Toward a Scalable Bank of Filters for High Throughput Image Analysis on
the Cray Urika-GX System

Shilpika <shilpika@anl.gov>", Nicola Ferrier <nferrier@anl.gov>2, and Venkatram Vishwanath <venkat@anl.gov>'

' Leadership Computing Facility, Argonne National Laboratory, 9700 Cass Ave, lllinois, United States
2Mathematics and Computer Science, Argonne National Laboratory, 9700 Cass Ave, lllinois, United States

Abstract. High throughput image analysis is critical for experimental science facilities and enables one to glean
timely insights of the various experiments and to better understand the physical phenomena being imaged. We
present the design and evaluation of banks of filters, the core building blocks for high throughput image analysis,
on the Cray Urika-GX system. We describe our infrastructure developed with Apache Spark. We scaled this to
800 cores of the Urika-GX system for analysis of a Combustion engine dataset imaged at the Advanced Photon
Source at Argonne National Laboratory and observe significant speedups. This scalable infrastructure now
opens the doors to the application of a wide range of image processing algorithms and filters to the large-scale

datasets being imaged at various light sources.

1 Introduction

High throughput image analysis is of paramount impor-
tance to experimental sciences facilities such as the Ad-
vanced Photon Source (APS) at the Argonne National
Laboratory, Advanced Light Source at SLAC Accelerator
National Laboratory and the Spallation Neutron Source at
the Oak Ridge National Laboratory. This analysis capabil-
ity would enable one to glean timely insights from the vari-
ous experiments and to better understand the physical phe-
nomena being imaged. The Cray Urika-GX provides sup-
port for streaming of data and the software environment to-
gether with high-performance architecture capabilities for
analysis of large-scale datasets. We present the design and
evaluation of using banks of filters on the Cray Urika-GX
system and evaluate the performance with combustion en-
gine datasets imaged at the APS. Analysis of images using
banks of filters is a common pre-processing step for im-
age analysis applications and is the basis of many object
recognition and machine learning applications. For large
image datasets performing convolutions in parallel greatly
reduces overall image processing times and permits the
use of large filter banks (e.g. AlexNet [1]). Identifying an
optimum set of filter banks, with the ability to switch be-
tween different types of filters (gabor, edge/bar, and radial
filters) could be used for scientific evaluation and analy-
sis in many scientific imaging applications. The dataset
sizes currently imaged at the APS are in the range of gi-
gabytes to terabytes, and this is expected to increase in the
very near future, to the petabytes range with the upcoming
APS upgrade. We expect similar increases in data sizes
at other facilities, all requiring scalable high throughput
image analysis infrastructure.

Toward realizing this vision, we analyze x-ray video
images of fuel spray from different combustion engines
imaged with variation in fuel quantity, composition, and
nozzle pressure. Of particular interest is the morphology
of droplets of fuel within the spray: their size and scale
varies along and across the spray pattern. Extracting quan-
titative data can inform computational models to under-
stand and improve engine performance. The image analy-
sis pipeline is split into three stages: Image normalization,
filtering using a bank of filters to extract morphological de-
tails and additional processing to extract quantitative data.
We use Apache Spark [2], a parallel data processing en-
gine, to implement our bank of filters. The Urika-GX sys-
tem, with its system architecture features, including Aries
interconnect and deep memory hierarchy, and its software
environment, provides for efficient and scalable execution
of Spark.

In this paper, we present a high throughput image anal-
ysis pipeline using a parallel bank of filters on the Sage
Urika-GX platform. This infrastructure is expected to be
used in a number of image analysis applications with the
option of choosing filter banks and further tuning for dif-
ferent filter scales and orientations, allowing for applica-
tion specific tuning. We scaled this infrastructure to 500
cores of the Urika-GX system for analysis of combustion
engines and observe significant speedups. This scalable
infrastructure now opens the doors to the application of
a wide range of image processing algorithms and filters
to the large-scale datasets being imaged at various light
sources and to glean timely insights.

The outline of the paper is as follows. In Section 2
filters for extracting features of interest are presented and
algorithms used to extract morphological features are dis-
cussed. Section 2 also presents some initial results of fil-

tering with feature extraction. Initial scaling results for the
bank of filters on the images using the Sage Urika-GX sys-
tem and the Cooley System are presented in Section 3. We
conclude and discuss our next steps in Section 4.

2 Bank of Filters and Detectors

Figure 1 shows the pipeline of our implementation which
is split into three stages of image analysis: Image normal-
ization, filtering using a bank of filters to extract morpho-
logical details and additional processing to extract quan-
titative data. In each x-ray image sequence, the first N
(10-20) images, with no spray present, are averaged to be
used as a background image. For image normalization,
we perform a pixel-wise division with the background im-
age in all the subsequent images of the series. The second
stage in the analysis is image filtering using filters includ-
ing Gabor, edge, bar, and radial filters. For our combus-
tion application we filter the images using each of the fil-
ter types. The images are filtered by convolution at every
pixel with the filters chosen. The result traces the fuel flow,
and for certain filters, the filter response correlates to the
thickness of the spray. Stage three of processing involves
analysis of the filter response. For our application the post-
processing involves finding the regions with the maximal
filter response and computing fuel droplet morphology via
ridge detection [3] (to reduce the regions of interest to a
strand of pixel locations while preserving the extent and
connectivity of the original regions and discarding most of
the original foreground pixels). Next we extract quantita-
tive information such as the length, width, and orientation
of the features (fuel spray droplets) for each image in the
time series.

2.1 Gabor Filter

Gabor filters are Gaussian functions that are sinusoidally
modulated with optimal joint resolution in frequency and
space domains [4]. They are bandpass filters that are di-
rectionally selective in nature and could be used to ex-
tract edges/ridges in images. Gabor multi scale/orientation
filter bank reports excellent texture representation and
discrimination capabilities [5S]. Gabor filters have been
thought to simulate the receptive fields of cells in the stri-
ate cortex. Two-dimensional Gabor filter is a complex si-
nusoidally modulated Gaussian function with the response
in spatial domain (Eq. (1)) and in spatial-frequency do-
main (Eq. (2)):

1 1[G G;
f(‘x’y;/l’ 9’ O-X’O-y) - 27T0-xa—lj eXp{ _E O—_)zc + 0—_5 }
xexp{i. 276Gy }

A
ey

where

G| =x cosf+y sinb,
Gy, = —x sinf+y cosf

and o, and o, are the standard deviations along x and y
directions. A represents the wavelength of the sinusoidal
factor, 6 represents the orientation of the normal to the par-
allel stripes of a Gabor function

F(u,v;4,0,0,,0,) =C

ol 22 (-] + (])

where

2)

H{ =u cosf+v sinb,
H) = —u sinf+v cosé,

C = constant

The parameters in the equation (1) o, o, and A represent
the size of the lines and curvilinear structure. o, = eo
where e is the elongation of the filter along the orientation
set at 6 with respect to its thickness. In our bank of filters
application, we can adjust the parameters o, 0,6, A and
also specify the kernel size of the resulting Gabor filter.
The real Gabor filters are used to detect elements that are
brighter than their background i.e. element s with posi-
tive contrast. Suppose A(x, y) is an image being processed
and 6(x, y) is the angle of the fuel spray at pixel location
(x,y). If Gi(x,y), where i = 0,1...N, form a bank of Gabor
filters such that each filter uniquely represents a parameter
set consisting of o, 0, 6, A and filter size, then the Gabor
filtered images are given by R;(x,y) = A(x,y) * (Gi(x,y)
where the asterisk represents convolution operation and i
= 0,1..N . Each of the resulting images have an orienta-
tion field equivalent to that of the corresponding filter. For
larger values of o and A thicker lines in the image will
give higher responses and the finer lines will be ignored.
We combine all the results from the filters to give us the
best response at each pixel and the final image, represent-
ing the maximal filter response is sent to the next stage of
ridge detection.

In the middle of 1990s, some researchers applied Ga-
bor filters to feature extraction for character recognition
[6, 7]. These methods achieved some progress for noise
tolerance. But considering the cost of computation re-
quired, the improvement in performance was trivial. With
the parallel bank of filters with each image being pro-
cessed per node we could achieve significant improvement
in computation time.

2.2 Edge/Bar Filter

In this study, we use the Maximum Response-8 (MR-8)
filter set [8], shown in Figure 2. The MR-8 filter set is
based on the Root Filter Set (RFS) which consists of two
anisotropic filters (one edge and one bar filter, at six ori-
entations and three scales) and two rotationally symmetric
filters (one Gaussian and one Laplacian of Gaussian). The
Bar and the Edge filter in the MR-8 set have six orienta-
tions and three scales each, however, we provide support
for customizing scales and orientations leading to different
number of the filters for processing.

O)

./

Image Filt Ir_nag?:'lt
Correction iltering (Filter Feature
banks) Detectors
Background 1. Gabor Filter Ridge Detector
separa_tion 2. Edge Filters Edge Detector
(Shading 3. Bar Filters Ring Detector
Correction) 4. Radial Filter

O)

—

Figure 1. Architecture Overview: The three stages of analysis include Image Correction, to eliminate background noise and for shading
correction, Image Filtering, to choose a suitable filter(Gabor, Edge, Bar, and Radial filters) for feature extraction, and Feature Detector,

to detect and extract quantitative data of the filtered features

=“AIINS
dANNE
4A0NE
ZANNS
AIINS
AdONE

III II

Figure 2. The MR-8 filter bank consists of 2 anisotropic filters
(an edge (columns 1-3 above) and a bar(columns 4-6 above) fil-
ter, at 6 orientations and 3 scales), and 2 rotationally symmetric
(columns 7 and 8 above) ones (a Gaussian and a Laplacian of
Gaussian)

Edge filters are used to filter useful structural infor-
mation about object boundaries. An optimal edge filter
implementation results in edges being marked as maxima
in gradient magnitude of a Gaussian-smoothed image.The
Bar filters are used to extract ridge details on the images.
It is useful sometimes to extract rotationally invariant fea-
ture and the MRS filters provide two rotationally invariant
filters. Across each scale, the response with the highest
magnitude is selected for all orientations of the filter re-
sulting in three filters each for Bar and Edge, these results
are then merged across all scales to give the final response.
For our study, we chose to use only the Bar and Edge Fil-
ters from the MR-8 filter bank with the option to choose
the scales and orientations of the filter. For rotationally
invariance we use the Radial filters mentioned in 2.3

2.3 Radial Filters

Radial filters are rotationally invariant filters or isotropic
“Gabor-like” filters. For the bank of filters, radial fil-
ters could be used to highlight features that are symmet-

ric along all orientations. These filters combine frequency
and scale [9], as evident in equation (3):

Fo(r,0) + cos

2+
X expy=—
3)

where 7 is the number of cycles of the harmonic function
in the Gaussian envelope of the filter, mainly used in the
context of Gabor filters. Fy(t, o) is added to obtain a zero
DC component, this makes the filters robust to illumina-
tion changes, as we obtain invariance to intensity transla-
tions [9].

As in the case of filters mentioned previously we can
customize values for 7 and scales.

F(,y;7,0) =

)

2.4 Ridge Detection

The results of the second stage of analysis (filter response)
are shown in Figure 3. For the combustion application the
best results are obtained by using the Gabor filters, in that
the resulting image shows patterns that closely trace the
fuel flow in the original image. Results for Radial filters
show tiny “blobs" being identified and hence for this ap-
plication this choice of filter would not be suitable. Edge
and Bar filters trace the fuel flow fairly closely. In each
of the case the results vary by adjusting the filter parame-
ters. For example, we could tune the radial filters to detect
larger “blobs” by changing the scale and 7 and then filter
the images using each of the filters. For this application,
the goal is to have a filter response that closely correlates
to the thickness of the spray.

The filtered images are processed to extract quantita-
tive data. To detect features like ridges in an image vari-
ous computationally expensive techniques [10-12] using
some kind of unsupervised learning techniques have been
used. For our combustion study, we used a ridge detector

Figure 3. (1)Top leftmost image is the image to be processed, top row images (2),(3),(4),(5) are the results of filtering using Gabor
filters with 4 scales and 35 orientations, Edge filters, Bar filters each with 8 scales and 35 orientations and Radial filters with 4 scales
and 7 between 1 to 4 for each scale

[3] which identifies the fuel spray pattern. The detected
ridge location is the central axis of the detected feature
(fuel droplet). Here explicit models are used for different
line profiles and a scale space analysis on these models
was used to develop an algorithm to detect the feature cen-
tral axis location and the width; both can be extracted with
sub-pixel accuracy. A common approach of using deriva-
tives of Gaussian masks to determine the derivative of the
image is employed. In this section a brief summary of the
ridge detector [3] is provided.

To detect a ridge with a profile matching parabolic (4)
or symmetrical bar-shape, given by the function f(x), we
detect the points where the f’(x) is O.

“

h(1=(57?) | <w

ﬂ”‘{o x> w

To extract salient locations we look at the magnitude

of f”(x) at points where f’(x) is 0. Bright regions on a
dark background will have f”’(x) << 0 while dark regions
on a bright background will have f”'(x) >> 0 [3]. To es-
timate the first and second derivatives of f(x) we convolve
the image with the derivatives of the Gaussian smoothing
kernel. It is the Gaussian kernel that makes the inherently
ill-posed problem of estimating the derivatives of a noisy
function well-posed [13, 14]. A 2D image f(x,y) con-
taining curvilinear structures can be thought to exhibit 1D
ridge profile in the direction perpendicular to the ridge.
Let this direction be p(r) for a curve c¢(f) on a 2D struc-
ture where the first directional derivative is 0 and second
directional derivative has a large absolute value. The next
step would be to determine the direction the ridge takes

at each pixel point in the image by computing the partial
derivatives dx, dy , dxx, dxy , and dyy of the image by
convolving it with the Gaussian kernels shown below [3]:

Gio(x,y) = Gs(y) G;-(X)

Gyo(x,y) = Go(y) Go(x)
Grxo(x,y) = G (y) GF(x) (5)
Gy (x,y) = Go(y) G(x)

Gyyo(x,y) = G (y) Gy (%)

Therefore, the direction of the ridge in the image function

f(x,y) which is given by the eigenvalues and eigenvectors

of the Hessian matrix (6) is the direction in which the sec-

ond directional derivative has a maximum absolute value

which is also the measure of the strength of the ridge.
_ dxx dxy)

H(x,) (. (6)

The computation is done in a stable and efficient way using
one Jacobi rotation to remove the d,, term [15]. The di-
rection perpendicular to the ridge given by the eigenvector
Dx» Py which has ||(px, p,)Il = 1. A quadratic polynomial
is used to determine whether the first directional derivative
along (py, py) is 0 [3]. This point or the subpixel location
of the ridge will be given by

(X, Y) = (Apx, Apy) @)
where
depx + dypy

A=-
dxxp)zg + deypxpy + dyypﬁ

®)

To determine the orientation of the normal p(¢) to the
ridge direction, the first ridge point has the normal marked
to lie on the right (—90°) of the ridge direction. For con-
sequent points the two normals lie on either side of the
point with an angle difference of (—180°). The orientation
at each point is the minimum angular difference between
the orientation of the previous and the next point. After
extracting the pixel points that lie along the ridges in the
image, they need to be connected by choosing the appro-
priate neighbor. It is assumed that three pixels would be
sufficient to give an accurate estimate of the ridge direc-
tion locally. For example, for a pixel (x, i), only the points
x+1,y—-1),(x+1,y), and (x + 1,y + 1) are examined
with pixel orientation € [-22.5°,22.5°]. A point is chosen
to be a part of the ridge based on the distance between the
sub-pixel ridge locations and difference in orientation be-
tween the two pixel points. If the algorithm approaches a
point which is already a part of another ridge this point is
tagged as a junction and the ridges containing these junc-
tions are split into two ridges. In a case where the junction
points are not marked and the algorithm identifies two di-
rections of a ridge then it chooses one of the two directions
and continues until it reaches a point where no neighbor-
ing points exist. Upper threshold values are chosen to de-
termine new ridges, where the starting point of the ridges
has the second directional derivative above this threshold.
The points that lie along the rest of the ridge need to have
a second directional derivative of greater than the lower
threshold values. A concept similar to hysteresis thresh-
olding [16]. In cases where there are multiple responses in
the direction perpendicular to the ridge they are tagged as
processed if the orientation is almost equal to that of (x, y),
however, these cases are rare. Hence end of the ridge is
reached when the neighboring points lie on another ridge
or are tagged.

When using the ridge detector it is important to pick
semantically meaningful parameter values for o~ upper and
lower threshold. The value for sigma should be chosen
such that o > % with w being the width in pixels of the
lines to be identified. If the lower and upper threshold val-
ues are for example set to O and 1 then even the faintest of
ridges will be detected.

Next step would be to determine the width of the
“ridge" identified previously. The points representing the
width lie in the direction of p(#) with each width point ly-
ing on either side of the current ridge point and having a
maximum absolute gradient value (in image terminology.
The ridge detector uses a trivial modification of the Bre-
senham line drawing algorithm [13] to yield all pixels that
this line will intersect [3]. It is only reasonable to search
for edges in a restricted neighborhood of the ridge. The
width of the ridge is expected to be V3o. The edge points
are extracted using the facet model which is similar to the
approach used for line point detection but with different
convolution masks with the smallest mask size 3 x 3 which
is proven to provide accurate results [13]. This approach
is computationally inexpensive when compared to a com-
mon approach which involves computing coefficients of
Taylor polynomials for edge detection [17—19]. There are

cases where the edge points are not detected using the facet
model due to wide or weak gradients being present next to
the lines or at ridge junctions where the width is usually
greater thanV3c-. In such cases, the width is computed by
interpolation or extrapolation along the orientation of the
normals on each point in the line. The width of the ridge
is extracted for each ridge point. As we trace along the
ridge to determine with, for each missing width on each
side of the ridge where widths are available in front and
behind the line the current point, the width is estimated by
linear interpolation. In a case where the width is missing,
for example at the end of a ridge, it will be extrapolated to
the last defined width [3].

Using the ridge detector we are able to extract use-
ful quantitative information on each feature identified by
the detector. The data extracted includes morphological
information such as the spray droplet length, width (aver-
age, minimum, maximum), standard deviation, spray start
points, centroids and end points etc. Using this informa-
tion we can perform further studies on how the fuel spray
alters over time and as a function of the various parameters
(nozzle pressure, fuel composition, etc).

3 Performance Evaluation

We evaluate the performance of the bank of filters on the
Sage Urika-GX system and the Cooley cluster at the Ar-
gonne National Laboratory. The Sage Urika-GX system is
a big data analytics platform from Cray optimized for an-
alytics workflows. The Sage system consists of 32 nodes,
consisting of 25 compute nodes and 7 service nodes,
which are interconnected using a high-performance Aries
interconnect; each node has two 16-core Intel processors,
256 gigabytes of RAM, 800 gigabytes of SSD and 4 ter-
abytes of hard-disk. The nodes have a shared HDFS-based
distributed filesystem. The Cooley system is a visualiza-
tion and analytics cluster consisting of 126 compute nodes.
Each compute node has 12 CPU cores with 384 GB of
RAM and a NVIDIA Tesla K80 dual-GPU card; The en-
tire Cooley system has a total of 47 terabytes of system
RAM and 3 terabytes of GPU RAM. Each node has 345
GB of local scratch space using hard-disks. The system
has a GPFS based parallel filesystem. We implemented
the the bank of filters using Apache Spark 1.6 and Python
2.7. We also leveraged Jupyter notebooks and this pro-
vided support for displaying results on the browser which
helped in tuning the parameter set of the filters used. We
evaluate the performance of the bank of filters with the
combustion engine imaging datasets.

Figure 4 depicts the strong and weak scaling perfor-
mance on the Sage and Cooley system with Spark for Ga-
bor, Edge, Bar and Radial filters. For strong scaling, we
use the bank of filters on 1000 images of the combustion
engine dataset. We scale the number of executors(cores)
in Spark from 8 to 800 on the the Sage Urika-GX system
and the Cooley cluster. The top row of Figure 4 depicts the
performance for the Gabor, Edge, Bar and Radial filters on
these two systems. As mentioned before, we have three
stages in the pipeline, namely the pre-processing stage

10000 r . . y .

v—¥ Radial
A—A Bar

B8 Edge
o-0 Gabor

1000

Execution Time (seconds)

8 32 64 128 256
Number of Spark Executors (cores)
10000 T T

512

800

Radial
Bar
Edge
Gabor

$Il

1000

Execution Time (seconds)

—

100

r——v-/""—"'/*_—‘

| 1
8 32 64 128 256
Number of Spark Executors (cores)

L
512 800

10000 T T

v-¥ Radial
A4 Bar

B8 Edge
o0 Gabor

1000 +

Execution Time (seconds)

" 1 L " A
8 32 64 128 256 512
Number of Snark Fxecutors (cores)

10000 T T T T T

v—¥ Radial
A—A Bar

B8 Edge
0-0 Gabor

800

1000 .

F—’”*’-'_—‘\T/N

N

Execution Time (seconds)

100

1 s
8 32 64 128 256 512 800

Number of Spark Executors (cores)

Figure 4. Top row shows the scaling results for strong scaling using 1000 images on the Cray Urika-GX Sage System(1)(left) and
Cooley System(2)(right) at Argonne National Laboratory. The bottom row shows the weak scaling results on the Sage Urika-Gx

System(3)(left) and the Cooley System(4)(right)

consisting of Image normalization, filtering using a bank
of filters to extract morphological details and additional
processing to extract quantitative data. The first stage con-
sists of reading the images and necessary communication
for the normalization. The second stage is embarrassingly
parallel wherein the execution times of the filters differ pri-
marily due to the filter parameters such as the scales and
orientations. The last phase also know as the detection
phase is dependent on the number of features identified in
the second phase. It also involves writing of the results out
to the filesystem. As we strong scale from 8 cores to 800
cores on both the Sage system and Urika-GX, we notice
that our execution time decreases. In case of Gabor on the
Sage system, our execution time decreases from 3305 secs
to 184 secs resulting in a speed-up of 17. For the Coo-
ley system, our execution time decreases from 2105 secs
to 202 secs resulting in a speed-up of approximately 10.
The primary difference in the execution time between the
filters can attributed to the filter parameters. Radial filters
are more computationally intensive than Gabor filters and
as we increase the number of parameters needed to tune
the filter, it results in an increase in the overall execution
time.

Next, we evaluate the weak scaling performance for
the bank of filters on the Sage and Cooley systems. The
bottom row of Figure 4 depicts the weak scaling perfor-
mance as we scale from 8 images on 8 cores to 800 images

on 800 cores. We notice that our bank of filters scale well.
As we increase the number of cores, we notice and in-
crease in the total execution time. A part of the reason can
be attributed to the either the pre-processing of images that
necessitates shuffling or at the end of the computation the
results are stored in csv files either on the HDFS storage in
Sage or the GPFS in Cooley. Spark provides a mechanism
to save files to the file system based on the RDD (Resilient
Distributed Datasets) partitions. Although this is a useful
feature, for larger number of images(4000-10000 images)
saving this data via Spark adds overhead in comparison to
saving the files directly to the GPFS or HDFS at the end
of processing on each executor core. For example, while
processing 4000 images on 500 cores on the Sage system
it took 17 minutes to process with saving files directly and
took around 20 minutes to process for a collect and save
operation via Spark i.e the operation was almost 1.2 times
slower for the second case.

In terms of quality, figure 3(b) to 3(e) compare results
obtained from using different types of filters. The red over-
lay is the maximal filter response on the normalized im-
age. For this case study, the Gabor filter bank represents
the structure of the spray more accurately as it manages
to identify local orientation patterns in the spray. Radial
filters are isotropic in nature and are not the appropriate
choice for ridge detection. Edge and Bar filters trace the

edges and ridges of the spray as shown in figure 3(c) and
figure 3(d) respectively.

4 Conclusion

In conclusion, we present a high throughput image anal-
ysis pipeline using a parallel bank of filters on the Sage
Urika-GX and the Cooley cluster. This infrastructure is
expected to be used in a number of image analysis appli-
cations with the option of choosing filter banks and fur-
ther tuning for different filter scales and orientations, al-
lowing for application specific tuning. We scaled this in-
frastructure to 800 cores of the Urika-GX system and the
Cooley system for analysis of Combustion engines and
observe significant speedups. This scalable infrastructure
now opens the doors to the application of a wide range of
image processing algorithms and filters to the large-scale
datasets being imaged at various light sources and to glean
timely insights.

As a part of our future effort, we plan to extend our
bank of filters to include more choices of filters. This will
provide the flexibility to use a filter based on the image
dataset being processed. For example, for extracting cir-
cular structures, use of radial filters would be a more suit-
able choice. The filter responses can be used as input for
various machine learning processing pipelines.

Acknowledgments

This research has been funded in part and used resources
of the Argonne Leadership Computing Facility at Argonne
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under contract
no. DE-AC02-06CH11357. This work was supported in
part by the DOE Office of Science, Advanced Scientific
Computing Research, under award number 57138, 57K50
and 57L.32. We would like to acknowledge Jin Wang, Zhi-
long Li and Yao Ga for the combustion engine datasets and
related discussions.

References

[1] A. Krizhevsky, 1. Sutskever, G.E. Hinton, in Ad-
vances in Neural Information Processing Systems
25, edited by F. Pereira, C.J.C. Burges, L. Bottou,
K.Q. Weinberger (Curran Associates, Inc., 2012), pp.
1097-1105

[2] N. Chaimov, A. Malony, S. Canon, C. lancu, K.Z.
Ibrahim, J. Srinivasan, Scaling Spark on HPC Sys-
tems, in Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Dis-
tributed Computing (ACM, New York, NY, USA,

2016), HPDC 16, pp. 97-110, ISBN 978-1-4503-
4314-5

[3] C. Steger, IEEE Trans. Pattern Anal. Mach. Intell. 20,
113 (1998)

[4] G.D., Journal of the Institute of Electrical Engineers

p. 429-457 (1946)
[5] T. Leung, J. Malik, Int. J. Comput. Vision 43, 29

(2001)

[6] X. Wang, X. Ding, C. Liu, Pattern Recogn. 38, 369
(2005)

[7]1 D. Shi, R.I. Damper, S.R. Gunn, 2, 27 (2003)

[8] J.M. Geusebroek, A.-W. Smeulders, J. van de Weijer,
Trans. Img. Proc. 12, 938 (2003)

[9] C. Schmid, Constructing models for content-based
image retrieval, in Proceedings of the 2001 IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition. CVPR 2001 (2001), Vol. 2,
pp- 1I-39-11-45 vol.2, ISSN 1063-6919

[10] D. Geman, B. Jedynak, IEEE Transactions on Pattern
Analysis and Machine Intelligence 18, 1 (1996)

[11] J. Wang, J. Qian, R. Ma, Urban road information
extraction from high resolution remotely sensed im-
age based on semantic model, in 2013 21st Interna-
tional Conference on Geoinformatics (2013), pp. 1-
5, ISSN 2161-024X

[12] M.A. Fischler, H.C. Wolf, Machine Perception of
Linear Structure, in Proceedings of the Eighth Inter-
national Joint Conference on Artificial Intelligence
- Volume 2 (Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1983), IJCAI’83, pp. 1010-
1013

[13] D.F. Rogers, Procedural Elements for Computer
Graphics (McGraw-Hill Book Company, New York,
NY, USA, 1985)

[14] L.M.J. Florack, B.M. ter Haar Romeny, J.J. Koen-
derink, M.A. Viergever, Image Vision Comput. 10,
376 (1992)

[15] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P.
Flannery, Numerical Recipes 3rd Edition: The Art
of Scientific Computing, 3rd edn. (Cambridge Uni-
versity Press, New York, NY, USA, 2007), ISBN
0521880688, 9780521880688

[16] J. Canny, IEEE Transactions on Pattern Analysis and
Machine Intelligence PAMI-8, 679 (1986)

[17] L. Wang, T. Pavlidis, IEEE Trans. Pattern Anal.
Mach. Intell. 15, 1053 (1993)

[18] L. Wang, T. Pavlidis, CVGIP: Image Understanding
58, 352 (1993)

[19] R.M. Haralick, L.T. Watson, T.J. Laffey, The Inter-
national Journal of Robotics Research 2, 50 (1983)

