BLUE WATERS sustained petascale computing

Implementing a Hierarchical Storage Management system in a large-scale Lustre and HPSS environment

Brett Bode, Michelle Butler, Sean Stevens, Jim Glasgow National Center for Supercomputing Applications/University of Illinois Nate Schumann, Frank Zago Cray Inc.

- What is Hierarchical Storage Management?
 - A single namespace view for multiple physical/logical storage systems
 - Automated movement of data to the lower tiers, usually based on configurable policies
 - Data is returned to the top tier based on request or access.

- HSM environments have been used for many years to front-end tape archives with a "disk cache".
 - Usually the environment was isolated, the only actions on data are to transfer to/from the system
 - All data is expected to be written to the back-end.
 - Most data is accessed infrequently

Blue Waters Computing System

Today's Data Management

scratch 30 day Purge Globus commands Nearline

User manages file location between scratch and Nearline

Hierarchical Storage Management (HSM) Vision:

- Purge no longer employed
- Allows policy parameters to manage filesystem free space
- Users limited by lustre quota and back-end quota (out of band)

- Lustre 2.5 or later required for HSM support NCSA completed upgrade for all file systems in August 2016 (Sonexion Neo 2.0)
- Lustre copy tool provided via co-design & development with Cray Tiered Adaptive Storage Connector product
 - Cray provides bulk of the copy tool with a plugin architecture for various back-ends.
 - NCSA develops a plugin to interface with HPSS tape systems
 - Specifications created for resiliency, quotas, disaster recovery, etc.

- Lustre (2.5 and later) provides tracking for files regardless of the location of the data blocks.
 - File information remains on the MDS, but none on OSTs
- Commands are provided to initiate data movement and to release the lustre data blocks
 - Isf hsm_[archive|release|restore|etc]
 - Lustre tracks the requests, but does not provide any built in data movement.
- A copy tool component is required to register with Lustre in order for any data movement to occur.

HSM Policies

- Policy engine provided by Robinhood
 - Policies drive scripts that execute the lsf hsm_* commands.
- It is very early in the policy development process so these are early thoughts.
 - Files will be copied to the back end after 7 days
 - Estimated based on a review of the churn in the scratch file system.
 - Files will be released when the file system reaches 80% full based on age and size.
 - Files below 16MB will never be released and will be copied to a secondary file system rather than HPSS

- Cray's connector consists of two components
 - Connector Migration Manager (CMM)
 - registers with the Lustre file system as a copy tool.
 - It is responsible for queuing and scheduling Lustre HSM requests that are received from the MDT across one or more CMAs.
 - Connector Migration Agents (CMA)
 - Perform all data movement within the Connector, and are also responsible for removing archive files from back-end storage if requested.

- The CMA plugin architecture allows multiple back-ends to interface with the CMM.
- The CMA also allows threading transfers across multiple agents.
- Several sample CMAs are provided to copy data to a secondary file system.

HPSS Plugin

- The NCSA HPSS CMA plugin is called HTAP.
 - Will be released as open source soon.
 - Utilizes HPSS API to provide authentication and data transfer to/from the HPSS environment.
 - Transfers can be parallelized to match HPSS COS

- Data IO for all file transfers is done at the native stripe width for the selected HPSS class of service
 - this is generally smaller than the Lustre stripe width however, files are restored to their original Lustre stripe width
- All file archive and retrieve operations are further verified by full checksums
 - checksums are kept with the files in user extended attributes and HPSS UDAs
 - the CMA provides parallel and inline checksum capabilities in a variety of standard methods

NESA

Lustre HSM + Cray TAS + HPSS

Time Passes

Policy Triggers Copy to Back End

File Copy

File Copy

CMM kicks off CMA(s) which copy the file to the back end and then store the backend metadata as extended lustre attrs.

Robinhood DB

Ifs hsm_state somefile somefile: (0x0000009) exists archived, archive_id:1<--- file archived, not released

File Release

Robinhood DB

Ifs hsm_state somefile somefile: (0x000000d) released exists archived, archive_id:1 <--- file archived and released

File Restore

Robinhood DB

File Restore

User makes request to stage files (or issues a file open)

Robinhood DB

Ifs hsm_state somefile somefile: (0x0000009) exists archived, archive_id:1<--- file archived, not released

- HSM is NOT equivalent to a backup!
 - One site uses HSM functions to dual-copy data sort of a backup in the case of a fault in the primary storage.
 - However, deleting a file in the file system quickly results in it being deleted from the back-end.
 - Thus, HSM does not protect against user mistakes.
 - One could create a backend that did file versioning and delayed deletes, but that goes well beyond the current work.

Initial Testing

- 900 files/min
 - Ok rate. Unclear bottleneck.
- 900 MB/s
 - Good rate, reasonable fraction of the resources for the single data mover node/lustre client
- The Lustre hsm.max_requests setting must be tuned. In the limited test system increasing it from 3 to 6 gave good results.

- Much more testing, particularly testing at scale.
- Development and scaled testing of HPSS plugin
- Create HA Robinhood (policy engine) setup
- Workload manager integration
- Cray, Blue Waters, site team is investigating Lustre Bug that requires MDS failover to clear hung transfers

- The initial development and testing of the HPSS/Cray TAS HSM implementation is showing full functionality and good initial performance.
- Challenges remain in crafting effective policies.
- Effective production use will require user education and assistance.
 - Data must be staged before use in a batch job!
 - The lack of a unified quota system will confuse users.

I

- Supported by:
 - The National Science Foundation through awards OCI-0725070 and ACI-1238993
 - The State and University of Illinois

