
Shifter: Fast and consistent HPC workflows using containers
CUG 2017, Redmond, Washington

Lucas Benedicic, Felipe A. Cruz, Thomas C. Schulthess - CSCS
May 11, 2017

Outline

1. Overview
2. Docker
3. Shifter
4. Workflows
5. Use cases
6. Conclusion

2

Overview

3

CSCS / Piz Daint

4

Location:
Swiss National Supercomputing Center

Name:
Piz Daint

Model:
Cray XC50/XC40

Node:
Intel Xeon E5-2690, Nvidia Tesla P100,
Aries interconnect

TOP500:
8th in the world

Green500:
2nd in the world

Motivation

▪ Bring Docker containers to production on Piz Daint.
▪ Docker: flexible and self-contained execution environments.
▪ Tool that enable workflows for some users.
▪ Part of an ecosystem that provides value to users.

▪ SI group focus on enhancing Shifter’s container runtime.
▪ Usability.
▪ Robustness.
▪ High-performance.

5

Talk in a nutshell

▪ Production workflows with Docker and Shifter on Piz Daint

1. Build and test containers with Docker on a Laptop.

2. Run with high-performance with Shifter on Piz Daint.

6

About Docker

▪ Motto: “Build, Ship, and Run Any App, Anywhere”
▪ Portability and convenience first
▪ Target: web applications.

▪ Creation
▪ Creates semi-isolated “containers”.
▪ Packages all application requirements.

▪ Management
▪ Easy-to-use recipe file.
▪ Version-control driven image creation.

▪ Share
▪ Push and Pull images from a community-driven Hub
 (i.e., DockerHub)

7

About Shifter (1)

▪ A lean runtime that enables the deployment of Docker-like Linux
containers in HPC systems.

▪ From NERSC by D. Jacobsen and S. Canon

▪ Objectives:
▪ HPC environments.
▪ Performance.
▪ Security.

8

About Shifter (2)

▪ Flexibility for users
▪ Enable complex software stacks using different Linux flavors
▪ Develop on your laptop and run it on an HPC system

▪ Integration with HPC resources
▪ Availability of shared resources (e.g., parallel filesystems, accelerator devices
 and network interfaces)

▪ Distribution and reproducibility
▪ Integration with public image repositories, e.g., DockerHub
▪ Improving result reproducibility

9

Workflow (From a Laptop to Piz Daint)

▪ Docker: Ease of use and convenience (1, 2, 3).

▪ Shifter: Performance and security (4, 5).

▪ 1) Build container

▪ 2) Test container

▪ 3) Push to registry

▪ 4) Pull container

▪ 5) Run on Piz Daint

10

About Docker and Shifter

▪ Containers are hardware- and platform-agnostic by design
▪ How do we go about accessing specialized hardware like GPUs?

▪ 1) CSCS and NVIDIA co-designed a solution that provides:
▪ direct access to the GPU device characters;
▪ automatic discovery of the required libraries at runtime;
▪ NVIDIA’s DGX-1 software stack is based on this solution

▪ 2) CSCS extended design to the MPI stack
▪ Supports different versions MPICH-based implementations

▪ Let’s look at use cases to illustrate the workflows.

11

Use case: deviceQuery (GPU)

12

FROM nvidia/cuda:8.0

RUN apt-get update && apt-get install -y --no-install-recommends \
 cuda-samples-$CUDA_PKG_VERSION && \
 rm -rf /var/lib/apt/lists/*

RUN (cd /usr/local/cuda/samples/1_Utilities/deviceQuery && make)
RUN (cd /usr/local/cuda/samples/5_Simulations/nbody && make)

deviceQuery (1): building a simple image

▪ Start with an image: nvidia image + deviceQuery
▪ ethcscs/dockerfiles:cudasamples8.0

13

$ nvidia-docker build -t "ethcscs/dockerfiles:cudasamples8.0" .

$ nvidia-docker run ethcscs/dockerfiles:cudasamples8.0 ./deviceQuery

$ nvidia-docker push ethcscs/dockerfiles:cudasamples8.0

deviceQuery (2): Testing on a Laptop
▪ Let’s start with Docker on the laptop

14

./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce 940MX"
 CUDA Driver Version / Runtime Version 8.0 / 8.0
 [...]
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0,
NumDevs = 1, Device0 = GeForce 940MX
Result = PASS

$ shifterimg pull ethcscs/dockerfiles:cudasamples8.0

$ salloc -N 1 -C gpu
$ srun shifter –-image=ethcscs/dockerfiles:cudasamples8.0 ./deviceQuery

deviceQuery (3): Running on a Piz Daint
▪ Running the container on Piz Daint

15

./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "Tesla P100-PCIE-16GB"
 CUDA Driver Version / Runtime Version 8.0 / 8.0
 [...]
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0,
NumDevs = 1, Device0 = Tesla P100-PCIE-16GB
Result = PASS

Use case: Nbody (GPU)

16

Nbody: same image

Laptop Piz Daint
(P100)

Native 18.34 [GFLOP/s] 149.01x
Container* 18.34 [GFLOP/s] 149.04x

17

*Laptop run using nvidia-docker, Piz Daint uses Shifter

▪ N-body double-precision calculation using 200k bodies, single node.

▪ GPU-accelerated runs using the official CUDA image from DockerHub.

▪ Relative GFLOP/s performance when comparing Laptop and Piz Daint.

Use case: TensorFlow (GPU / Third party container)

18

TensorFlow
▪ Software library capable of building and training neural networks uses CUDA.
▪ Official TensorFlow image from DockerHub (not modified).
▪ TensorFlow has a rapid release cycle (Once a week new build available!).
▪ Ready to run containers.
▪ Performance relative to the Laptop wall-clock time of image classification tests:

MNIST.

19

Test case Laptop* Piz Daint (P100)

MNIST, TF tutorial 613 [seconds] 17.17x

*Laptop run using nvidia-docker

Note on MPI-stack support

▪ Based on the MPICH, Application Binary Interface (ABI) compatibility
▪ MPICH v3.1 (released February 2014)
▪ IBM MPI v2.1 (released December 2014)
▪ Intel MPI Library v5.0 (released June 2014)
▪ CRAY MPT v7.0.0 (released June 2014)
▪ MVAPICH2 v2.0 (released June 2014)

20

$ srun -n 2 shifter --mpi --image=osu-benchmarks-image ./osu_latency

■ MPI library from the container is swapped by Shifter at run time.
■ ABI-compatible MPI from the host system is checked.

○ Hardware acceleration is enabled.

Use case: OSU benchmark (MPI)

21

OSU Benchmark

▪ Host MPI:
▪ Cray MPT 7.5.0

▪ Cray aries Interconnect

▪ Container MPI:
▪ MPICH v3.1 (A)

▪ MVAPICH2 2.1 (B)

▪ Intel MPI Library (C)

▪ Native performance!

22

$ srun -n 2 shifter --mpi --image=osu-benchmarks-image ./osu_latency

Use case: PyFR (CUDA + MPI / Complex build)

23

PyFR

▪ Python based framework for solving advection-diffusion type problems on
streaming architectures. 2016 Gordon Bell Prize finalist (Highly scalable).

▪ GPU- and MPI-accelerated runs using containers.
▪ Complex build (100 lines dockerfile) and test on Laptop.
▪ Production-like run on Piz Daint.
▪ Parallel efficiency for a 10-GB test case on different systems (4 node setup).

24

Number of nodes Piz Daint
(P100)

1 1.000
2 0.975
4 0.964
8 0.927

16 0.874

Use case: Portable compilation units / Linpack benchmark

25

Vanilla Linpack with specialized BLAS

▪ Some application performance
depends on targeted
optimization of libraries.

▪ Use container to pack
application environment.

▪ Proof of concept: pack vanilla
Linpack, compile specialized
BLAS before run.

▪ Two stage: compile first (link
against host libs), then run.

26

Conclusion

27

Conclusion

▪ The Docker-Shifter combo towards production on Piz Daint:
▪ Portability
▪ Scalability
▪ High-performance.

▪ The showed use cases highlighted:
▪ Pull and run containers;
▪ high-performance containers;
▪ access to hardware accelerators like GPUs;
▪ use of high-speed interconnect through MPI;
▪ portable compilation environment.

28

Thank you for your attention

29

GPU device access (3)

30

$ export CUDA_VISIBLE_DEVICES=0
$ srun shifter –-image=ethcscs/dockerfiles:cudasamples8.0 ./deviceQuery
[...]
Detected 1 CUDA Capable device(s)
Device 0: "Tesla K40m"
[...]

$ export CUDA_VISIBLE_DEVICES=2
$ srun shifter –-image=ethcscs/dockerfiles:cudasamples8.0 ./deviceQuery
[...]
Detected 1 CUDA Capable device(s)
Device 0: "Tesla K80"
[...]

▪ On the GPU device numbering
▪ Must-have for application portability
▪ A containerized application will consistently access the GPUs starting from ID 0 (zero)

$ shifterimg pull ethcscs/dockerfiles:cudasamples8.0

$ export CUDA_VISIBLE_DEVICES=0,2
$ srun shifter –-image=ethcscs/dockerfiles:cudasamples8.0 ./deviceQuery

GPU device access (4)
▪ Same image on an multi-GPU system with Shifter

31

/usr/local/cuda/samples/bin/x86_64/linux/release/deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 2 CUDA Capable device(s)

Device 0: "Tesla K40m"
 [...]
Device 1: "Tesla K80"
 [...]
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0,
NumDevs = 2, Device0 = Tesla K40m, Device1 = Tesla K80
Result = PASS

Use case: deploy at scale

32

Pynamic*
▪ Test startup time of workloads

by simulating DLL behaviour
of Python applications.

▪ Compare wall-clock time for
container vs native.

▪ Over +3000 MPI processes.

33

*Pynamic parameters: 495 shared object files; 1950 avg. functions per object; 215 math like library files; 1950 avg. math functions;
function name lenght ~100 characters.

