of interest:

./bin/reframe -c /path/to/my/check.py --run

B. Regression test selection

After the regression tests are discovered and loaded, a finer
selection can be applied in this phase. Currently, regression
tests can be selected in one of the following ways:

• By programming environment using the -p or
--prgenv option,

• by name using the -n or --name options and
• by tag using the -t or --tag options

All these options can be combined and chained together.
For example, the following will list all tests supporting
PrgEnv-gnu and are tagged with foo and bar:

./bin/reframe -p PrgEnv-gnu -t foo -t bar -l

Currently, the selection mechanism is not 100% flexible,
since the selection criteria cannot be negated or OR’ed
together. However, it has already proved useful enough in
our use case, since it allowed us to categorize our tests in
more than one dimensions.

C. Regression test actions

At this last phase the front-end takes an action on the
previously loaded and selected regression tests. There are
two available actions supported by REFRAME: (a) listing
of the selected tests and (b) execution of the selected tests.
An action is always required to be specified by the user,
otherwise REFRAME issues an error.

The list action is determined by the -l or --list
options. It will simply produce a listing of the previously
selected checks showing the test name, its description, its
tags and its list of maintainers.

The execution action is determined by the -r or --run
options. This will run all the selected regression tests with
each test going through the regression pipeline described
in Section II. There are several options controlling the
execution of the regression test that are beyond the scope of
this paper. The reader is referred to the online documentation
of REFRAME for more information.

D. Organizing the regression tests

REFRAME allows the users to organize their regression tests
in any way that is the most convenient for their needs. The
only soft requirement imposed by the framework is that a
src/ folder should be present at the same level as the test’s
source file2.

Users can group together related tests in a common
directory sharing the same src/ folder as in the foobar
family of tests in the following example. This sharing can
eliminate duplication at the level of regression test resources,
which can prove beneficial in maintaining a large regression
test suite. For run-only regression tests the src/ directory
can be empty or contain other resources relative to the test,
e.g., input files. The following directory structure visualizes
the organization concepts described:

mychecks/
compile/

helloworld/
helloworld.py
src/

helloworld.c
foobar/

bar.py
foo.py
src/

bar.c
foo.c

apps/
prog1/

src/
prog1.py

2This is not a hard requirement, it is just the default behavior. The users
may override this by redefining the self.sourcesdir variable in their
tests.

prog2/
src/

input.txt
prog2.py

E. Configuring a new site

REFRAME provides an easy and flexible way to configure
new systems and new programming environments. As soon
as you have configured a new system with its program-
ming environments, adapting an existing regression test
could be as easy as just adding the system’s name in
the valid_systems list and its associated programming
environments in the valid_prog_environs list. Due
to space limitations, we will not provide here a detailed
description of the REFRAME’s configuration (the reader is
referred to the online documentation), but we are going to
highlight the capabilities of the configuration mechanism.

From the regression’s point of view each system consists
of a set of logical partitions. These partitions need not neces-
sarily correspond to real scheduler partitions. For example,
Daint comprises three logical partitions: the login nodes
(named login), the hybrid nodes (named gpu) and the
multicore nodes (named mc), but these do not correspond
to actual Slurm partitions. Logical partitions may even use
different job schedulers. An obvious example is the login
partition that uses the local scheduler, since regression
tests for login nodes are meant to run locally. A logical
partition may also be associated with a job scheduler option
that enables access to it. For example, on Piz Daint the
hybrid and multicore nodes are obtained through Slurm
constraints using the --constraint option. On other
systems the logical partitions may be mapped 1–1 to real
scheduler partitions, in which case the --partition op-
tion of Slurm would be used. You can associate also modules
and environment variables with logical partitions. These
modules will always be loaded and environment variables
will be set before a regression test runs on that partition. For
example, on Piz Daint, you have to load a specific module on
each partition, which makes available an optimized software
stack for the nodes of the partition. Finally, a partition is
associated with a list of (programming) environments to test,
e.g., PrgEnv-cray, PrgEnv-gnu etc. These are defined
inside a scoped dictionary (see Section III-E1) keyed on
the system or system partition. This allows you to define
programming environments for a specific system only or
override environment definitions. For example, on one of
our systems we needed to override the default definition
of PrgEnv-gnu to use mpicc, mpicxx and mpif90 as
the compiler wrappers. The nice trait with this is that the
regression tests supporting PrgEnv-gnu do not need to
change, even if the compiler wrappers change.

F. Regression test failures and framework errors

Each regression test is run in a sandbox that isolates it from
the framework’s environment. More specifically, a regression
test runs within its own environment and all of its resources
(sources, input/output files etc.) are copied to a temporary
stage directory. If the regression test is successful, its stage
directory is wiped out and only a set of interesting files
are archived for a future reference. If the regression test
fails, the stage directory remains untouched, so that the user
can manually inspect and reproduce the error. Inside the
stage directory the user can find the exact (job) shell script
that was automatically generated for running the regression
test. To reproduce the error the user can simply submit or
run the generated script, since all the necessary information
of the test is inside this script (job scheduler options, test
environment setup etc.) This is quite useful for debugging
regression tests, since you need not go through the whole
regression pipeline every time.

A regression test may not only be due to a problem in
the system or its configuration, but it could also fail due to
a programming error in its own code. Although such errors
are usually detected early enough during the initialization
phase of the test, there are still cases that a test may fail
due to a programming error later on, while the regression
suite is running. In such cases, we don’t want the whole
regression suite to abort just because of a programming
error in a regression test. For that reason, almost all errors
raised during the execution of a regression test are treated
as non-fatal: the test is marked as failed and the framework
continues with the execution of the next test.

V. USE CASES

The REFRAME framework has been put into production
with the upgrade of the Piz Daint system in early December
2016. We have two large sets of regression tests: (a) pro-
duction tests and (b) maintenance tests. We use tags (see
Section III-F) to mark these categories and a regression test
may belong to both of them. Production tests are run daily
to monitor the sanity of the system and its performance.
All performance tests log their performance values and we
use Grafana [8] to graphically monitor the performance of
certain applications and benchmarks over time.

The set of production regression tests comprises 104
individual tests. Some of them are eligible to run on both the
multicore and hybrid partitions, whereas others are meant to
run only on the login nodes. Depending on the test, multiple
programming environments might be tried. In total, we run
437 test cases from 157 regression tests on all the system
partitions. Table II summarizes the production regression
tests.

The set of maintenance regression tests is much more
limited, since we want to decrease the downtime of the
system. The regression suite runs at the beginning of the
maintenance session and just before returning the machine

Table II: Regression tests running on Piz Daint.

Type Partition #Tests #Test cases Total

Production
Login 15 24

437Multicore 61 190
Hybrid 81 223

Maintenance
Login 2 2

38Multicore 7 7
Hybrid 19 19

to the users, so that we can ensure that the user experience is
at least at the level before the system was taken down. The
maintenance set of tests comprises application performance
tests, some GPU library performance checks, Slurm checks
and some POSIX filesystem checks. The total runtime of
the maintenance regression suite for all the partitions is
approximately 20 minutes.

We are now porting the regression suite to the MeteoSwiss
production system Piz Kesch. Configuring this system for
REFRAME was trivial: we have just added a new system
entry in the framework’s configuration file describing the
different partitions and redefined the PrgEnv-gnu envi-
ronment to use different compiler wrappers. Porting the
regression tests of interest is also a straightforward process.
In most of the cases, adding just the corresponding system
partitions to the valid_systems variables and adjusting
accordingly the valid_prog_environs is enough.

For demonstration purposes we have also ported the
framework to Cray’s TDS Swan cluster. Of course, since
REFRAME does not offer a Torque backend yet, we could
not run any submission tests, but the rest of the framework’s
unit tests have all passed successfully. Here is the configu-
ration entry for the Swan’s login nodes:

'swan' : {
'descr' : 'Cray Swan TDS',
'hostnames' : ['swan'],
'partitions' : {

'login' : {
'scheduler' : 'local',
'environs' : [

'PrgEnv-cray',
'PrgEnv-gnu',
'PrgEnv-intel',
'PrgEnv-pgi'

],
'descr' : 'Login nodes'

}
}

}

A. Overhead of maintaining the regression tests

To better understand the difference in maintenance burden
of the REFRAME framework compared to our previous re-

Table III: Source code line count comparison of REFRAME
framework vs. CSCS’ old solution.

Component Old framework REFRAME

Core N/A 3660 loc
Front-end 1038 loc 958 loc
Regression tests 14635 loc 2985 loc
Avg. regression file size 179 loc 93 loc
Avg. regression test size 179 loc 25 loc

gression suite, Tab. III summarizes the total amount of code
of different components. It is obvious that the difference in
the amount of code needed to be written for the regression
tests is tremendous. From a total of almost 15K loc of the
former solution, the regression tests code has gone down
to less than 3K loc, covering even more aspects of system
behavior. Averaged over 32 total files implementing our new
regression tests, it gives an average of 93 loc per regression
test file. However, as discussed in previous sections, the
framework offers you the possibility to create factories of
tests, so that a single file could basically generate a multitude
of actual regression tests. Given an absolute total of 122 tests
generated, the effective number of loc per test is only 25!

Separating the logical description of a regression test from
all the unnecessary implementation contributes significantly
in the ease of writing and maintaining new regression tests.
You can see from Tab. III how the implementation details
were spread out across all the regression tests in the past. The
REFRAME framework really focuses on abstracting away all
the gory details from the regression test description, hence
letting the user to concentrate solely on the logic of his test.

VI. CONCLUSIONS & FUTURE DIRECTIONS

In this paper we have presented REFRAME, a regression
framework for easily writing portable regression tests for
HPC systems. REFRAME hides the complexity of dealing
with the system details and lets the user focus on the
logic of his regression tests. The user writes his regression
test logic in Python and the framework translates this to a
concrete regression pipeline that his test goes through. The
user is given the flexibility to intervene into the pipeline
stages and modify his test’s behavior. Additionally, writ-
ing regression tests in a modern programming language,
like Python, offers significant flexibility and capabilities
in structuring and organizing them correctly, eliminating
code duplication and hence minimizing maintenance costs.
REFRAME is in production at CSCS and is used daily to
check the health of our HPC systems, as well as before and
after every maintenance. It has been working reliably since
the last upgrade of Piz Daint on December 2016 and we are
expanding its use on more systems at our site and with more
regression tests.

Our team at CSCS is actively developing REFRAME

using modern software engineering techniques to ensure
the highest quality and stability of the framework. We
have several features in our backlog to implement in future
releases, the most prominent ones being the following:

• Support for proper logging of the framework’s activi-
ties, since currently everything is printed out, leading
to a rather verbose output.

• Support for asynchronous execution of regression tests.
• More flexible way for differentiating the regression test

behavior per system and per programming environment,
minimizing the need for overriding methods.

• Support for other job submission backends apart from
Slurm.

• Improvements of the internal interfaces to facilitate the
expansion of the framework with different backends.

VII. ACKNOWLEDGEMENTS

We would like to thank the members of the Scientific
Computing Support and HPC-Ops groups at CSCS for
their valuable feedback regarding the framework and their
contributions in writing regression tests for the system.

REFERENCES

[1] OpenHPC: Community building blocks for HPC systems.
[Online]. Available: https://github.com/openhpc/ohpc

[2] JUBE Benchmarking Environment, Jülich Supercomputing
Centre. [Online]. Available: https://apps.fz-juelich.de/jsc/jube/
jube2/docu/index.html

[3] A. B. Yoo, M. A. Jette, and M. Grondona, SLURM: Simple
Linux Utility for Resource Management. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 44–60. [Online].
Available: http://dx.doi.org/10.1007/10968987 3

[4] Cray Programming Environment User’s Guide, Cray Inc., Jun.
2014. [Online]. Available: http://docs.cray.com/books/S-2529-
116//S-2529-116.pdf

[5] Score-P: Scalable Performance Measurement Infrastructure
for Parallel Codes, Virtual Institute – High Productivity
Supercomputing. [Online]. Available: http://www.vi-hps.org/
projects/score-p/

[6] Allinea DDT: The debugger for C, C++ and Fortran threaded
and parallel code, Allinea Software. [Online]. Available:
https://www.allinea.com/products/ddt

[7] J. Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele,
“CP2K: atomistic simulations of condensed matter systems,”
Wiley Interdisciplinary Reviews: Computational Molecular Sci-
ence, vol. 4, no. 1, pp. 15–25, 2014.

[8] Grafana: The open platform for beautiful analytics and
monitoring, GrafanaLabs. [Online]. Available: https://grafana.
com/

https://github.com/openhpc/ohpc
https://apps.fz-juelich.de/jsc/jube/jube2/docu/index.html
https://apps.fz-juelich.de/jsc/jube/jube2/docu/index.html
http://dx.doi.org/10.1007/10968987_3
http://docs.cray.com/books/S-2529-116//S-2529-116.pdf
http://docs.cray.com/books/S-2529-116//S-2529-116.pdf
http://www.vi-hps.org/projects/score-p/
http://www.vi-hps.org/projects/score-p/
https://www.allinea.com/products/ddt
https://grafana.com/
https://grafana.com/

	Introduction
	The regression pipeline
	The initialization phase
	The setup phase
	The compilation phase
	The run phase
	The sanity checking phase
	The performance checking phase
	The cleanup phase
	Types of regression tests

	Writing a regression test
	Setting up job submission
	Setting up the environment
	Customising the compilation phase
	Customising the run of a test
	Executable options
	Pre- and post-run commands
	Changing the regression test resources path
	Launcher wrappers

	Output parsing and performance assessment
	Tag resolution and reference lookup
	Stateful parsing of output

	Check tagging

	Running your tests
	Regression test discovery
	Regression test selection
	Regression test actions
	Organizing the regression tests
	Configuring a new site
	Regression test failures and framework errors

	Use cases
	Overhead of maintaining the regression tests

	Conclusions & future directions
	Acknowledgements
	References

