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Abstract—CASIM is a microphysics scheme which calculates
the interaction between moisture droplets in the atmosphere
and forms a critical part of weather and climate modelling
codes. However the calculations involved are computationally
intensive and so investigating whether CASIM can take advan-
tage of novel hardware architectures and the likely increase in
performance this might afford makes sense.

In this paper we present work done in porting CASIM
to GPUs via the directive driven OpenACC and also mod-
ifying CASIM to take advantage of the Knights Landing
(KNL) processor using OpenMP. Due to the design, models
extracting out specific computational kernels for offload to
the GPU proved suboptimal and instead the entire scheme
was ported over to the GPU. We consider the suitability and
maturity of OpenACC for this approach as well as important
optimisations that were identified. Enabling CASIM to take
advantage of the KNL was significantly easier, but still required
careful experimentation to understand the best design and
configuration. The performance of both versions of CASIM,
in comparison to the latest generation of CPUs is discussed,
before identifying lessons learnt about the suitability of CASIM
and other similar models for these architectures. The result
of this work are versions of CASIM which show promising
performance benefits when utilising both GPUs and KNLs and
enable the communities to take advantage of these technologies,
in addition to general techniques that can be applied to other
similar weather and climate models.

Keywords-Parallel processing; Multithreading; Software per-
formance ; Supercomputers ; Numerical simulation

I. INTRODUCTION

The Cloud AeroSol Interactions Microphysics (CASIM)
model [3] is a bulk microphysics scheme, calculating in-
teractions between moisture droplets in the atmosphere.
Modelled at the millimetre scale, these droplets represent
moisture in many different states such as vapour, liquid
water, snow, ice and graupel. The modelling of moisture is a
crucial aspect of weather and climate codes, and this scheme
is designed to be used as a sub-model by other more general
parent models. Current parent models that utilise CASIM
are the Met Office Unified Model (UM), Met Office NERC
Cloud Model (MONC) [1], Large Eddy Model (LEM) [2]
and Kinematic Driver (KiD) [3] model.The calculations
performed by CASIM are computationally intensive and, on
homogeneous machines, such as ARCHER (an XC30) or
MONSooN (an XC40), a significant portion of the overall

model runtime is taken up by CASIM which in some cases
can double or even triple the entire runtime [12].

Scientists are driving computational models harder and
harder, requiring runs at greater resolution and/or near real
time to achieve their science. This requires large amounts
of computational resource and because CASIM is in use
by many different parent models an important question to
answer is whether the use of novel hardware architectures,
such as GPUs or Knights Landing (KNL), can improve
performance. OpenACC has been used as the technology
to support CASIM on the GPU, but because of the make up
of the code the decision was made to offload the entirety
of the scheme including all computation, conditionals and
loops onto the GPU which involved porting over 123 Fortran
subroutines across 50 modules. This approach was adopted
to minimise the cost of data transfer and enable the CPU to
concurrently work on other parts of the atmospheric model
whilst CASIM is being executed by the GPU.

Because the KNL supports both MPI and OpenMP codes
it is an attractive target for many models. Whilst the perfor-
mance benefits of previous generations of this technology
have been varied, the latest generation are a significant
improvement over Knights Corner and many people have
reported positive results. The accessibility of programming
the KNL makes it a natural target for CASIM and we
have used OpenMP to add threading in order to fully take
advantage of this hardware.

A key question to answer has been where CASIM runs
best, and hence where the focus for future technology
should be. Is it advantageous to utilise Cray machines with
accelerators such as GPUs or many core CPUs such as
the KNL? Alternatively is a strategy based upon utilising
the latest generation of CPUs optimal? Section 2 lays the
foundation for this work, it introduces both the CASIM
microphysics scheme in more detail and discusses previous
GPU acceleration work that we have performed on one
of the parent models, MONC. Section 3 focusses on the
GPU version of CASIM, we discuss the porting of the
scheme using OpenACC, performance on Piz Daint both
in its current XC50 (with P100s) configuration and previous
generation XC30 (K20X) configuration, before going on to
discuss optimisations and technical challenges encountered
along with their workarounds. Section 4 discusses the KNL



version of CASIM, providing a description of the work
done to optimise CASIM for this technology and then
performance comparisons on the ARCHER KNL system
(an XC40.) In section 5 we contrast and compare the GPU
and KNL results against CPU only runs of CASIM on
both Haswell (XC50) and Broadwell (XC40) before drawing
some conclusions and discussing future work in section 6.

A. Machine configurations

In this paper a variety of different machines and technolo-
gies are used for evaluation, the specifications of these are
summarised in this section.

• Piz Daint (Cray XC50): each node contains one Intel
Xeon E5-2690 version 3 CPU (Haswell), a NVIDIA
Tesla P100 GPU and 64GB RAM. Each processor
contains 12 physical cores, each at base clock frequency
of 2.6 Ghz with 64KB level one cache and 256KB level
two cache. There is 30MB shared level three cache
on the package. The P100 GPUs fitted to Piz Daint
also contain 16GB of on-chip CoWoS HBM2 Stacked
Memory.

• Piz Daint (until September 2016) (Cray XC30): each
node contained one Intel Xeon E5-2670 CPU (Sandy-
Bridge), a NVIDIA Tesla K20X and 32GB RAM. Each
processor contained 8 physical cores, each at base clock
frequency 2.6 Ghz with 64KB level one cache and
256KB level two cache. There was 20MB shared level
three cache on the package. The K20X GPUs also
contained 6GB of on-chip GDDR5 memory.

• MONSooN (Cray XC40): each node contains two Intel
Xeon E5-2695 version 4 CPUs (Broadwell) and 64GB
RAM. Each processor contains 18 physical cores, each
at base clock frequency of 2.1 Ghz with 64KB level
one cache and 256KB level two cache. There is 45MB
shared level three cache on the package.

• ARCHER (Cray XC30): each node contains two Intel
Xeon E5-2697 version 2 (Ivy Bridge) CPUs and 64GB
RAM. Each processor contains 12 physical cores, each
at base clock frequency of 2.7 Ghz with 64KB level
one cache and 256KB level two cache. There is 30MB
shared level three cache on the package.

• ARCHER KNL (Cray XC40): each node contains
one 7210 Knights Landing (KNL) CPU with 64 cores
and 96GB RAM. Each core has a clock frequency of
1.30 Ghz, 64KB of level one cache and with two cores
sharing a 1MB level two cache. There is an additional
16GB MCDRAM on-chip which can be used as either a
level three cache or as direct main memory from code.

II. BACKGROUND

Microphysics is traditionally very computationally in-
tensive and as such certain design decisions are made to
trade off the accuracy of solution verses the computational
resources required. Broadly these models can be split into

bulk and bin schemes. In bulk schemes all processes are
defined as specific parameters where a function defines
the distribution of particles and four key parameters for
each particle: it’s diameter (D), the particle’s shape (µ), the
particle’s slope (λ) and distribution inception on the Y axis
(No.) Whilst all bulk models use these parameters and the
same equations, they change the computational complexity
by fixing some and varying others, this is known as the
moment. For instance in a single moment scheme a particle’s
diameter (D) is defined and all other variables are fixed, in
a double moment scheme both D and No are varied and the
other two parameters fixed. In a triple moment scheme D, No
and µ are varied and the slope fixed. In contrast bin schemes
make fewer assumptions as they explicitly solve equations
that govern the size of droplets by concentrating on drop
size distributions. Based on their explicit size particles are
discretised into a number of bins, hence the name of the
approach, which the equations are solved upon. Bin and
bulk schemes have different pros and cons, both in terms of
computational requirements and also situations where they
produce the most accurate results.

CASIM is a three moment bulk scheme, most importantly
it handles aerosol in clouds in an entirely innovative way
which provides far more accuracy with these schemes than
previous generations. The role of aerosol is one of the major
uncertainties of the hydrological process and thermal radia-
tion. CASIM has explicit activation schemes that transform
aerosol to clouds, but very importantly once activated it
will carry this aerosol mass in the cloud which allows one
to study the evaporation of aerosol and how moisture is
returned to the system. This important advancement means
that CASIM provides more accurate results in many cases,
but the cost is that it is more computationally intensive
than peer 3 moment bulk models. The parent model, which
drives CASIM, will decompose three dimensional space into
columns and CASIM works on each column independently
as all processes being simulated are limited to the vertical.
This therefore means that the microphysics modelling of
one column, whilst it is tightly coupled in the vertical, is
entirely independent of other columns in the other two di-
mensions. Proceeding in sub-timesteps of the parent model,
CASIM performs a number of computationally intensive
algorithms such as accretion, which calculates how droplets
combine together and accelerate as they fall, auto conversion
which maps moisture between states (such as from cloud to
rain) and sedimentation which determines whether vapour
droplets are large enough to fall through the atmosphere.
As an input the parent model will pass CASIM many
different variables, including 3D prognostic (raw data) fields
representing moisture in different states. Broadly speaking
there are two major configurations to the scheme running
warm, where one only considers moisture above freezing
point and also running cold which models moisture in all
states both above and below freezing point. Parent models



maintain a number of q 3D prognostic fields, which represent
moisture at each point on the grid in different states. These
are worked on directly by the scheme and the warm config-
uration involves 5 q fields, whereas the cold configuration
involves 18 q fields. Hence the cold configuration involves
far more computation.

A. MONC

The Met Office NERC Cloud model (MONC) is a newly
developed open source, high resolution modelling frame-
work. Employing large eddy simulation, this model studies
the physics of turbulent flows and enables scientists to fur-
ther develop and test physical parametrisations and assump-
tions used in numerical weather and climate prediction. The
standard homogeneous version of this code is designed to be
run on many thousands of cores and has demonstrated good
performance and scalability on up to 32768 cores [1] on
XC30 and XC40 Cray machines. MONC has been designed
around pluggable components where the majority of the code
complexity, including all of the science and parallelisation,
are contained within independent units. Splitting the model
into these units, for instance a component for advection
(calculating movement due to wind), another for calculating
buoyancy terms and another for calculating pressure means
that it is very easy both to configure the model by plugging
in some and unplugging other components, and also develop
new functionality independent of other parts of the model.
It is also possible to call out to other models for specific
aspects (such as CASIM for microphysics) by developing
components that wrap sub-models and perform any data
conversion necessary to support this coupling.

Like many LES models the simulation proceeds in
timesteps, gradually increasing the simulation time on each
iteration until it reaches a predefined termination time. The
model works on 3D prognostic fields, u, v and w for wind
in the x, y and z dimensions, θ for the temperature and any
number of q fields which represent aspects such as moisture
and tracers. There are a number of high level groups, each
of which contains any number of components, that makes
up the structure of a single timestep. Each of these groups
must execute sequentially so that one group of components
can not start until the previous group has completed. This
is illustrated in figure 1, where initially all prognostic fields
are halo swapped between neighbouring processes and then
the sub-grid group of components are called to determine
model parameterisations. The dynamics group of compo-
nents, often referred to as the dynamical core, performs
Computational Fluid Dynamics (CFD) in order to solve
modified Navier-Stokes equations [14] which is followed by
the pressure solver, using either an FFT or iterative approach
to solve the Poisson equation. The timestep then concludes
with some miscellaneous functionality such as checking for
model termination. Microphysics is performed as part of
the dynamical core and for every column in the domain

Figure 1. MONC component group structure

the MONC model will call out to CASIM to perform its
calculations on that column.

In [11] we developed an accelerated version of MONC
which offloaded the calculations of advection which, pre-
vious to integrating CASIM, was the most computationally
intensive part of the pure MONC model, onto GPUs. This
relied on the fact that the dynamical core proceeds in column
fashion, where each component of the dynamical core will
process an individual column and contributes the result of its
specific calculation by combining (addition operator) it to an
initially zero source term for the column of each prognostic
field, before going back to the start of the group and calcu-
lating for the next column. As we are summing source terms
calculated by different components for a column, this is
commutative and associative, which means these dynamical
components can be called in any order within the group
without impacting correctness. Our theory was that, because
we can extract a component and run it on the entirety of a
field (all the columns) before, or at the same time as, any
other components in the dynamics group without impacting
correctness then we could take advantage of this to run
MONC heterogeneously on GPUs. To minimise the cost of
the copying time to and from the GPU we run both the
CPU and GPU concurrently, with them completing separate
dynamical core tasks (components) concurrently. Therefore
in [11] we split out the advection component from this group
and ported it, via OpenACC, to run on GPUs. Figure 2
illustrates the hybrid execution of the model, where the CPU
copied the necessary data to the device asynchronously and
then proceeds running the other components in the dynamics
group and computing source terms for each column of the
fields. At the same time, the GPU receives the required data
and then uses this to run the advection kernel and compute
advection source terms for the entirety of the field (each
column at the same time). Once the CPU has completed the
entirety of its own work it then waits for the GPU advection
source terms to be made available, combines the CPU and
GPU source terms together and then integrates these into the
prognostic fields.



Figure 2. Hybrid dynamics structure

We chose OpenACC for this work because MONC is
written in Fortran and-so integration with some other ac-
celeration technologies, such as OpenCL, is more difficult
because there is no mature Fortran interface. It was also
important, from the Met Office’s perspective, to work with
a standard and technology that was open, which ruled out
CUDA. At the time of this work (2015) implementations
of OpenMP 4.0 were less mature and hence OpenACC
seemed like an obvious choice. During this work we learnt
a lot about using OpenACC and ways to work around
issues both with the maturity of the standard and also
implementation (Cray compiler), such as deep copying of
data which was discussed in [11]. Whilst this work was in-
teresting and proved the general concept of running MONC
heterogeneously in this fashion, the amount of computation
performed by the advection schemes was just not sufficient
to outweigh the cost of data transfer and hence it did not
take advantage of the computational power of the GPU.
The CPU was often left waiting for the GPU and, in terms
of performance, there were no clear benefits to offloading
the advection scheme in this manner. However, the CASIM
microphysics scheme is far more computationally intensive
than advection [12] and enabling it doubles or even trebles
the runtime of MONC. Hence this is a far more interesting
candidate for acceleration, using the same heterogeneous
approach.

B. Related work

A number of accelerated versions of climate and weather
models, used by the community, have been developed.
GALES [4] is a GPU accelerated Large Eddy Simulation

model, implemented in CUDA and working at mixed-
precision this was initially based on the CPU only DALES
model. With some minor exceptions, the entirety of the com-
putation is performed on the GPU, with the CPU servicing
the GPU only and likely sitting idle for much of the run. It
is also not clear from [4] how their model would parallelise
over multiple nodes and GPUs which is required in order to
tackle the scale of problems that scientists wish to currently
investigate.

The Non-hydrostatic Icosahedral Model (NIM) is a
weather prediction model developed at NOAA’s Earth Sys-
tem Research Laboratory which has been ported to GPUs
and the Knights Corner (predecessor to KNL) architectures
[5]. The initial port was done using F2C-ACC directives and
then the code was updated to also support OpenACC. This
project has ported the dynamical core of NIM onto GPUs
and KNCs, the paper [5] discusses in detail the optimisations
performed to reach the level of performance that they have
reached and makes suggestions such as keeping the size
of GPU kernels as small as possible. The GPUs (K40s)
out performed Knights Corner in their experiments but the
performance of the latest generation of Phi, the KNL is
known to be significantly better than the KNC [18] so this
conclusion may no longer hold true for the latest generation
of the hardware.

COSMO is an atmospheric model used for weather pre-
diction by a variety of European organisations and has been
ported to run on GPU systems [6] as well as experimental
ports to KNL [9]. Two approaches were adopted for the GPU
port, an entire rewrite of the dynamical core and a directive
based approach for other parts. The dynamical core, which
takes up around 60% of the overall runtime and is modified
infrequency [7], was ported to a domain specific language,
STELLA [8], which separates out the atmospheric model
from the architecture specific implementation. Other parts
of COSMO, which are less computationally intensive and
modified by a wider number of people, have been ported
using OpenACC and the community can keep the same code
base for these parts without having to learn new languages.
The work done in [9] discusses how critical it is to per-
formance to get the mapping of MPI processes and threads
to the cores correct. They saw a very significant decrease
in performance when running at sub-optimal numbers of
MPI processes (either too few or too many) which is not
necessarily obvious without experimentation. A new project
has begun, GridTools, which aims to rewrite STELLA and,
amongst other things, enable targetting at KNL [10]. It is still
early days but they are hoping to have the one portability
layer for numerous architectures to aid in future proofing
technology choices.

The Weather Research and Forecasting (WRF) [16] model
is a numerical weather prediction code developed for atmo-
spheric research. This model has been ported to Knights
Ferry (the first Xeon Phi), Knights Corner and now Knights



Landing and they are seeing significant performance on the
KNL both in comparison to the previous generation KNC
and also Broadwell and Haswell CPUs [15]. They state that
taking advantage of SIMD is an crucial factor for maximis-
ing performance and the AVX-512 vector instructions of the
KNL are of significant benefit because of the high memory
bandwidth keeping the units feed with data, but one needs to
ensure that their code can utilise the MCDRAM effectively.

III. GPU CASIM

Whilst previous work done in [11] did not produce the
performance benefits we had hoped for, mainly in part due
to the limited computation in the advection schemes, the
general idea of splitting the dynamics group in this fashion
is sound. Offloading specific components and running these
concurrently with other components on the CPU, before
combining the results together has potential. Since the work
of [11], CASIM has been coupled with MONC and it
is at-least five times more computationally intensive than
advection. As CASIM is part of the dynamics group we
can take advantage of the same general ideas, with the
theory being that we will see definite benefit to offloading
CASIM because far more computation is being performed
than in advection which is likely to amortise the cost of
data movement. Due to the existing work and our experience
with OpenACC we stayed with this technology to leverage
the existing implementation. We also focus on the Cray
compiler, not least because the MONC model does not
currently compile with the PGI compiler.

A. Loops or the entire code

The advection code ported to GPUs in [11] was fairly
standard in terms of being able to identify a number of
computationally intensive loops, decorate these with Ope-
nACC and for these loops to be transformed into our
kernels running on the GPU. However with CASIM this
was not the case and instead the computationally intensive
loops were buried in the code and called many times, for
different q fields and other values, throughout a column’s
run. One option was to significantly refactor the code and
extract each computationally intensive loop with the host
CPU performing other, less intensive, non-floating point
operations. In this approach the CPU would perform some
work and transfer the required data onto the GPU. Kernels
on the GPU would then execute and transfer the required
data back to the CPU which would perform some more
work and repeat. However this had three major downsides; a
significant refactoring of the code required which would very
significantly modify CASIM, excessive synchronous data
movement onto and off the device for each kernel launch
and requiring the CPU to work in lock-step with the GPU
instead of taking advantage of the heterogeneous approach
developed in [11] and concurrently working on other aspects
of the dynamical core. We felt that this approach would

involve far too much data movement and the GPU’s activity
would be very intermittent, instead of keeping it busy.

Instead the decision was made to offload the entirety of
CASIM to the GPU, not just the intensive floating point
operations but also other loops, conditionals and integer
calculations. In this approach all the data movement would
be done once en-mass per timestep and then the entirety
of the scheme would run on the GPU whilst the CPU
performs the rest of the dynamics. Contributing source terms
would then be copied back from the GPU to the CPU and
integrated. The downside was that a very large amount of
code had to be offloaded, including 50 Fortran modules and
123 subroutines, which OpenACC supports but is far less
common than the offloading of loops containing floating
point calculations only.

B. OpenACC implementation

CASIM contains an entry point subroutine, micro-
physics common where a specific column (represented by
their moisture q fields) is provided by the parent model and
CASIM operates on this column of data, writing results into
source term arguments for each q field. The parent model
drives the scheme by calling it for each column and we
applied OpenACC at this level, around the loops in the two
horizontal dimensions.

Listing 1 illustrates the application of OpenACC, where
each iteration of the loop is mapped to a single OpenACC
vector lane. Calling into microphysics common this sub-
routine, along with all the other CASIM subroutines that
it calls, are offloaded to the GPU. These subroutines are
offloaded via OpenACC 2.0’s routine directive, with the seq
clause denoting that there is no further OpenACC parallelism
inside this routine (as calculations for a specific column are
sequential and tightly coupled.) Effectively this maps each
column to a thread on the GPU and all subroutines to be
offloaded onto the GPU were marked in this manner. The
async clause is used with the parallel directive here to denote
asynchronous launching of the kernel.

subroutine CASIM()
!$acc parallel async(ACC_QUEUE)
!$acc loop collapse(2) gang worker

vector
do i = is, ie
do j = js, je
call microphysics_common(i,j, ...)

end do
end do
!$acc end loop
!$acc end parallel

end subroutine CASIM

subroutine microphysics_common(i,j, ...)
!$acc routine seq



...
end subroutine microphysics_common

Listing 1. Top level OpenACC kernel decomposition

Many of CASIM’s modules contain a number of global
variables which are referenced throughout that module and
the entire scheme. In order to handle these the declare
directive, along with link clause which provides complete
control to the programmer over the variable, was used.
Whilst explicit directives are required to allocate space for
the variable on the GPU and to copy data on and off,
we chose this approach for the flexibility that it provides
which is most suited to CASIM. Listing 2 illustrates the
pressure, reference profile and dqv variables, declared on
the GPU via the declare link directive. Due to the desire to
run GPU kernels asynchronously with the CPU, the update
directive is used, however this does not allocate memory
for variables on the GPU. Therefore data copying is split
into two distinct sections, the copying of all variables at
initialisation, which copies constants and allocates memory
for other non-constants (such as the prognostic fields), and
secondly the copying of non-constant input variables to
the GPU that vary each timestep (such as pressure) and
copying back to the CPU result variables (such as dqv)
for each invocation. The ACC QUEUE parameter, that we
define in code, results in a dependency that data arrival will
complete before kernel execution, and only once execution is
completed will the copy back of result data (via update host)
to the CPU begin. The enter data and exit data directives
are required to set the data lifetime to be dynamic, starting
a data region and making the variables available to every
kernel that executes in this region. At shutdown the exit
data directive is issued to close the data region and free up
memory on the GPU. A total of 250 global variables have
been handled in this manner.

real(wp) :: pressure(:), dqv(:),
reference_profile

!$acc declare link(pressure,
reference_profile, dqv)

subroutine initialise_micromain()
...
!$acc enter data copyin(

reference_profile, pressure, dqv)
end subroutine initialise_micromain

subroutine shipway_microphysics()
!$acc update async(ACC_QUEUE) device(

pressure)
!$acc parallel async(ACC_QUEUE)
...
!$acc end parallel
!$acc !$acc update async(ACC_QUEUE)

host(dqv)
end subroutine shipway_microphysics

subroutine finalise_micromain()
!$acc exit data
...

end subroutine finalise_micromain

Listing 2. Handling global variables in OpenACC

C. Performance results

Performance tests have been carried out on Piz Daint,
both in its previous XC30 configuration (8 core Intel Sandy
Bridge CPU and K20X GPU per node) and current XC50
configuration (12 core Intel Haswell CPU and P100 GPU
per node.) A standard MONC test case for modelling stratus
cloud has been used and in this section we consider both
the simplest CASIM warm configuration which involves
computation with 5 moisture q fields and also the more
complex cold case which requires 18 moisture q fields
and involves significantly more computation than its warm
counterpart. They are interesting to compare because the
cold case is far more computationally intensive, so might
make better use of the GPU, but also involves copying far
more data (due to the extra number of fields) to and from
the GPU which will have an overhead. We vary the number
of horizontal columns in two dimensions (hence the number
of GPU threads), fixing the vertical column height to be 60
grid points. The Cray compiler was used for all tests and
the presented results were averaged over three runs.

Figure 3. XC30 vs XC50 runtimes for warm stratus test case on MONC
with CASIM

Figure 3 illustrates the model runtime for MONC, running
CASIM, both in CPU only and hybrid GPU mode on both
the XC30 and XC50 configurations of Piz Daint utilising
one CPU core on a single node. From the homogeneous



perspective it can be seen that there is a significant increase
in CPU performance going from Sandy Bridge to Haswell
but there are also a number of other observations that can
be made from graph in terms of heterogeneous performance.
On the XC30 it can be seen that the hybrid code exhibits
a very large increase in runtime between 14000 and 18000
vertical columns, actually taking longer on 18000 columns
than the CPU version. Fundamentally this was due to a
lack of registers, the default setting was to allocate 128
registers per thread giving a theoretical occupancy on the
K20X of 0.25. We reduced the register count to 64 registers
per thread which then improved the theoretical occupancy
to 0.5. The K20X has 14 Streaming Multiprocessors (SMs)
[13], each capable of executing up to 2048 threads, but
with a theoretical occupancy of 0.5 this becomes 1024, and
1024 * 14 = 14336 concurrent threads maximum. As we are
mapping each vertical column to a GPU thread, at exactly
14337 columns we see a large jump in runtime on the K20X
because columns now have to be split into two sequential
batches rather than running concurrently. We don’t see this
issue with the P100 because, whilst the number of registers
in each SM and the maximum number of threads an SM
can execute is the same, the P100 is equipped with 56 SMs
[13] rather than 14 in the K20X. Therefore the P100 affords
us a limit of 57334 threads and hence that is the maximum
theoretical number of concurrently executing columns pos-
sible. Due to these extra registers we were able to increase
the number of registers per thread to 128 which resulted in a
performance increase in comparison to CASIM running on
the K20X. For instance running in hybrid mode with 14000
vertical columns there was a reduction in MONC runtime of
65% on the XC30, whilst on the XC50 the runtime halves
in comparison to its homogeneous counterpart.

However the overall picture illustrated by figure 3 only
tells half the story. Whilst the overall runtime speed-ups
look impressive for the heterogeneous MONC model run-
ning CASIM on the GPU, we effectively have a two way
concurrency because CASIM is running on the GPU at the
same time that the MONC model is doing the rest of its
advection on the CPU. It is therefore important to look
further to answer the question of whether the GPU is actually
giving a benefit here in contrast to using the same approach
but running the scheme concurrently on another CPU core
instead. We looked more closely at the performance of
CASIM itself to understand whether running it on the GPU
provides any performance benefit, or if the drop in runtime
is mainly because of the dynamics concurrency. Figure 4
illustrates the average time taken by CASIM per timestep for
different numbers of vertical columns with both the warm
and cold stratus test cases on the XC50 against one CPU
core. It can be seen from this graph that running CASIM
on the GPU is significantly faster than running on the CPU,
for instance executing the cold stratus test case over 20000
vertical columns on the GPU is 7.4 times faster than running

Figure 4. Average CASIM runtime per timestep using on one CPU core

it on one CPU core only. Even though the warm test case is
less computationally intensive, a similar speed up is achieved
in comparison to it also running on a single CPU core.

The results in this section have so far concentrated on
running MONC, and CASIM, on a single Haswell core.
However the Haswell processors of Piz Daint are equipped
with twelve CPU cores per package and as such it is not
necessarily realistic to just compare against runs involving
one core only, with the rest remaining unused. Figure 5
illustrates the average CASIM runtime per timestep over
20000 vertical columns for the cold stratus test case as we
modify the number of CPU cores in use (weak scaling),
effectively decomposing the global domain over these cores
each running MONC concurrently. In the case of the hybrid
version of our experiments, where we run MONC on the
CPU and CASIM on the GPU, each core shares the same
GPU via MPS’s multiplexing, effectively running multiple
kernels on the GPU concurrently. From figure 5 it can be
seen that the very significant speed advantage to running
CASIM on a GPU in comparison to one CPU core doesn’t
hold as we increase the number of cores. The break even
point is around 8 CPU cores and at 12 CPU cores it is
actually faster to run CASIM on the CPU instead of the
GPU. Columns in CASIM are independent, hence the code
is embarrassingly parallel and scales very well (there is an 11
times speed up over 12 cores in comparison to 1 core), and
so we are utilising more of the resources of the CPU whilst
the GPU is being utilised exactly the same, just driven by
different CPUs. Whilst the runtime on the GPU is fairly flat,
in comparison to being driven by one CPU core the average
time per timestep does decrease slightly over twelve cores
to 81% of the runtime driven by one core.

Whilst the results in figure 5 do argue that running
CASIM over the entirety of the CPU cores, rather than the
GPU, is advantageous, it should be noted that our approach



Figure 5. Average CASIM runtime per timestep for cold test case over
20000 vertical columns as the number of CPU cores is modified

to offloading is a hybrid one where the parent model will
run concurrently with CASIM. Due to this concurrency the
overall runtime of MONC is still less over twelve CPU cores
when run hybrid in comparison to running the entirety of
MONC and CASIM sequentially on the CPU. To understand
the reasons for the performance behaviour of the GPU
version, table 6 illustrates the relative time spent by the GPU
copying data on, off and doing computation. It can be seen
that even for larger numbers of columns the vast majority
of the runtime is being spent in the kernel and data transfer
actually only takes up a small fraction of the overall time.
With the warm test case, which involves transferring con-
siderably fewer fields but also less computation, interesting
the data transfer times are not too dissimilar from the cold
test case and the time spent in execution by the kernel is
slightly lower as an overall percentage than the cold test
case. However both these configurations are spending the
vast majority of their runtime during execution on the GPU
rather than data transfer. One can therefore conclude that
there is sufficient computation to amortise the cost of data
transfer, unlike the previous work done in [11].

Figure 7 illustrates the distribution of instruction types
during execution of a CASIM kernel. At 46% of the overall
instructions, integer arithmetic is the far most significant
type of instruction executed by CASIM. Floating point
operations, what a GPU is ideal for, is the second most
common form of instruction but at only 20%. The kernel is
only idle, due to warp divergence or conditional prediction,
for 6% of its time. Initially we had thought that warp
divergence might be a significant limitation upon CASIM’s
GPU performance, but this is only a fraction of the overall
instruction distribution. Far more significant is that almost

Column size Config To GPU Kernel From GPU

2000 Warm
1.5ms

5%
29ms
93%

0.8ms
3%

2000 Cold
1.82ms

4%
39ms
94%

0.74ms
4%

10000 Warm
7ms
7%

88ms
88%

4.6ms
5%

10000 Cold
11.2ms

5%
214ms
93%

4.6ms
2%

20000 Warm
18ms
7%

224ms
90%

8ms
3%

20000 Cold
22.56ms

5%
395ms
93%

8.1ms
2%

Figure 6. Time spent in different phases of kernel launch

Figure 7. Distribution of instruction type during typical CASIM kernel
execution

half of the instructions issued to the GPU are integer
instructions rather than the floating point operations that
GPUs are so suited towards.

A major limitation of offloading the entirety of CASIM
which we did not anticipate is that of memory limits.
Currently 20000 vertical columns (1.2 million grid points)
is the maximum data size possible and beyond this the GPU
runs out of memory. But even for the largest run, there is
only around 256 MB of data copied onto the GPU as an input
for CASIM on each timestep. However upon initialisation a
large number of data structures are allocated which store
temporary data, for instance the different distributions of
moisture, per column. CASIM has been written in such a
way that many temporary variables are used in processing
a single column, representing different values for different
states up and down the column. On the GPU each column is
being run concurrently by separate threads, hence we have to
replicate all these temporaries for every column so that each
thread has its own effectively private local data areas. This
replication, which is unavoidable in our approach, results in
a significant memory overhead and hence we hit the memory
limit of the GPU.



Figure 8. Average CASIM runtime per timestep variance from best to
worst configuration over 20000 vertical columns

D. Optimisations

The results presented in section III-C represent the best
possible configuration of CASIM, ported to GPUs with
OpenACC. As discussed in section III-B we optimised
aspects such as the data transfer to limit the data that must
be copied on and off the GPU which is fairly standard
and based upon lessons we had learnt in [11]. We also
found empirically that 128 registers per thread gave the best
performance on the P100. However far more important for
performance was choosing an appropriate number of thread
blocks (the number of gangs in OpenACC) and selecting an
appropriate number of threads per block (vector length in
OpenACC.) These are set by optional clauses in the parallel
OpenACC directive and it was found that omitting this and
relying on default values resulted in very poor performance.
Additionally the optimal configuration varied significantly
based on the number of vertical columns and number of
cores sharing the GPU. This variation is illustrated in figure
8, showing the best performance on the GPU per core and
the worse performance on the GPU per core over 20000
vertical columns for the cold test-case. The difference is
significant and the only way of deducing correct settings
was by experimentation.

We ran over 8000 permutations of different configura-
tions and generally speaking at smaller numbers of vertical
columns (threads) then more, smaller, thread blocks are de-
sirable. As one increases the number of columns (and hence
threads) then fewer larger thread blocks are instead optimal.
With smaller amounts of data to compute per column (i.e.
lower values for the height of columns or the warm test case
instead of the cold test case) then configurations utilising
fewer thread blocks performed best. As one increases the
number of cores, which effectively lowers the number of
threads per kernel, then again the configuration of fewer,

larger thread blocks is preferable.

E. Programming challenges

For the work described in this section the Cray compiler,
environment version 8.5.5 was used which is the standard
compiler used by MONC and CASIM on homogeneous Cray
systems. Whilst this compiler implements the OpenACC 2.0
standard fully we found a number of bugs and limitations
with the compiler that had to be worked around. This is
not hugely surprising because, by offloading very many
entire subroutines, we were using OpenACC in a much more
complex manner than many other codes which simply of-
fload computational loops. The short comings and associated
workarounds that we describe in this section have not been
documented elsewhere and most commonly were when the
Cray compiler generated incorrect PTX instructions, often
at higher levels of optimisation.

1) Passing arrays of derived types: When a number of
CASIM routines where compiled, the assembler reported the
error Arguments mismatch for instruction ’mov’ Unknown
symbol ’t$5’ Label expected for forward reference of ’t$5’.
This was when it was attempting to assemble the PTX code.
These routines all accept an array of a derived type as a
dummy argument and the compilation of these arguments
is erroneous as other arrays of non-derived types compile
without issue. Inspection of the PTX code revealed that when
an array must be passed as an argument to an accelerator
routine, a data structure is used which acts as an array
descriptor storing information such as the arrays bounds,
number of elements, pointer to the data, and other fields.
When an array of derived type is passed then broken PTX
code is generated by the Cray compiler for the preparation
of this data structure.

The problem was solved by wrapping the offending array
into a derived type itself, where the original array is now a
member of the wrapper type and only a single instance of
this wrapper type is passed to the routine. We found it also
necessary to store the length of the array in this wrapper type
because this approach was required for a number of different
routines. Each of these routines originally accepted arrays of
different lengths and because the use of allocatable members
in derived types code is discouraged in OpenACC, explicitly
storing the length was instead adopted.

2) Large arguments: As has been described in section
III-A the entirety of the scheme has been offloaded to the
accelerator and the main loop over vertical columns was
wrapped in an OpenACC accelerator region. Because the
compiler used in this project employs NVIDIA CUDA as the
OpenACC back-end, the accelerator region is implemented
as a CUDA kernel function which is subsequently executed
by the GPU. The variables referenced in the lexical scope of
the accelerator region, i.e. in its immediate body and not in
the procedures it calls, are passed through as arguments to



the CUDA kernel function implementing the region. How-
ever, when a certain threshold size or number of arguments
is exceeded the compiler passes these variables differently
by packing them into a contiguous buffer in memory on
the accelerator and passing the pointer. Code on the GPU
subsequently unpacks this buffer which is transparent to the
user. This feature is referred to as Large arguments and the
mechanism requires support from both the host side and
the accelerator side. The host side of this feature is not
implemented by the Cray compiler and generates the run-
time error ACC: craylibs/libcrayacc/acc hw nvidia.c:915
CRAY ACC ERROR - Large args not supported. Neither the
nature of the threshold, i.e. whether it applies to the overall
number or the size of arguments, nor any specific numerical
value were mentioned in documentation. Empirically it was
found that the feature is triggered when the CUDA kernel
has more than 532 arguments.

Because CASIM uses enough variables in the lexical
scope of the accelerator region to trigger this error it became
necessary to reduce the number of CUDA kernel function
arguments used by our code. Two factors were found to
influence the number of kernel arguments most significantly:

1) the number of distinct module arrays used in the
lexical scope of the accelerator region

2) the number of times each such array is referenced in
the lexical scope of the accelerator region

The total count is impacted most significantly due to arrays
because they often utilise multiple arguments. In the simple
warm stratus test case, there are 26 distinct 3 dimensional
fields (representing the original 5 q fields) and 34 3-
dimensional aerosol fields passed into CASIM’s accelerator
region. Each field uses up to ten arguments and hence these
alone occupy several hundred CUDA kernel arguments. To
reduce the total count we packed these fields into a four
dimensional array and then referencing them on the GPU
directly from this structure, which brought the argument
count below the large arguments threshold and avoided the
error. The fact that large arguments is not implemented by
the Cray compiler suggests not many, if any, codes push
Cray’s OpenACC implementation to its limits in this aspect.

3) Assigning variables in conditionals: In certain sub-
routines local variables were only assigned and used in
conditionals, such as in listing 3 where variable dm 3 is local
to some subroutine but no value is assigned to it by default.
If a specific conditional is met then a value is assigned and
later in the code if the same logical conditional is met (i.e.
the variable will never be read unassigned) then it is used. At
any optimisation level this resulted in the error INTERNAL
COMPILER ERROR: ptx cg::generate code for sym(): use
before def of global temp. The work around was to ensure
that local variables are always assigned a value (often zero)
at the start of the specific subroutine. This is of course
good practice anyway, but worth noting when working on

an existing code base to determine whether there are any
variables of this form.

...
if (some_condition) dm_3=5.435
...
if (some_condition) othervariable=dm_3

Listing 3. Assigning and using a variable in conditional only error

4) Profiling: NVDIA’s nvprof was used to profile the
kernels on the GPU, however a number of key limitations
were identified in this tool. Firstly, due to the Cray compiler
converting the entirety of the code to a single CUDA
kernel, it was not possible to drill down and understand the
behaviour of the OpenACC code for each individual routine
being executed. This would have been very useful in our
work but because most OpenACC codes are based around
fairly simple computationally intensive loops then it is likely
not been prioritised.

The other major limitation was in collecting metrics and
events which are required for in-depth analysis of the kernel.
When collecting either of these with local problem sizes
larger than 40 by 50 columns then the code failed with
an out of memory error. With these smaller model runs,
collecting the information also very dramatically increased
the execution time on the GPU, so it is not entirely clear
if the information obtained was representative of a real run
or not. It is believed that most often CUDA kernels are far
simpler and smaller than the one in use here, and the large
size of our kernel is responsible for this shortcoming. It is
entirely possible that the developers of nvprof simply have
not designed their tool a single kernel of such size. Once
again, if it was possible to split the OpenACC code up into
multiple kernels, then that would most likely assist in this
situation too.

IV. KNIGHTS LANDING CASIM

Programming for Knights Landing (KNL) is, in many
ways, more straightforward as this technology supports
direct execution of MPI codes and/or CPU threads using
technologies such as OpenMP. A version of CASIM using
OpenMP for threading was implemented and similar to
the OpenACC version orients the parallelism around each
column iteration, so that processing columns can be done in-
dependently by threads. Module global variables, mentioned
in section III-B, were handled via the threadprivate directive,
placed next to the variable definition. The copyin clause was
provided to the parallel directive, which both allocates space
for threads copies of allocatable arrays and also copy in
any prerequisite values from the master variables into the
private copy for each thread. The SIMD OpenMP directive
was applied to computationally intensive loops in the code
that work up or down the column.



Figure 9. Average CASIM runtime per timestep on the KNL

A. Performance

MONC and CASIM, with the same warm and cold stratus
test cases as described in section III-C were executed on
the 64 core model 7210 KNL, which are part of ARCHER
the UK national supercomputer (the KNL aspect of this
machine is a Cray XC40.) Each node is equipped with
96GB of main memory and 16GB of on chip MCDRAM
which was configured to use as a cache for accessing the
main memory and run in quadrant mode. Figure 9 illustrates
the performance of CASIM when running both cold and
warm stratus test cases on the KNL and the presented results
were averaged over three runs. With the warm test case it
can be seen that there is a large jump in runtime between
18000 vertical columns and 20000 vertical columns but
this configuration signified another important aspect too.
Namely that up to and including 18000 columns running
with 256 processes, 4 MPI processes per core (with hyper-
threading) resulted in the best performance. However from
20000 columns, still using 4 way hyper threading, where
each physical core runs one MPI process and each process
executes four threads was optimal.

This same hyper-threading behaviour was also true for
the cold test case and this point occurred sooner, at 12000
vertical columns. Figure 10 illustrates the performance of a
CASIM timestep for the cold test-case with 2000 columns,
it can be seen that enabling hyper-threading and running
OpenMP threads on these results in a runtime increase of
approximately three times and there is a performance penalty
when we run less than 64 processes and thread across
the cores instead. The results of 128 and 256 processes
denote where we have enabled hyper-threading but run MPI
processes on these hyper-threads instead of OpenMP threads
which was found to give optimal performance for this
problem and domain size. Similarly to the warm test-case,
for 20000 columns enabling hyper-threading and running

Figure 10. Average CASIM runtime per timestep on the KNL with the
cold test-case over 2000 columns

threads across these (in contrast to processes which is
optimal at 2000 columns) was the best strategy. For all
these runs the OpenMP guided scheduling was found, by ex-
perimentation, to be best scheduler. The dynamic scheduler
was a close second choice but the default, static, scheduling
produced poorest performance and effectively negated the
benefit in enabling hyper-threading for larger column counts.
There are a significant number of conditionals within the
processing of each column, and it was found that the amount
of computation associated with each column is therefore
not equal. Hence a static scheduling strategy will result in
significant work imbalance which is why the performance it
affords is so poor in contrast to a dynamic approach.

The column numbers described in figure 9 and that we
have been concentrating on so far represent very large
local domain sizes per node for traditional MONC runs.
With the column height of 60, the smallest number of
vertical columns (2000) presented would result in 120000
grid points, whereas the largest system would result in 1.2
million grid points. In [1] we ran with 65536 local grid
points per CPU core which is typical of current users of
the code and advised best practice. However using the KNL
it is possible to scale up to far larger data sizes and this
is potentially where we might see additional benefits to
using the architecture. Figure 11 illustrates average CASIM
runtimes per timestep as we scale up the problem size
by increasing the number of vertical columns, distributed
amongst the 64 KNL cores running 4 hyper-threads per core.
The maximum size is a million columns (60 million grid
points), beyond which the node runs out of memory as both
the MCDRAM (running as a cache) and node main memory
has been exhausted. This memory limit is more a facet
of the parent MONC model, which must store additional
prognostic fields (such as wind and temperature) which
CASIM does not use, and also maintains three versions
for each prognostic field. With smaller data sizes as we



Figure 11. Average CASIM runtime per timestep on KNL with large data
sizes

scale up the problem size the runtime increases reasonably
proportional, for instance when we go from 2000 vertical
columns (120000 grid points) to 4000 columns (240000 grid
points) the runtime doubles. However when we run with 60
million grid points, increasing the problem size 500 times,
the runtime has only increased 237 times in comparison.
Therefore as we scale up the problem size the runtime
increase becomes less.

Figure 12 illustrates the impact of different process-thread
configurations for the largest run of 100000 columns (60
million grid points.) It can be seen that either running with
64 processes, each utilising 4 threads on the hyper-threads
or 32 processes, each utilising 8 threads on the hyper-threads
is the optimal configuration. As we reduce the number of
processes beyond this with hyper-threading enabled then the
performance decreases. Interestingly with hyper-threading
disabled, whilst the best possible performance is poorer than
utilising hyper-threading, the impact of reducing the number
of process is far less severe. It was not possible to do
tests with 128 or 256 processes on hyper-threads as an Out
Of Memory (OOM) error was reported, this is not hugely
surprising as this largest configuration is running right at the
memory limit and more processes, in contrast to threads, will
result in additional memory overhead.

Table I illustrates the average CASIM runtime per
timestep (cold test-case over 10000 columns) when MC-
DRAM was used in different configurations. The Flat mode
numactl entry illustrates the case where MCDRAM is used
in flat mode but all of the user’s memory is explicitly placed
into MCDRAM. It can be seen that taking advantage of
MCDRAM provides a significant performance benefit to not
utilising it (flat mode), and the performance one gains from
cache mode is comparable to explicitly placing all memory
in MCDRAM. From this experiment we therefore conclude

Figure 12. Average CASIM runtime per timestep on KNL with the cold
test-case over 100000 columns

that for CASIM, utilising MCDRAM in cache mode is
optimal and this matches generally accepted wisdom [17].

Configuration Average CASIM runtime per timestep (s)
Flat mode 0.27

Flat mode numactl 0.11
Cache mode 0.11

Table I
MCDRAM CONFIGURATION AVERAGE CASIM RUNTIME PER

TIMESTEP FOR COLD TEST-CASE OVER 10000 COLUMNS

V. COMPARISON WITH CPU CASIM

In addition to the runs conducted in sections III-C and
IV-A, we have also performed CPU only runs for compar-
ison using a Haswell (12 core) processor and Broadwell
(18 core) CPU. Haswell tests were performed by utilising
the CPU only of Piz Daint, an XC50, and the Broadwell
machine used is the UK Met Office’s XC40. One of the
key questions driven by this work is what is the best choice
for models like CASIM, should we invest in accelerators
such as GPUs and KNLs, or instead focus more on powerful
homogeneous CPU only machines.Figure 13 compares the
average runtime of a single CASIM timestep using the
entirety of a Haswell CPU (all 12 cores), a full Broadwell
CPU (all 18 cores), a P100 GPU and KNL-7210. From these
results it can be seen that the 18 core Broadwell and the KNL
versions perform the best, the Haswell CPU is in third place
but breaks even with the KNL at 18000 columns. It can be
seen for all configurations that the GPU version performance
is the poorest.

It was noted in section IV-A that the KNL seems to
favour working on larger domains, such as 60 million grid
points, in comparison to smaller amounts of data. Figure 14
illustrates a comparison between CASIM running on the 18



Figure 13. Average CASIM runtime per timestep cold test case comparison
between CPUs, GPUs and KNLs

core Broadwell CPU and the KNL as we scale the number of
vertical columns and hence the number of grid points. Whilst
the Broadwell CPU and KNL exhibit similar performance on
smaller numbers of columns the break even point is 30000
vertical columns and after this point the KNL performance
is obviously beating that of the Broadwell. As we reach one
million columns (60 million grid points) there is a significant
difference and the runtime per CASIM timestep on the KNL
is 65% of that on the Broadwell CPU. It is believed that
this behaviour is due to the MCDRAM and utilising this
as a cache is advantageous in comparison to the CPU for
larger data sizes. A comparison between sockets and the
KNL is not necessarily fair as XC CPU machines have two
CPUs per node. In figure 14 we also compare an XC40
node (two Broadwell 18 core CPUs) and an XC30 node
(two 12 core Ivy Bridge CPUs.) It can be seen that the
XC40 node performs the best for all configurations, this is
not hugely surprising as CASIM is embarrassingly parallel
and hence scales very well and we are contrasting 36, more
powerful, Broadwell cores against 64, simpler, KNL cores.
CASIM on the KNL outperforms the Ivy Bridge XC30
nodes (ARCHER) as this has fewer cores and is of an older
generation than the Broadwell CPUs. From these results we
therefore believe an important message for potential users of
CASIM on the KNL is that loading it up with a significant
amount of computation (and hence number of grid points)
is the best approach.

A major limitation of the OpenACC GPU version of
CASIM was the significant amount of memory required to
hold temporary variables, a distinct copy required per thread.
However because on the KNL we are only running with a
small number of threads in comparison to the P100 then the
memory overhead is far less. This is due to a fundamental
difference in the architectures, but one that greatly impacts

Figure 14. Average CASIM runtime per timestep cold test case comparison
between Broadwell, Ivy bridge and KNL on larger column counts

the grid size scalability of the code.

VI. CONCLUSIONS AND FURTHER WORK

In this paper we have explored the applicability of both
GPUs and KNLs to the microphysics model CASIM. Due
to the inherent design of the code our approach taken for
porting onto GPUs was unusual where we offloaded not only
the computationally intensive aspects but also other aspects
too such as conditionals, loops and integer arithmetic. Whilst
there was some benefit to doing this in comparison to a
single CPU core, the fact that the GPU was not continuously
performing floating point calculations and the significant
memory requirements meant that there were some inherent
shortcomings with this approach. From the findings of this
work we believe that OpenACC and its implementations
are mature enough to use for offloading significant code
to the GPU, however one needs to ensure that the GPU
will not spend a significant fraction of its time working on
non-floating point operations and also that any additional
memory requirements are well understood. It is our feeling
that if we could significantly increase the domain size on the
GPU, to a similar size that we have run on the KNL, then
it would be more advantageous but this is not possible due
to the replication of temporary variables hitting the memory
limit.

In comparison it was far easier to take advantage of
KNL and the performance obtained was more favourable
in comparison to the latest generation CPUs, although a
Broadwell XC40 node outperforms the KNL. We found that
the key here was to load as many grid points and hence
computation onto the KNL, in which case it significantly
outperforms a single latest generation CPU in a socket
to socket comparison. Irrespective best performance was
obtained when we ran at least one MPI process per core,
at smaller domain sizes enabling 4-way hyper-threading



and running a process per hyper-thread was optimal and
at medium to larger numbers of grid points instead placing
one process per physical core and threading over the hyper-
threads gave best performance. We therefore conclude that
KNLs and Cray machines with this technology are more
suited to accelerating CASIM, not least because they are
more general purpose than GPUs and hence can handle the
other, non computationally intensive floating point aspects
of the code.

When discussing the performance on the KNL in section
IV-A we focused just on CASIM rather than quoting any
overall runtime numbers for MONC with CASIM. The
reason for that is that the rest of the MONC model has not
been optimised for CASIM and as such does not utilise the
architecture to its full potential. Important future work will
be, based on what we have learnt here, further optimisation
of other MONC components, such as the advection schemes,
for the KNL. Additionally whilst we have applied SIMD
directives to the computationally intensive loops in the KNL
code for a vertical column, we have not explicitly aligned
the data. As per [17] it is preferable to ensure arrays
especially are aligned to 64 byte boundaries and as such
further development of the code to investigate and ensure
this is desirable.
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