
libhio: Optimizing IO on Cray XC Systems With DataWarp

Nathan T. Hjelm, Cornell Wright
Los Alamos National Laboratory

Los Alamos, NM
{hjelmn, cornell}@lanl.gov

Abstract—High performance systems are rapidly increasing
in size and complexity. To keep up with the Input/Output (IO)
demands of High Performance Computing (HPC) applications
and to provide improved functionality, performance and cost,
IO subsystems are also increasing in complexity. To help
applications to utilize and exploit increased functionality and
improved performance in this more complex environment, we
developed a new Hierarchical IO (HIO) library: libhio. In
this paper we present the motivation behind the development,
the design, and features of libhio. We detail optimizations
made in libhio to support checkpoint/restart IO workloads
on the Trinity supercomputer, a Cray XC-40 at Los Alamos
National Lab. We compare the large scale whole file read/write
performance or IOR when using libhio against using POSIX
when writing to Cray DataWarpTM.

Keywords-libhio; DataWarp; Cray; Aries; XC40; Burst-
Buffer; SSD; IO

I. INTRODUCTION

High performance computing systems are rapidly increas-
ing in size and complexity. Unfortunately, the performance
of IO storage systems have not kept pace with the compute
performance. To keep up with the IO demands of appli-
cations and to provide improved functionality, performance
and cost, IO subsystems are also increasing in complexity.
This has lead to the introduction of tiered storage systems
that include small fast storage devices known as burst-
buffers. To help applications to utilize and exploit the in-
creased functionality and improved performance in this more
complex environment, we developed a new Hierarchical
Input/Output (HIO) library: libhio.

libhio is an open-source1 user-space software library in-
tended for writing data to hierarchical data storage systems.
These systems may be comprised of one or more logical
layers including parallel file systems, burst buffers, and local
memory. libhio provides a number of features including:

• An interface that is always thread-safe. No application-
level locking is necessary to use libhio.

• Support for burst-buffers implemented by the Cray
DataWarp product.

• Support for managing available burst-buffer space.
• Support for scheduling automatic drain from burst-

buffers to more permanent data roots (PFS).

1The source code to libhio can be found at github: github.com/hpc/libhio

• A simple interface that provides a minimal POSIX-
like IO interface. This is intended to make integration
of libhio into applications easier. Where necessary we
broke from POSIX semantics to allow for optimization
within libhio.

• Allows for user specification of filesystem specific
”hints” while attempting to provide good defaults.

• A configuration interface that allows applications to
specify configuration options via the environment, Ap-
plication Programing Interface (API) calls, and file
parsing.

• Supports transparent (when possible) fall back on other
destinations if part of the IO hierarchy fails. For exam-
ple, falling back on a parallel file system on failure of
a burst-buffer.

• Provide full support for existing IO usage models
including n → 1 (shared file), n → n (file-per-process),
and n → m. Also provide support for refactoring IO
to change n → 1 and n → n to n → m.

• An abstract namespace with internal support to re-factor
the output to a single or multiple POSIX files.

• Provide support for querying performance characteris-
tics.

The rest of this paper is organized as follows. Section
II provides the motivation behind libhio and some of the
goals that came out of the development. Section III provides
an overview of the design and current implementation of
libhio. Section IV outlines the test environment and presents
benchmarks using the IOR benchmark. Sections V and VI
conclude with related and future work.

II. BACKGROUND AND MOTIVATION

A. DataWarp

DataWarpTM[1] is the Cray burst-buffer product in use
on the Trinity supercomputer. The product consists of a
hardware product made up of Solid State Disks (SSDs)
distributed throughout the cluster and an API and software
function for accessing the SSD. per job space allocation,
transferring data between the burst buffer and paralel file
system (staging), and configuration and administrative con-
trol. Space on the burst-buffer can be allocated in number
of configurations; persistent, cache, dedicated, and shared
striped. For this paper we will focus only on shared striped

allocations as they are the most relevant to the check-
point/restart usage model. In shared striped mode a burst-
buffer filesytem is created per compute job across one or
more DataWarp nodes. An application can request that
data be staged into the burst-buffer before the compute job
starts. Once the data stage-in has completed the filesystem
is mounted on each compute node allocated to the job
using Cray’s DVS product. When the compute job has
completed data is staged out of of the burst-buffer filesystem
to the parallel filesystem. The burst-buffer filesystem is
then destroyed and the DataWarp resources are returned.
DataWarp APIs or work-load manager directive are used to
indicate which files or directories need to be staged in or
out of the burst-buffer filesystem.

B. Motivation

The installation of a new DataWarp storage system as part
of the Trinity[4] supercomputer at Los Alamos National Lab
(LANL) was the primary motivation for the development of
a new IO library. To make the best use of DataWarp, API
calls are required to indicate when and which file needs to be
migrated from the job specific DataWarp filesystem to the
Lustre parallel filesystem. These calls could have been added
to applications in two ways; directly modify each application
to make the calls, or implement a software layer that makes
the API calls on behalf of the application. Though each of
these approaches require directly modifying applications we
chose to implement a new software layer. We chose this
approach because we can not rely on the same burst-buffer
architecture and APIs being available on future systems.

C. Goals

Additional goals were created for this new software layer:
• Easy to integrate with existing applications. The target

applications do not use IO middlewhere and use stan-
dard POSIX, C, or fortran APIs to write data.

• Implement IO best practices for POSIX-like filesystems
once instead of per application.

III. DESIGN

This section provides a high-level overview of the design
and features of libhio.

A. Namespace

libhio does not guarantee a POSIX namespace but is in-
stead designed around the concept of an abstract namespace.
The libhio namespace consists of four components:

• Context: All data managed by an hio instance.
• Dataset: A complete collection of output associated

with a particular type of data. For example, all files of
an n → n restart dump.

• Identifier: Particular instance of a dataset. This is a
positive integer and is expected to be an increasing
sequence.

• Element: Named data within a libhio dataset.

B. Context

A context encompasses all of an application’s in-
teraction with libhio. Contexts are created by the
hio_init_single() and hio_init_mpi() func-
tions and destroyed by the hio_fini() function. These
functions are defined to be collective across all participating
processes. A participating process is defined as a process
that is a member of the Message Passing Interface (MPI)
communicator passed to the hio_init_mpi() function.
Each context can be associated with one more data storage
destinations called data roots.

1) Data Roots: libhio data destinations are knows as data
roots. Currently, the only destinations supported by libhio
are POSIX-like filesystems including Lustre, Panasas, and
DataWarp. Support for additional destinations will be added
as they are needed.

Data roots can be set by setting either the HIO data roots
environment variable or by setting the data roots
configuration variable on a context object using
hio config set value(). It is only valid set this variable
before the first call to hio dataset open() on a context. The
data roots configuration variable is a comma-delimited list
of data roots.

If an application specified more that one data root libhio
will automatically switch between data roots in the event
of a failure. If a particular data root fails the application
is notified by an error code on return from a libhio API
function. The application can choose how to proceed. This
includes delaying writing a dataset to a future time or
retrying the dataset write with an alternative data root. The
objective is to allow the application to make progress when
possible in the face of filesystem failures with minimal logic
embedded in the application itself.

When specifying a data root the user can alternately
specify a module prepending the data root path with the
module name followed by a ”:”. As of libhio version 1.4.0.0
the available modules are datawarp and posix. If no module
is specified then a module appropriate for the data root will
be chosen automatically. To use the default DataWarp path
on a supported system the application only needs to specify
one of the special strings: datawarp, or dw. Module name
specification is case-insensitive so DataWarp is treated the
same as datawarp.

C. Dataset

A dataset is a complete collection of output associated
with a particular type of data (ie. restart). Each dataset
is uniquely identified with a string name and an integer
identifier (>= 0). Dataset objects are created with the
hio_dataset_alloc() function and freed with
the hio_dataset_free() function. libhio provides
two special identifiers for hio_dataset_alloc();
HIO DATASET ID HIGHEST and
HIO DATASET ID NEWEST. Using one of these

special identifiers will cause libhio to open the dataset
with the highest identifier or most recent modification data
respectively. Once a dataset object has been allocated it can
be opened with hio_dataset_open(). Opened datasets
must be closed with hio_dataset_close(). Opening
and closing datasets are collective operations across all
participating processes.

D. Element

Elements are named data within a dataset. Elements
are opened using the hio_element_open() call and
closed using hio_element_close(). libhio provides
APIs for blocking and non-blocking read and write for both
contiguous and strided data. None of the element APIs are
collective. Overlapping writes are not supported by libhio
and it is up to the application to ensure that conflicting writes
are not issued.

E. Configuration and Performance Variables

libhio provides a flexible configuration interface. The
basic unit of configuration used by libhio for configuration
are control variables. Control variables are simple ”key =
value” pairs that allow applications to control specific libhio
behavior and fine-tune performance. A control variable may
apply globally or to specific HIO objects such as contexts
or datasets. Control variables can be set via environment
variables, API calls, or configuration files. For scalability,
all configuration is applied at the MPI process with rank
0 in the MPI communicator used to create the context.
Configuration is then propagated to all other MPI processes
during hio dataset open. If any variable is set via multiple
mechanisms the final value will be set according to the
following precedence:

1) System administrator overrides (highest)
2) libhio API calls
3) Environment variables of the form

HIO variable name
4) Configuration files (lowest)
Per context or dataset specific values for variables take

precedence over globally set values.
1) File Configuration: Configuration files can be used

to set variable values globally or within a specific con-
text or dataset. Configuration files are passed as a param-
eter to the context creation routines (hio init mpi() and
hio init single(). They can be divided into sections us-
ing keywords specified within []’s. The keywords currently
recognized by libhio are: global, context:context name, or
dataset:dataset name. Variable values not within a section,
by default, apply globally.

If desired an application can set a prefix for any line in
the configuration file that is to be parsed by libhio. This
allows the application to add hio specific configuration to
an existing file. Any characters appearing after a # character
are treated as comments and ignored by libhio unless the #

character appears at the beginning of the line and is part of
the application specified line prefix (eg #HIO).

F. Datawarp Support

The DataWarp support in libhio provides a portable way
to use the features of the datawarp file system. When a
DataWarp data root is used libhio will, by default, mark
any successfully written dataset as eligible for stage out
at the end of the job. Additionally, to increase robustness
in face of potential datawarp filesystem failure libhio will
periodically mark a completed dataset to be immediately
staged out to the parallel filesystem. This behavior can
be modified by setting the datawarp stage mode variable
on the dataset object. Valid values for this variable are
auto, end of job, disable, and immediate. The target of any
stage out operation is taken from the next available data
root. Ex. data roots=datawarp,/lscratch2/foo/data will stage
complete datasets to the /lscratch2/foo/data directory.

G. Output Format

When writing datasets to a POSIX file system libhio
provides support for multiple file formats. The current libhio
version (1.4.0.0) supports two backend file formats; basic,
and file per node. Additional file formats may become
available in future releases. libhio can be configured to
use one of three POSIX compatible APIs for reading from
and writing to POSIX fileystems. The API used can be
specified by setting the posix file api variable. Valid values
for this value are posix, stdio, and pposix which correspond
to POSIX (read/write), C streaming (fread/fwrite), and po-
sitioned POSIX (pread/pwrite). This section provides high-
level details on the output modes and provides some basic
advice on when each mode might be more appropriate.

1) Basic Output Mode: The first file mode supported by
libhio was the basic file mode. When using this mode the
files on disc directly map to the elements written as part
of the dataset and the file offsets used for reads and writes
directly correspond to application element offsets. Within a
particular dataset instance this translates to a file per element
for datasets using shared offsets and a file per element per
node for unique offsets. This mode has the added lowest
overhead and is recommended if the application can already
make optimal use of the underlying filesystem.

2) File-per-node: We recognized that with a typical
checkpoint/restart workload that most output is created de-
fensively to protect against systems failures. This means that
most checkpoint/restart output is written but never read. Ad-
ditionally, checkpoint/restart files are typically opened only
in a read-only or write-only mode and no overlapping writes
are performed. These realizations lead to the development of
an additional output mode aimed at optimizing application
writes. When using this mode libhio creates a single file
file per node for each dataset instance. This optimization is
modeled directly after the way plfs[2][3] optimizes writes.

When writing element data a stripe aligned portion of the
single shared file is reserved using local shared memory
for coordination between local MPI processes. The element
name, application offset, node id, and file offset are recorded
and saved to a file when the dataset is closed. When opening
a dataset instance for reading we create a distributed table
of this “meta-data” using MPI-3 Remote Memory Access
(RMA). This allows relatively quick lookup of data without
needing to locally cache all of the meta-data for a dataset
instance. This is necessary as the meta-data associated with
a dataset instance can get quite large.

There are several advantages to using this output mode.
When writing a dataset with unique element offsets the file-
per-node offset mode can lead to an overall reduction the the
total filesystem meta-data load. For datasets using a shared
offset mode it reduces contention. We can, additionally,
disable Lustre file locking when utilizing this mode due
to the data layout. The downside of this mode is that it
creates libhio meta-data on the order of the number of writes.
This mode is not recommended for applications that perform
many small writes to non-contiguous offsets.

IV. PERFORMANCE EVALUATION

This section details the hardware setup and software used
to evaluate the performance of libhio. We then presents
the performance results of running the IOR benchmark
using both the file-per-node and basic output modes against
DataWarp with a file per process and a single shared file.

A. IOR Benchmark

IOR is a benchmark developed at LLNL that executes a
synthetic parallel IO workload using various backends. The
backends include POSIX and MPI/IO. We pulled version of
IOR from git with master hash aa604c1 and added a backend
to support libhio. We also added support for setting the libhio
output mode via the -O IOR command-line option.

B. Experimental Setup

The system used for the IOR benchmarks was Trinity
Phase 2. Trinity Phase 2 is a Cray XC-40 located at LANL
and operated by Alliance for Computing at Extreme Scale
(ACES). The system is comprised of 8909 compute nodes
each with a single Intel Knights Landing (KNL) processor
with 68 cores and 4 hyper-threads per core. Nodes are
connected with the Cray Aries network. The system has
234 Cray DataWarp service nodes connected directly the the
Aries network. Each DataWarp node contains 2 6 TB Intel
P3608 SSDs. Each SSD is connected to the service node
with a PCIe x4 interface. More details on the architecture
of Trinity and its DataWarp can be found in [4]. The
total aggregate maximum bandwidth when using all 234
DataWarp nodes is 1228.5 GiB/sec.

The software environment used for all runs is as follows.
CLE: 6.0 UP03, libhio 1.4.0.0, Open MPI git hash 6886c12,

and gcc 6.1.0. All DataWarp allocations used were config-
ured in striped mode using all 234 DataWarp nodes with
a 1 TiB total size. DataWarp staging was disabled and the
positioned POSIX (pread, pwrite) APIs were used for all
benchmarks. We attempted to run libhio with Cray MPICH
but ran into issues with the current version of their optimized
RMA implementation.

All IOR benchmark runs were configured as follows:
• Four readers/writers per node
• 1 MiB block size. -t 1m
• 8 GiB per process / 32 GiB per node. -b 8g
• Ordering inter-file set to 1. -C

C. File Per Process
Figures 1(a) and 1(b) show the read and write performance

of IOR writing a file per process using POSIX and libhio.
For these runs the POSIX and libhio backends showed
similar performance for reads and writes at all node counts.
For write both libhio in basic mode and POSIX achieved
a maximum of 1000 GiB/sec or 81% of the maximum
bandwidth at 8192 nodes. The write speed using libhio
in file-per-node mode achieved 918 GiB/sec or 74% of
the maximum bandwidth. The reduction in bandwidth for
file-per-node is not unexpected for this case due the way
data is layed out in this mode. Read speeds topped out at
1370 GiB/sec, 1173 GiB/sec, and 1329 GiB/sec for POSIX,
libhio basic, and libhio file per node respectively. We could
not determine why the read speed exceeding the maximum
theoretical throughput of the available DataWarp nodes.

D. Shared File
Figures 2(a) and 2(b) show the read and write performance

of IOR writing a single shared file using POSIX and
libhio. When reading or writing a single shared file libhio
in file per node mode achieves higher write speeds than
either POSIX or libhio in basic mode. The maximum write
speeds of 850 GiB/sec, 900 GiB/sec, and 1000 GiB/sec were
achieve using POSIX, libhio basic, and libhio file per node.
These are 69%, 73%, and 81% of the maximum bandwidth.
For writing a single shared file there is a clear advantage
to using the file-per-node output node when writing to
DataWarp. The maximum read speeds were 1132 GiB/sec
1245 GiB/sec, and 1303 GiB/sec. This shows that even
though there is overhead in reading the meta-data it does
not reduce the read bandwidth. This may not be the case
when using unoptimized MPI RMA implementations.

V. RELATED WORK

Many of the ideas and optimizations behind libhio are
present in other IO libraries and user-space filesystems.
plfs[2][3] is a user-space filesystem created at LANL that
refactors application IO to optimize it for the underlying
filesystem. The file per node output mode is modeled di-
rectly after the optimizations used by plfs to refactor all IO
as sequential IO on the underlying filesysem.

B
a

n
d

w
id

th
 (

G
iB

/s
e

c
)

Nodes

IOR Read Bandwidth File Per Process 1k Block Size w/ 4 Writers/Node

POSIX HIO basic HIO file per node

 0

 200

 400

 600

 800

 1000

 1200

 1400

 4 16 64 256 1024 4096

(a) File Per Process Read Bandwidth

B
a

n
d

w
id

th
 (

G
iB

/s
e

c
)

Nodes

IOR Write Bandwidth File Per Process 1k Block Size w/ 4 Writers/Node

POSIX HIO basic HIO file per node

 0

 200

 400

 600

 800

 1000

 1200

 4 16 64 256 1024 4096

(b) File Per Process Write Bandwidth

Figure 1: Plots showing the read and write bandwidth of IOR accessing a file per rank using the POSIX and libhio
backends.

B
a

n
d

w
id

th
 (

G
iB

/s
e

c
)

Nodes

IOR Read Bandwidth Shared File 1k Block Size w/ 4 Writers/Node

POSIX HIO basic HIO file per node

 0

 200

 400

 600

 800

 1000

 1200

 1400

 4 16 64 256 1024 4096

(a) Shared File Read Bandwidth

B
a

n
d

w
id

th
 (

G
iB

/s
e

c
)

Nodes

IOR Write Bandwidth Shared File 1k Block Size w/ 4 Writers/Node

POSIX HIO basic HIO file per node

 0

 200

 400

 600

 800

 1000

 1200

 4 16 64 256 1024 4096

(b) Shared File Write Bandwidth

Figure 2: Plots showing the read and write bandwidth of IOR accessing a single shared file using the POSIX and
libhio backends.

The API of libhio shares many of the same design
decisions as those made by ADIOS[5]. libhio differs from
ADIOS in the way IO is defined. Whereas libhio provides IO
calls similar to POSIX (pointer, size, and offset) ADIOS has
additional APIs to support describing the data being written.
This description includes the type, dimensions, layout, size,
and other details.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented details on libhio, a new
IO library for hierarchal storage systems. We detailed the
motivations that lead to the development of libhio and de-
scribe the current design. We showed that using libhio with
DataWarp gives good overall performance under artificial

IO workloads driven by the IOR IO benchmark both for
writing a single shared file and a file per process. When using
the file per node optimization in libhio N → 1 workloads
showed a 25% increase in write speed and a 10% increase
in read speed.

In the future, we plan to investigate additional improve-
ments to libhio. We will look at adapting libhio to support
additional burst-buffer implementations including distributed
burst-buffers without a globally visible file space. We intend
to investigate the performance of libhio with real application
workloads on both DataWarp and Lustre filesystem. These
investigation will likely lead to further optimization within
libhio. When the two halves of Trinity are connected we
will also verify that the performance of libhio scales with

the combined DataWarp filesystem. We may also look

[2] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski,
J. Nunez, M. Polte, and M. Wingate, “Plfs: a checkpoint
filesystem for parallel applications,” in High Performance
Computing Networking, Storage and Analysis, Proceedings of
the Conference on. IEEE, 2009, pp. 1–12.

[3] J. Bent, S. Faibish, J. Ahrens, G. Grider, J. Patchett, P. Tzelnic,
and J. Woodring, “Jitter-free co-processing on a prototype
exascale storage stack,” in Mass Storage Systems and Tech-
nologies (MSST), 2012 IEEE 28th Symposium on. IEEE, 2012,
pp. 1–5.

[4] K. S. Hemmert, M. W. Glass, S. D. Hammond, R. Hoekstra,
M. Rajan, S. Dawson, M. Vigil, D. Grunau, J. Lujan, D. Morton
et al., “Trinity: Architecture and early experience,” 2016.

[5] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and
C. Jin, “Flexible io and integration for scientific codes through
the adaptable io system (adios),” in Proceedings of the 6th
international workshop on Challenges of large applications in
distributed environments. ACM, 2008, pp. 15–24.

at implementing some of the features of libhio, such as
automatic staging, in ADIOS.

ACKNOWLEDGMENT

The authors would like to thank Alliance for Computing
at Extreme Scale (ACES) management and staff for their
support. Work supported by the Advanced Simulation and
Computing program of the U.S. Department of Energy’s
NNSA. Los Alamos National Laboratory is operated by Los
Alamos National Security, LLC for the NNSA. Additionally,
the authors would like the thank Alfred Torrez at LANL for
providing details how to configure the IOR benchmarks. LA-
UR-17-23841.

REFERENCES

[1] D. Henseler, B. Landsteiner, D. Petesch, C. Wright, and
N. Wright, “Architecture and design of cray datawarp,” Cray

User Group CUG, 2016.

	introduction
	Background and Motivation
	DataWarp
	Motivation
	Goals

	Design
	Namespace
	Context
	Data Roots

	Dataset
	Element
	Configuration and Performance Variables
	File Configuration

	Datawarp Support
	Output Format
	Basic Output Mode
	File-per-node

	Performance Evaluation
	IOR Benchmark
	Experimental Setup
	File Per Process
	Shared File

	Related Work
	Conclusions and Future Work
	References

