
Implementing a Hierarchical Storage Management system in a large-scale Lustre
and HPSS environment

Brett Bode, Michelle Butler, Jim Glasgow, Sean
Stevens

National Center for Supercomputing Applications
University of Illinois

1205 W. Clark St. Urbana, IL 61801
{brett, mbutler, glasgow, sstevens}@illinois.edu

Nathan Schumann, Frank Zago
Cray Inc.

901 Fifth Avenue, Suite 1000
Seattle, WA 98164

{nds, fzago}@cray.com

Abstract— HSM functionality has been available with Lustre
for several releases and is an important aspect for HPC systems
to provide data protection, space savings, and cost efficiencies,
and is especially important to the NCSA Blue Waters system.
Very few operational HPC centers have deployed HSM with
Lustre, and even fewer at the scale of Blue Waters.

This paper will describe the goals for HSM in general and detail
the goals for Blue Waters. The architecture in place for Blue
Waters, the collaboration with Cray, priorities for production
and existing challenges will be detailed as well in the paper.

Keywords-component; formatting; style; styling; insert (key
words)

I. INTRODUCTION
Current practices in capacity management of shared, high-

performance file systems for HPC almost universally employ
an age based purge mechanism to maintain file system usage
at a level commensurate with the capability of the overall
system. This practice has been the standard for many years
now, but with the continued development of parallel file
systems, in particular Lustre, new opportunities are emerging
to use multiple tiers of storage to obtain an optimal mix of
storage capacity and performance within a single file system
environment.

Relying on file purging mechanisms tends to result in poor

use of the capacity of these dynamic file systems. This often
requires over-provisioning of file systems to allow continuous
operation through the peaks and troughs created by the purge
process. Managing storage solely by the date of last access can
be extremely inefficient for both the system and the science
team. On Blue Waters NCSA requires science teams to
manually move data between the online file system and the
HPSS [1] based tape environment in order to preserve data for
longer than the purge policy (currently 30 days based on last
access) taking time away from their research. By enabling
automated capacity management of the “scratch” filesystem
using Lustre’s HSM [2] functionality NCSA intends to
address both of these concerns.

In general, HSM functionality provides a single

namespace view to multiple tiers of storage along with manual
and automated data movement. The purpose of adding the

complications of an HSM is to separately optimize the
capacity and performance of the storage environment. The top
tier can be optimized for performance while lower tiers can be
optimized for capacity. Files can be resident on one or all tiers
and policy based data movement moves data to the larger,
slower tiers as the data ages. At some point the data may be
removed from the top tier to free space on the high-
performance tier for active data [3]. In order to operate on the
data, the data must be resident in the top tier of storage so tools
must also be provided to allow users to ensure that data is
staged to the top-tier of storage before it is needed in a
computational job. If the data is not on the top tier of storage
an open will block and issue a retrieval request. The time the
operation is blocked can be quite significant for high-latency
back-ends and large files.

There have been previous HSM implementations

including Tivoli Spectrum Scale (aka GPFS) [4] and GLUFS
[5] are just two of a very long list of implementations of this
idea of connecting the file system to an off-system tape
system. While back-ends can be any type of storage including
another file system, or an object store to maximize the storage
per dollar the use of a tape based back-end is desired. Tape
based storage poses the most dramatic difference in
performance, particularly the initial latency of file access and
thus is the most important environment to ensure that data is
on the front-end when needed. In many of the past disk/tape
HSM implementations the goal was for the spinning disk
storage to be a modest sized staging area (cache) for the tape
environment, often with no option provided for users to
modify or utilize the data for computation and analysis within
the environment. In the current generation of HSM
environments the high-speed storage is intended as a primary
storage component within the compute environment.

Controls for ensuring fair use of the file system evolve into

quota policies and enforcement. Users can keep as much (or
as little) data online, for as long as they require, as long as they
are within their quotas. The automated policies must balance
the goal of moving data to the back-end quickly with the large
difference in performance between the storage tiers that
implies that the back-end could easily be swamped with
temporary data written to the front-end. Once data is copied to
the back-end it is eligible for release from the front-end. The
automated release policy can release data based on many

parameters, but is driven by the goal of keeping the primary
file system usage at or below the desired target level.

Cray’s Connector software integrates the standard Lustre

HSM agent and copytool into a service that provides greater
flexibility, performance, and resiliency for large data systems.
A single manager can register multiple back-ends and
provides controls for governing the IO workload across
multiple data servers. A full plugin API allows Cray’s
Connector to be easily extended to support new back-end
storage systems.

Of course, attempting to create a new HPC storage

paradigm for a system the scale of Blue Waters is not without
challenges. Issues of performance matching a 21PB, 1 TB/sec.
file system, capable of producing 10’s of millions of files per
day, to storage systems designed for cost efficiency requires
some tradeoffs. In particular, tape systems such as NCSA’s
HPSS environment are poor at handling large quantities of
small files requiring NCSA to consider alternatives for the
small file problem. Another challenge is quota management
since there is no unified quota system for the single namespace
in an HSM environment. Finally, the ability of HSM to recall
a file automatically upon open provides convenience, but if
that file must be recalled from tape the initial latency can be
quite substantial. As a result, integration with the system batch
scheduler to ensure that all required data is staged to the high-
speed storage prior a job starting is recommended. Solutions
to these challenges will be discussed along with details of the
NCSA implementation.

II. NCSA GOALS
NCSA’s goal for HSM is to change the operational model

for the primary high-speed file system on Blue Waters. The
existing model is a traditional “scratch” space where projects
have a generous quota (the overall file system is significantly
over allocated), but data is subject to a limited lifetime
enforced by a purge policy. In the case of Blue Waters data is
subject to being purged after 30 days without activity. To
avoid required data being purged the science teams must
manually copy data off of the scratch space to other file
systems (if small), to the Blue Waters nearline tape system or
to external sites. Then when the data is needed the team must
manually copy it back to scratch.

Under the HSM model the file system provides a single

namespace view of the high-speed disk and tape
environments. Projects are subject to quotas for both disk and
tape subsystems, but data is no longer automatically purged.
Instead policies migrate data from disk to tape and then release
the disk copy based on age and level of disk usage. The
manual data movement steps to copy data in and out of the
environment are reduced, but teams must add a data staging
step to the beginning of their workflows to ensure that needed
data is resident on the high-speed storage before the primary
computational job(s) need it.

III. NCSA IMPLEMENTATION
NCSA has worked with Cray to develop a plugin to Cray’s

Connector software for Lustre [6] HSM enabling data
transfers between Lustre and NCSA’s large HPSS tape
system. The data mover plugin, dubbed HTAP, allows a file
system’s capacity to be managed through the use of Lustre
HSM and Robinhood policies [7]. As with other HSM
systems under the Lustre HSM model files copied to a lower
storage tier can have their data blocks released from the top
tier when the space is needed in the top storage tier. Released
files appear no different to ‘standard’ file system utilities,
providing the user with a complete view of their files without
regard to where the actual data blocks reside. Data movement
(copying) or migration is “under the covers”. Released files
are automatically retrieved from the back end on demand (ie
when a file is opened). This process greatly reduces the load
on scientists to manage their data movement to and from the
nearline systems while computing on Blue Waters, but
requires them to do their own deletes instead of relying on the
purge process.

When creating the data management policies, the

capabilities of each storage tier along with the expected usage
by science teams must be taken into account. As with most
lower storage tiers in an HSM environment the Blue Waters
nearline tape system cannot possibly keep up with 25,000 file
creates per second or the 1 TB/s of IO that the primary disk
environment can sustain. Thus, data in the disk environment
must age to the point where the churn is reduced to the level
sustainable by the HPSS tape back-end. Based on an analysis
of Robinhood data the initial target will be to copy data to the
back-end after it is seven days old. At any point after the data
is copied to the back-end (and is thus dual-resident) the data
blocks on the front-end can be released triggered by the need
to free space on the front-end.

Another consideration is the large number of small files in

the file system. The HPSS tape subsystem is poor at handling
small files and very large file counts so NCSA intends to
direct small files (<16MB) to an attached disk cache instead
of the HPSS subsystem. The small file copy is intended for
disaster recovery only so the data blocks for small files would
never be released from the top storage tier. It is estimated that
a 1.5 PB disk environment is sufficient for this purpose.

In order to ensure that data is resident in the high-speed

storage tier when needed by a computational job additional
tools will need to be provided to migrate the data to the high-
speed tier and mark it as “in-use” through the use of “hints”.
This will be part of phase 2 of the project to develop an
interface for users to influence the automated policies through
the use of a .hsmrc file or some similar mechanism.

IV. DATA MANAGEMENT POLICIES
 The Robinhood Policy Engine will be used to initiate and
control automated LHSM data movement. Robinhood
utilizes a combination of full scans of the filesystem and then
running as a Lustre changelog consumer in order to maintain

a reasonably real-time database of the current state of the
filesystem. Once a full scan has been completed, the
changelog reader along with HSM policies can be enabled.
The policies will run the required Lustre HSM commands
based on specified criteria. Changelogs will be generated as
Lustre HSM commands are completed. These new
changelog entries will keep the HSM state of the archived
files in the Robinhood DB up to date.

 As Robinhood ingests the filesystem information, files will
be classified based on size (i.e. small files < 16MB) along
with additional criteria. The file classes will ensure that files
are archived with the most optimal settings in the appropriate
back-end. Policy behavior can be effected by many different
parameters. These could be size, create/modify/access times,
user/group acls, custom file xattrs, file path, and many more.
A policy can be triggered based on a variety of criteria;
anything from just a scheduled timer or on different usage
thresholds of the filesystem components (user, group, ost,
pool, global usage levels).

 The default archive policy will be a scheduled run that is
triggered frequently to ensure the HSM processes do not get
too congested. The initial archive of a file from scratch will
have a default delay of several days. This delay is being
created to avoid archiving short-lived temporary files. Since
this will be implemented on a "scratch" filesystem archiving
everything in real-time as written to the filesystem would
cause many unneeded transfers to the other storage tiers and
slow down the overall HSM process. Since the highest
storage tier is provisioned for performance and the lower
tier(s) for capacity it is very unlikely that it is possible to copy
more than a small fraction of the data written to the front-end
to the back-end. Indeed, there are days on Blue Waters when
9+PB of data is written to the existing scratch that would
require almost two days to write to tape assuming all tape
resources were dedicated to writing.

 A release policy should be utilized to maintain filesystem
usage at acceptable levels. As with any other policy this can
be affected by many criteria. The default criteria would likely
be some set amount of time since a file has been
accessed/modified (in other words the files accessed longest
ago would be released first). A more advanced option might
be to release a user's oldest files as they approach some
threshold of their quota. Additional end user customizable
options could also be added through specific file extended
attributes (xattrs). For example, an xattr could be designated
to flag a file for immediate release once archived.

 Another common policy that is available is a remove
policy. This policy is a little different as it is for removal of
files from the archive, that have already been removed from
the primary filesystem. The availability of the same criteria
as other policies along with a special "rm_time" attribute can
make this a very useful policy. First, by adding a delay before

deleting the archived (only) copy of a file it can provide an
undelete option; through the use of the rbh-undelete
command. It also allows better control over file removal,
through batching and scheduling.

In production, our use of LHSM policies might differ some
from that of a traditional HSM. The archive policy would be
relatively straight forward; copying new/modified data to the
archive after some delay (likely on the order of 1 week) to
ensure we do not archive short-lived temporary data. The
default release policy will most likely be triggered based on
filesystem pressure. The primary objective would be to keep
the filesystem below a determined set utilization level in
order to maintain expected performance and fair use. As the
filesystem reaches an upper threshold (such as 80%
utilization), the release policy would be triggered to release
beginning with the oldest and largest files first. Finally, a
remove policy would be used to ensure files specifically
removed from the filesystem also get removed from the
archive backend. There would be some delay between a
delete in Lustre and the archive removal in order to not
overwhelm the archive backend and other processes.

V. CRAY CONNECTOR DESCRIPTION
Cray’s Connector has two primary components, the

Connector Migration Manager (CMM) and Connector
Migration Agents (CMAs). The CMM registers with the
Lustre file system as a copy tool. It is then responsible for
queuing and scheduling Lustre HSM requests that are
received from the MDT across one or more CMAs. CMAs
perform all data movement within the Connector, and are also
responsible for removing archive files from back-end storage
if requested. An instance of the Connector will have one
CMM, and at least one CMA. There is not an inherent limit to
the number of CMAs that can be placed, but there are practical
limits such as the number of servers available. Each CMA can
execute a configurable number of simultaneous requests.

In addition to queuing and scheduling requests, the CMM

also provides for status reporting of ongoing and completed
transfers, performance statistics, manipulation of requests
such as pause, restart, or cancel, and reprioritization of
requests. The CMM can split archive or restore requests over
several CMAs for increased performance. Finally, the
Connector also supports checksums for data integrity. This
works on both non-striped, and striped files. For striped files,
each stripe segment will have an associated checksum. Once
a striped checksum transfer is completed the CMM will
generate a checksum of the checksums for verification at
retrieval or later.

As stated previously, the Connector can support multiple

storage back-ends. Initially the Connector focused support
shared POSIX file systems, such as Versity Storage Manager
[8]. To support NCSA’s requirement of archiving data to
HPSS through the Lustre HSM interface, Cray and NCSA co-

designed the plugin API used by HTAP. This API would also
make it possible to support storage back-ends such as object,
cloud, or other archiving systems. Plugins also can make
decisions on striping of files, rather than use the globally
defined stripe configuration in the Connector. For example,
NCSA has different storage classes defined in HPSS that
dictate file striping. The HTAP plugin can use that
information to stripe files across multiple CMAs, and have the
starting CMA also complete the transfer as is required with
HPSS.

Plugins have two constraints, namely that the plugin can

be used for several different back-ends of the same type, and
that plugin methods must be reentrant as the CMA is
multithreaded. Plugins can operate in one of two modes. The
first, and perhaps the simplest, is to let the CMA core perform
all the I/O between Lustre and the storage back-end. In this
mode, the plugin need only provide functions to open or
remove a file, and provide a file descriptor. Alternatively, a
plugin can take care of the file transfer itself, which is
typically required for back-ends that operate at an object level
rather than a file level. With HTAP, NCSA has chosen the
later method in which HTAP is responsible for all I/O between
Lustre and HPSS providing status updates to the CMA.

VI. HPSS CONNECTOR PLUGIN IMPLEMENTAION
The Connector plugin developed at NCSA with Cray, for

HPSS, moves data directly from a Lustre Client to HPSS (and
back) using the HPSS client API. No third party or
intermediate software is necessary and there are no additional
dependencies beyond those required for the Connector,
Lustre, and HPSS. Plugin configuration is done through the
Connector configuration file (/etc/tas_connector.conf) and the
standard HPSS methods (/var/hpss/etc/...).

HTAP (the Hpss TAS Agent Plugin) is written in "C" as a

shared library bridging the Connector and HPSS Client APIs.
When the CMA starts, it loads the plugin into its process space
and calls the Connector API functions defined by HTAP. The
CMM handles all of the transfer scheduling and related
process management, freeing the plugin to concern itself with
only the data movement. Thus, HTAP is relatively small and
simple. It only has to provide basic read/write functions with
a few HPSS specific functions like authentication and storing
file metadata using HPSS User Defined Attributes (UDAs).

All files stored by HTAP are stored as a single "admin"

user in HPSS. The user is defined in the Connector
configuration file and is authenticated to HPSS using the
"unix-keytab" authentication mechanism. As mentioned, the
file's POSIX meta-data is stored in the file's HPSS UDA –
including file owner and group IDs – but this is primarily
intended for informational purposes. In the event the Lustre
file becomes lost or damaged, it would be possible to get it
back using the information stored in the UDA and the
Robinhood database. A full file system restore cannot be done
using the UDA data alone. The UDA data is not guaranteed to
be accurate as no effort is made to synchronize it with the

Lustre meta-data after the file is archived. For example,
renaming or moving a file will not be reflected in the HPSS
UDA. This is functionality that could be added with the data
available in the Lustre changelog but it was deemed too
resource intensive for the very large and active BW scratch
file system against the meta-data performance of the HPSS
storage system.

Files are stored in the HPSS namespace using a fixed
directory tree and a filename generated by the Connector.
Several concerns led us to forgo the use of both the Lustre FID
and Lustre path names in the HPSS namespace. The
possibility for FID's to change during file migration
operations meant that they would require extra code to track
and update. Likewise, the dynamic nature of file names in user
space would require constant synchronization and could
become a potential performance issue for the HPSS meta-data
server. The Connector generates a quasi-random path and
UUID style file name using a repeatable algorithm. This
mechanism provides a nicely balanced directory structure and
limits, as much as possible, directory access hot-spots. It also
eliminates path length and character set problems altogether.
Those issues are all left with Lustre.

On an archive operation, the plugin passes the Lustre file

size to HPSS to allow for size based class of service (COS)
selection. The data is then transferred using the stripe size of
the selected COS. On completion, the file is check summed
and, on success, the plugin stores the checksum result along
with other file metadata (uid, gid, file permissions, etc.) into
the file's UDA structure. If any discrepancies occur, the
transfer will be automatically retried. During a restore, the
operation is similar except that the checksum is read from the
HPSS UDA and compared to the sum computed on the newly
written Lustre file.

A. Future Development
Several important pieces are still left for future

development. The largest being support for HPSS quotas.
While the quota implementation mechanics are reasonably
straight forward, the harder part is how to handle user
notification or alerting. The majority of archive operations
will be asynchronous with user activity, requiring an out-of-
band messaging system to be introduced. This brings in
concerns about message delivery, timeliness, and throttling
that all need to be addressed if the quota system is to be
reliable enough for production level use.

Next on the list are extensions to the plugin's COS

selection mechanisms. The current size based selection works
well for us but there are cases where it can be valuable to make
selections based on other criteria, such as by project, or for
creating an exportable data set. This is currently envisioned as
a file extended attribute that the plugin would use as an
override to the default behavior. The Connector uses file xattrs
for storing information as well so this fits in with existing
functions that the Connector provides to the plugin. The policy
engine could set attributes during policy executions. It would
also be possible to allow users to set hints on their files that

could be translated into other actions by the plugin -- perhaps
even for advanced functionality such as file aggregation.
These user provided hints could also be used as criteria for the
policy engine; possibly to set a file for immediate
archival/release regardless of age, or to prevent archival of a
file that is associated with an active compute job.

VII. A WORD ABOUT BACKUP
Care must be taken when viewing an HSM system as a

backup solution. By design the base concept of an HSM
provides a single namespace view of the multiple tiers of the
storage environment. Thus, when a file is changed or
deleted that is quickly reflected in all tiers of the
environment. In addition, the potentially large delay in
copying data to the back-end (targeted at seven days) is
much larger than the typical frequency for a “backup”
solution. The HPSS plugin, as currently written, stores files
into the archive exactly as presented from Lustre via the
Connector Manager. When a file is modified (its contents
are changed) in the Lustre file system this will trigger a new
"archive" event for that file. The HPSS plugin does not
attempt to detect previously written files nor does it enact
any kind of versioning. It would be possible to extend the
plugin to provide these functions but it would also require
the development of significant new functionality beyond the
plugin and the Connector. From a high level, such a system
would have to:

• Monitor the Lustre change logs for file changes
e.g. chown, chmod, chgrp, etc.

• Be capable of storing soft and hard link
information

• Manage file data within HPSS to trim file versions
that have "aged out"

• Enable the restore of a specific file versions to the
existing Lustre FID and setting all appropriate
attributes on the file

Of course, none of this enables any kind of "bare-metal"
restore for Lustre. To affect a restore of a file system loss
due to MDS data loss, for example, would still require that
the MDS itself be brought back online with some version of
its database intact before any files could be restored from
HPSS. Currently this is a major challenge as tools are not
available to snapshot the MDS or Robinhood databases. It is
certainly possible that the Robinhood database could be
utilized to rebuild the MDS, but significant additional
development is needed to make that possible.

VIII. TEST ENVIRONMENT
The test system is composed of a 115TB Lustre file system
running on Cray's Sonnexion 3000 appliance with the Lustre
client and Connector HSM agent running on a Dell R730
server. The Lustre client system also runs the Robinhood
policy engine which was used to drive the HSM policies for
all our testing. For performance reasons, the Robinhood
database server runs on an independent Dell R730 server with

SSD storage. All HSM storage utilized the existing Blue
Waters Nearline storage system running HPSS 7.4.3.

IX. RESULTS
Testing of the Connector software on Lustre 2.5 using the
HPSS plugin was performed using an existing user file
system from the Blue Waters test system, "JYC". The file
system contained a large variety of file data and usage
patterns. The client node was configured to run four(4)
transfer agents (CMA) allowing file striping up to the
maximum stripe width used by our HPSS classes of service.
Using the Robinhood policy engine and change log reader we
have executed multiple series of tests against the Connector.
Early results identified that the Lustre setting
"hsm.max_requests" was configured too low. This was
increased from three(3) to six(6) and during further tests we
observed transfer rates around 900 files/min with a sustained,
aggregate transfer rate of around 900MB/s on our modestly
configured client. All data transfer operations were
conducted using the built-in checksum capability of the
Connector. The overall data rates are quite good and near the
useful bandwidth of the 10Gb link on the Lustre client. The
file operation rates are lower than anticipated but it is not
clear at this time if the bottleneck is with Lustre/HSM, policy
execution, or HPSS meta-data performance. We consider
these numbers to be preliminary and much more testing
remains to be done. Our expectation is that further scaling of
system resources (additional Lustre client/Connector Agent
nodes and dedicated Robinhood changelog and policy engine
resources) will provide continued performance
improvements up to the capability of either the Lustre file
system or HPSS storage system.

X. CONCLUSIONS
The NCSA HTAP and Cray TAS software are working

with the standard Lustre HSM enabling automated data
movement between the Lustre disk environment and the
HPSS tape back-end. The performance numbers while
reasonable are preliminary due to only using one data mover
in a small test system. Scaling the solution to a larger number
of data movers, and to larger/fuller file systems are next on the
list to do. Many other studies are needed before production
such as quota and queue management and the latency for files
that are on tape when operating in a busy environment.

ACKNOWLEDGMENT
This research is part of the Blue Waters sustained-

petascale computing project, which is supported by the
National Science Foundation (awards OCI-0725070 and ACI-
1238993) and the state of Illinois. Blue Waters is a joint effort
of the University of Illinois at Urbana-Champaign and its
National Center for Supercomputing Applications. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] High Performance Storage System http://www.hpss-

collaboration.org/
[2] Hierarchical Storage Manager

https://en.wikipedia.org/wiki/Hierarchical_storage_manageme
nt

[3] D. Reine and M. Kahn “In search of the long-term archiving
solution-tape delivers significant TCO advantage over disk”
http://www.clipper.com/research/TCG2010054.pdf

[4] “Tivoli Storage Manager for Space Management”
http://www-
03.ibm.com/software/products/en/tivostormanaforspacmana

[5] I. Koltsidas et al., "Seamlessly integrating disk and tape in a
multi-tiered distributed file system," 2015 IEEE 31st
International Conference on Data Engineering, Seoul, 2015,
pp. 1328-1339.
doi: 10.1109/ICDE.2015.7113380

[6] Lustre - http://lustre.org/
[7] Robinhood from CEA: https://github.com/cea-

hpc/robinhood/wiki
[8] Versity Storage Manager http://www.versity.com/product

