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Abstract - With the recent installation of Cori, a Cray XC40 
system with Intel Xeon Phi Knights Landing (KNL) many 
integrated core (MIC) architecture, NERSC is transitioning 
from the multi-core to the more energy-efficient many-core 
era. The developers of VASP, a widely used materials 
science code, have adopted MPI/OpenMP parallelism to 
better exploit the increased on-node parallelism, wider 
vector units, and the high bandwidth on-package memory 
(MCDRAM) of KNL. To achieve optimal performance, KNL 
specifics relevant for the build, boot and run time setup must 
be explored. In this paper, we will present the performance 
analysis of representative VASP workloads on Cori, focusing 
on the effects of the compilers, libraries, and boot/run time 
options such as the NUMA/MCDRAM modes, Hyper-
Threading, huge pages, core specialization, and thread 
scaling. The paper is intended to serve as a KNL 
performance guide for VASP users, but it will also benefit 
other KNL users. 

Keywords – Hybrid MPI/OpenMP VASP, KNL, 
MCDRAM, Cache mode, Flat mode, Hyper-Threading, 
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I.  INTRODUCTION 
With the recent installation of Cori [1], a Cray XC40 

system based on the Intel Xeon Phi Knights Landing 
(KNL) many integrated core (MIC) architecture [2], 
NERSC is transitioning from the previous MPI-dominant 
multi-core era to a more energy-efficient many-core era, 
which favors the MPI/OpenMP programming model. 
Most application codes currently running at NERSC need 
to be ported, optimized, or re-implemented in order to run 
efficiently on this new architecture. The Vienna Ab initio 
Simulation Package (VASP) [3-4], a widely used 
materials science code that is highly ranked at NERSC 
(Fig. 1) and other supercomputing centers worldwide, has 
recently completed the transition from the former MPI-
only to a hybrid MPI/OpenMP code base [6], and is 
currently under beta testing. The hybrid VASP code has 
been highly optimized for CPUs including KNL, 
achieving a 2-3 times speedup on KNL in comparison to 
the MPI-only VASP v5.4.1, the current production release 
(Fig. 2). Although the main KNL features, such as the 
increased on-node parallelism (68 cores and 272 hardware 

threads per node), wider vector units (512 bits and AVX-
512 instruction sets), and the high bandwidth on-package 
memory (MCDRAM) have been addressed throughout the 
code optimization process, other KNL specifics relevant 
for the build, boot time options and runtime setup have 
yet to be explored to achieve optimal performance.  

In this paper, we will present our performance 
evaluation of the hybrid MPI/OpenMP VASP code under 
the various execution configurations on Cori KNL 
system. We studied the effects of NUMA/MCDRAM 
modes, Hyper-Threading, huge pages, and core 
specialization, as well as compilers and libraries on the 
code performance.  The tested compilers include Intel, 
GNU, and Cray compilers, and the tested libraries include 
the FFT and BLAS/LAPACK/ScaLAPACK libraries from 
Intel MKL [7], ELPA [8-9], Cray LibSci [10], and FFTW 
[11]. We have also studied the parallel/thread scaling of 
the hybrid MPI/OpenMP VASP, which is essential to run 
the hybrid code at optimal MPI task and OpenMP thread 
counts. To cover the representative workloads and to 
exercise different code paths in VASP, we have used 
multiple test cases with different problem sizes, 
constituent ionic types, and electronic structure 
calculation methods. Based on our performance 

 

           
 
Figure 1. The computing cycles breakdown by application codes at 
NERSC in 2015. VASP used about 12% of the total computing 
cycles [5].  
 



evaluation and analysis, we will provide the best practice 
tips for VASP users. Additionally, the performance data 
presented in this paper provides feedback for computer 
vendors about the architecture’s performance in a real 
world scientific application with a large user base.  

The rest of the paper is organized as follows: we will 
describe the Cori configuration and environment in 
Section II, and will describe the VASP code and the test 
cases used in Section III. In Section IV, we will present 
the VASP performance results under the various 
combinations of build/boot/run time options, and discuss 
the observed performance results. We will conclude the 
paper by summarizing our observations in Section V. 

II. SYSTEM CONFIGURATION AND ENVRIONMENTS 
SETUP  

A.  Cori  
Cori is a Cray XC40 system that has been recently 

installed at NERSC. Cori has 9688 single-socket Intel® 
Xeon Phi™ Processor 7250 ("Knights Landing") 
nodes @1.4 GHz with 68 cores (272 hardware threads or 
CPUs) per node, 16 GB high bandwidth on-package 
memory (MCDRAM) (>460 GB/sec) and 96 GB DDR4 
2400 MHz memory (102 GB/s) per node. Each core has 
two 512-bit wide vector units, and a 64 KB L1 cache. 
Two cores form a tile that share 1 MB L2 cache.  In 
addition to the KNL nodes, Cori has 2388 dual-socket 16-
core Intel® Xeon™ Processor E5-2698 v3 ("Haswell") 
nodes @2.3GHz with 32 cores (64 hardware threads or 
CPUs) per node, and 128 GB 2133 MHz DDR4 memory. 
Each core has a 256-bit vector unit, and has 64 KB and 
256 KB L1 and L2 caches.  There is also a 40 MB shared 

L3 cache per socket. Cori nodes are interconnected with 
Cray’s Aries network with Dragonfly topology.  

Compared to the previous generations of Intel Xeon 
processors (e.g, Haswell), KNL features a more flexible 
boot time and more runtime options. For example, the 
MCDRAM can be configured at the boot time as a third 
level cache (the cache mode), as a distinct NUMA node 
(the flat mode), or somewhere in between (the hybrid 
mode) (Fig. 3, upper panel). The advantage of configuring 
MCDRAM as a third level cache is that it does not require 
any changes in application source codes. However, the 
misses are expensive because applications need to access 
both the MCDRAM and the DDR memory. If the 
MCDRAM is configured in the flat mode, it is mapped to 
physical address space and exposed as a NUMA node 
(allocatable memory). Therefore it allows application 
developers and users to have full control over how to use 
the MCDRAM. The downside is that code modifications 
may be required in order to utilize the MCDRAM 
efficiently. In addition to MCDRAM, the KNL mesh can 
be configured to three different clustering modes: all-to-
all, quadrant, and sub-NUMA clustering, which results in 
at least nine different combinations of NUMA/MCDRAM 
modes (Fig. 3 lower panel illustrates the quadrant cluster 
mode). Each mode has its pros and cons, and it is very 
challenging from a software perspective to understand the 
most suitable mode for an application. The NERSC staff 
has done extensive tests with the available 

 
 
Figure 2. Performance comparison between the hybrid 
MPI/OpenMP (red bars) and the MPI-only VASP v5.4.1 code (blue 
bars) on Cori KNL and Haswell nodes. Where the numbers inside 
the parenthesis, ([num;] num, num), are the number of MPI tasks 
used for the MPI-only VASP (v5.4.1), if present; the MPI tasks and 
OpenMP threads per task used to run the hybrid VASP. The hybrid 
VASP outperforms the MPI-only code by 2-3 times (the second bar 
groups). The figure also shows the performance comparison 
between other build/boot/run time configurations on KNL. The 
hybrid VASP ran with 8 nodes and 8 threads per task. 
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Figure 3. MCDRAM modes (upper panel), and the KNL mesh 
interconnect and the quadrant mode illustration.  
 
 



NUMA/MCDRAM modes at the early testing stage of the 
Cori KNL system, and has recommended using 
quad,cache and quad,flat modes based on  their ease of 
use and performance. Because of this,  our test cases have 
run on the quad,cache and quad,flat modes only. 

Cori runs Cray Linux Environment (CLE) 6.0 Update 
3 [12] as its compute node OS, and SLURM 17.02 [13] as 
its batch system. All our tests were performed on Cori and 
its development and test system, Gerty, which is a smaller 
version of Cori. 

III. CODE DESCRIPTION AND TEST CASES 

A. VASP  
The Vienna Ab-initio Simulation Package (VASP) 

[3-4] is a widely used materials science application for 
performing Ab-initio electronic structure calculations and 
quantum-mechanical molecular dynamics (MD) 
simulations using pseudopotentials or the projector-
augmented wave method and a plane wave basis 
set. VASP computes an approximate solution to the 
many-body Schrödinger equation, either within the 
Density Functional Theory (DFT) to solve the Kohn-
Sham equation or the Hartree-Fock (HF) approximation 
to solve the Roothaan equation. Hybrid functionals that 
mix the HF approach with DFT have been implemented, 
and Green's functions methods (GW quasi-particles and 
ACFDT-RPA) and many-body perturbation theory (2nd-
order Møller-Plesset) have also been implemented in 
VASP. 

The fundamental mathematical problem that VASP 
solves is a non-linear eigenvalue problem (Eq. (1)) that is 
solved iteratively via self-consistent iteration cycles until 
a desired accuracy is achieved.  
While εn and Ψn are an eigenvalue (energy) and 
eigenfunction (wavefunction or band) pair, N is the 
number of wavefunctions to solve (N is roughly the same 
as the number of electrons in the system). These N 
wavefunctions must be orthonormal to each other (Eq. 
(2)). VASP stores the wavefunctions as coefficients of the 
Fourier components (or plane-wave basis sets) as shown 
in Eq. (3). VASP makes use of efficient iterative matrix 
diagonalization techniques such as the residual 
minimization method with direct inversion of the iterative 
subspace (RMM-DIIS) and the blocked Davidson (BD) 
algorithms. It heavily depends on FFT and Linear Algebra 
libraries (BLAS/LAPACK/ScaLAPACK).  

The majority of the VASP code is written in 
Fortran90. So far, all released codes including the most 
recent release, VASP v5.4.4, are MPI-only codes. The 
MPI-only VASP is parallelized in two levels (the top 
level k-point parallel is not counted here). At the high 
level, the bands are distributed over MPI tasks in a round-
robin fashion; at the lower level, the Fourier components 
of each band are distributed across multiple MPI tasks. In 
general, VASP execution is dominated by the back and 

forth FFTs (from/to the real space to/from the Fourier 
space or G space), and zgemm/dgemm calls. The MPI 
time is dominated by the MPI_Allreduce calls. More 
details about parallel implementation of VASP can be 
found in [6].   

B. Hybrid MPI/OpenMP VASP and optimizations for 
KNL  
In the hybrid MPI/OpenMP VASP the bands are 

distributed over MPI tasks (high level) as they are in the 
MPI-only code, and the Fourier components of the bands 
are distributed over OpenMP threads, either explicitly via 
adding OpenMP directives in the LOOP level, or 
implicitly via the use of the threaded libraries, such as 
FFTW and LAPACK/BLAS3 libraries. So far (up to 
4/13/2017), there has been no nested OpenMP usage in 
the hybrid VASP code. More details about the OpenMP 
implementation in the hybrid VASP can be found in [6]. 

Another major optimization in the hybrid VASP code 
is SIMD (Single Instruction, Multiple Data) vectorization 
to promote the execution of parts of the program on 
KNL’s 512 bit wide vector units. To stay within the high-
level Fortran language and to keep the code portable, we 
have fully drawn upon OpenMP 4.x SIMD constructs in 
the user code using both explicit loop-level vectorization 
via !$omp simd, and sub-routine/function vectorization 
through !$omp declare simd. Optimization targets 
comprise, beside simple loops, the vectorization of nested 
function calls (“deep” calling hierarchies) and complex 
loop structures mixing scalar and vector codes. For that 
purpose, we partly use a combination of user-defined 
high-level vectors together with OpenMP SIMD loop 
vectorization to process these vectors. The latter must be 
packed/unpacked manually, but can be easily moved in 

context of the SIMD function context and in combination 
with scalar code via loop splitting. 

 The Intel Application Performance Snapshot [14] 
reports more than 94% of packed SIMD instructions for 
the code execution (Fig. 4). More details about SIMD 
vectorization and other optimization efforts in the hybrid 
VASP, such as the SIMD optimization portability among 
compilers, can be found in [6]. 

The explicit use of MCDRAM via Intel compiler’s 
FASTMEM directive and the Memkind libraries [15] was 
also explored in the hybrid VASP [16]. Although the 
expected performance boost from the targeted MCDRAM 
use was observed with the emulated MCDRAM using 
dual-socket Intel Ivy Bridge nodes, the code unfortunately 
slowed down significantly on KNL due to the conversion 

𝐻[{𝜓}]𝜓!(𝒓) =  𝜀!𝛹!(𝒓),      𝑛 = 1,… ,𝑁             (1) 
 

∫𝛹!∗(𝒓)𝛹!(𝒓)𝑑𝒓 = δnm                                          (2) 
 
  𝜓!(𝒓) = 𝐹𝐹𝑇{𝛹!(𝑮)}(𝒓)                                      (3)                     
	



of some stack array variables to heap variables in order to 
use MCDRAM. Because of this, the FASTMEM 
directives were not adopted in the hybrid VASP. VASP 
uses MCDRAM as a cache or a flat memory via the 
numactl (or using srun –mem_bind) in the preferred 

mode.  Intel’s AutoHBW tool [17] can be used with 
VASP if the explicit management of array allocations (by 
array sizes only) is preferred.  

C. Test cases 
In this study, we used six different test cases, as 

shown in Table 1. The first test case, denoted as PdO4 in 
Table 1, is a PdO slab containing 348 atoms in total (300 
Pd atoms and 48 O atoms). This system was chosen to test 
the most commonly used (and basic) code path, the DFT 
functional calculation with PBE potentials using the 
RMM-DIIS iteration scheme. Since problem size matters 
in benchmarking, we added a smaller PdO slab (denoted 
as PdO2 in Table 1), which has 174 atoms (150 Pd and 24 
O atoms) in the tests. A ternary alloy structure, GaAsBi-
64, was included to cover the metalic systems with the 
default iteration scheme, Block Davidson + RMM-DIIS 
algorithms. Two HSE hybrid functional calculations with 
different atomic configurations and problem sizes were 
included in the tests, because hybrid functional 
calculations are increasingly important workloads in 
VASP. Si256_hse is a 256-atom silicon supershell with a 
vacancy, and B.hR105_hse is a small hexa-boron 
structure (105 atoms). The Van Der Waals functional 
calculation was also included (denoted as CuO_vdw in 
Table 1).  

We disabled heavy I/O (LWAVE = .FALSE.) in the 
tests. All runs started from a given WAVECAR file so 
that different runs for the same benchmark always start 
with an exact same initial wavefunction. Each test was 
run multiple times (>3 times) and reported the best 
LOOP+ time, which will be the dominant portion in the 
execution time for the production runs. 

 
 
Figure 4. Intel APS report for the HSE functional calculation of 
VASP on Cori KNL. This is a run on Si256_hse test case with 8 
nodes, 128 processors with 8 threads/task.   

 
TABLE 1. Test cases used in the performance tests. These cases were chosen to cover the representative VASP workloads and to exercise different code 

paths. 
 

 PdO4 GaAsBi -64 CuC_vdw Si256_hse B.hR105_hse PdO2 

Electrons (Ions) 3288 (348) 266 (64) 1064 (98) 1020 (255) 315 (105) 1644(174) 

Functional DFT DFT VDW HSE HSE  DFT 

Algo RMM (VeryFast) BD+RMM (Fast) RMM (VeryFast) CG (Damped) CG (Damped) RMM (VeryFast) 

NEML(NELMDL) 5 (3) 8 (0) 10 (5) 3(0) 10 (5) 10 (4) 

NBANDS 2048 192 640 640 256 1024 

FFT grids 80x120x54 
160x240x108 

70x70x70 
140x140x140 

70x70x210 
120x120x350 

80x80x80 
160x160x160 

48x48x48 
96x96x96 

80x60x54 
160x120x108 

NPLWV 518400 343000 1029000 512000 110592 259200 

IRMAX 1445 4177 3797 1579 1847 1445 

IRDMAX 3515 17249 50841 4998 2358 3515 

LMDIM 18 18 18 18 8 18 

KPOINTS 1 1 1 4 4 4 3 3 1 1 1 1 1 1 1 1 1 1 

  
 



D. Cori software and runtime specifications  
In this study, we have used the hybrid MPI/OpenMP 

code (last commit date: 4/13/2017). Wannier90 v1.2 was 
enabled in the VASP builds. The majority of the tests 
used the binaries built with the Intel compiler (2017 
Update1) and linked to the MKL (2017 Update1) and 
ELPA (2016.05.004) libraries, except where noted. The 
FFT routines were also from MKL via the FFTW3 
wrapper interfaces. The binaries for the compiler/library 
performance tests used GCC 6.3.0 and CCE 8.5.8 and 
were linked to the LibSci 16.11.1, FFTW 3.3.4.11, and 
the MKL 2017 Update1. All binaries are linked to Cray 
MPICH 7.5.3 as well. 

A proper process/thread/memory affinity is the basis 
for optimal performance. On Cori, we used the –cpu_bind 
and –c options of the srun (SLURM’s parallel job 
launcher) to pin MPI tasks to a subset of CPUs and used 
OpenMP environment variables like OMP_PROC_BIND 
and OMP_PLACES to control the thread affinity. When 
running in the flat mode, the “numactl –m 1” was used to 
enforce the use of the MCDRAM. A representative job 
script was as follows: 

 

The resulting thread affinity of this script is the same as 
that of KMP_AFFINITY="granularity=thread,scatter” of 
Intel compilers, and generates the same or compatible 
thread affinity for applications built with Cray and GNU 
compilers on KNL.  

IV. PERFORMANCE RESULTS AND DISCUSSION 

A. Thread scaling of hybrid VASP 
Understanding the parallel/thread scaling of 

applications is critical to run the codes efficiently on HPC 
systems. Running a code outside the parallel scaling 
region either slows down scientific productivity or wastes 
valuable computing resources. It may even cause various 
unexpected runtime errors and issues. While the MPI-only 
code is known to scale up to one core per atom (the non-
collinear VASP scales further out), the hybrid 

MPI/OpenMP code is still new to the VASP community. 
We have studied the parallel/thread scaling of the hybrid 
VASP on the Cori KNL and Haswell nodes (Fig. 5) using 
the six selected benchmarks that were carefully chosen to 
cover representative workloads and to exercise commonly 
used code paths. Note that these selected benchmarks are 
for the day-to-day scientific runs (not designed for heroic 
runs). Among the six selected benchmarks, the first three 
cases, PdO4, Si256_hse, and CuC_vdw, were relatively 
larger systems, so we ran tests with up to 16 nodes, at 
which an MPI-only code could run with up to 1024 MPI 
ranks (or 4096 with four hardware threads per core) on 
KNL. This would be already beyond the parallel scaling 
regions of the MPI-only VASP for these test systems (see 
Table 1 for the atomic configurations, the number of 
bands and plane-waves, and the real/Fourier space grids 
for each case). The rest of the test cases ran with up to 
eight nodes. At all node counts, 1, 2, 4, 8, and 16 
OpenMP threads per MPI task were tested. The number of 
MPI tasks used for the node and thread counts are shown 
in Table 2 for both the KNL and Haswell runs.   

Fig. 5 shows that the hybrid VASP performs better 
with four or eight threads per MPI task at all node counts 
for all benchmarks. For the runs with smaller node counts 
(one or two nodes), using four threads per task performs 
best. However, when the node count increases, using 
eight threads per task outperforms four threads per task 
for all benchmarks except PdO2, the smaller DFT 
functional calculation (for which VASP performs best 
with four threads). VASP scales up to 8 nodes for all the 
benchmarks used in the tests. For the Si256_hse and 
CuC_vdw test cases (two larger cases), the hybrid VASP 
scales further out to 16 nodes and 16 threads per task. We 
ran the Si256_hse case using 32 nodes with 8 16, and 32 
threads per task and compared it to the 16 node results 
(Fig. 6). One can see that the hybrid VASP further scales 
to 32 nodes with all 8, 16 and 32 threads per task. Craypat 
[18], a Cray profiling tool, reports 28% of MPI time for 
the runs using 32 nodes and 32 threads per task, which is 
still within the acceptable MPI time for a production run. 
These results show that VASP scales to more nodes and 
threads for large problems. Being able to use more threads 
per task and to scale up to larger number of nodes makes 
it possible for the hybrid VASP to solve larger and 
complex problems faster. In practice, we would 
recommend using eight threads per task (except small 
cases) and 16 threads or more for larger systems. 

As described in Section III, the MPI parallelism over 
the Fourier components (lower level MPI parallelism) has 
been replaced by the OpenMP parallelism (threads), 
meaning the hybrid VASP no longer uses the NCORE (or 
NPAR), which was used to specify how many bands to 
solve simultaneously in the MPI-only VASP. Since the 
MPI parallelism is over the bands only in the hybrid code, 
it imposes an upper limit on how many MPI tasks the 
code can make use of efficiently. In practice, when 

#!/bin/bash -l 
 
#SBATCH -p debug 
#SBATCH -C knl,quad,cache   # to request cache mode 
#SBATCH -N 8  
#SBATCH -t 30:00  
 
module load craype-hugepages2M 
export MKL_FAST_MEMORY_LIMIT=0 
 
export OMP_PROC_BIND=true 
export OMP_PLACES=threads 
export OMP_STACKSIZE=512m 
export OMP_NUM_THREADS=8 
 
# to run with 1 hardware thread per core 
srun -n 64 -c 32 --cpu_bind= cores ./vasp_std 



deciding how many MPI tasks to use for a given problem, 
a reference number would be 1/8 - 1/4 of the number of 
atoms in the system (for a single k-point calculation), 
although the sweet spot of the parallel scaling is problem- 
dependent. To get optimal performance the calculations 

need to be addressed case by case. 
Fig. 5 also shows the comparison between KNL (blue 

bars) and Haswell (yellow bars). One can see that at 
smaller node counts, the hybrid VASP performs better on 
KNL, but eventually, at larger node counts, its 

 

 
 

Figure 5. The parallel/thread scaling of the hybrid MPI/OpenMP VASP (version 4/13/2017) on the Cori KNL and Haswell nodes. The horizontal axis 
shows the number of OpenMP threads per task and the number of nodes used, and the vertical axis shows the LOOP+ time (the dominant portion in the 
execution time). All runs used one hardware thread per core, and 64 cores per node. The 2M huge page memory was used. All the KNL runs were under 
the quad,cache mode. Note, the spikes at the thread count 1 and 16 are reproducible results. It is not clear yet what was the root cause. Need further 
investigation to understand the cause. The Si256_hse tests ran out of the 2M huge page memory when using one OpenMP thread per MPI task. Note that 
the hybrid VASP does not use NCORE any more (or NCORE=1), however for the runs with one OpenMP thread per task, i.e., running the hybrid VASP 
as an MPI-only code, 𝑁𝐶𝑂𝑅𝐸 ≠ 1 is still supported. We used NCORE=4 for all the runs with one OpenMP thread per task for fair comparison.  

 
TABLE 2. The MPI tasks used for each node and thread combination shown in Fig. 1. All runs used one hardware thread per core. For the KNL runs, 64 

cores out of 68 available were used. 
 

No. of 
Nodes 1 2 4 8 16 

No. of 
Threads 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 

MPI Tasks  
(KNL) 64 32 16 8 4 128 64 32 16 8 256 128 64 32 16 512 256 128 64 32 1024 512 256 128 64 

MPI Tasks 
(Haswell) 32 16 8 4 2 64 32 16 8 4 128 64 32 16 8 256 128 64 32 16 512 256 128 64 32 

 



performance on Haswell catches up and shows a better 

parallel scaling trend then KNL.  
Note that those spikes at thread counts 1 and 16 are 

reproducible results, and are not yet well understood. 
Further investigation is needed to understand its root 
cause.  
 

B. Hyper-Threading (HT) 
Each Cori KNL core has four hardware threads 

(CPUs). HT could improve the application performance 
through increasing the resource utilization by 
simultaneously running multiple process/threads on the 
hardware threads on the core, making use of the cycles 
that would otherwise be wasted due to cache misses, 
branch mis-predictions, data dependencies, and/or waiting 
for other resources in a single process/thread execution on 
the core. A previous study on the effects of HT on the 
performance of MPI or MPI/OpenMP applications [19] 
on a Cray XC30 system based on Intel Sandy Bridge 

 
 
Figure 6. The hybrid VASP performance with 16 and 32 Cori KNL 
nodes. The 8, 16, and 32 threads per task were tested. The runs used 
the Craypat instrumented code.  

 

 
 

Figure 7. The performance effects of Hyper-Threading to the hybrid MPI/OpenMP VASP on the Cori KNL nodes. The horizontal axis shows the 
number of nodes, and the vertical axis shows the LOOP+ time (the dominant portion in the execution time).  All runs were under the quad,cache mode 
with one hardware thread per core. All runs used 64 cores out of 68 available on the KNL node.  The 2M huge page memory was used.     



processor nodes showed that its effect is highly 
application-dependent. In general, HT may increase the 
performance if an application is efficiently parallelized 
and runs at smaller node counts. However, the MPI-only 
VASP did not get any performance benefit from using 
HT, and the code was instead slowed down by more than 
50% on Sandy Bridge nodes (two hardware threads per 
core, 16 cores per node). Now with the KNL system, 
which provides more hardware threads per core (4), it is 
worth exploring whether or not HT helps VASP 
performance. Fig. 7 shows the comparison between using 
one (64 CPUs per node were used) and two (128 CPUs 
per node were used) hardware threads per core. Fig. 7 
shows that HT does not help hybrid VASP for most of the 
workloads, except the HSE workloads. We have also run 
tests with four hardware threads per core, but it greatly 
worsened the code performance (data not shown).  

C. NUMA/MCDRAM modes  
Fig. 8 shows the comparison between using the 

quad,cache and quad,flat modes. We choose to run the six 
benchmarks at the selected MPI/Thread counts that would 
be used by production runs. There is no obvious 
performance difference between using the flat and the 
cash modes in all six benchmarks. Note that all these runs 
were using a memory much lower than 16 GB and can 
therefore fit within the MCDRAM when running in the 
quad,flat mode.  In practice, it is a good strategy to use 
more nodes and threads in order to reduce the memory 
footprint on the node so that the run can fit into the 
MCDRAM memory (for the flat mode and also for the 
cache mode). As one can see from Fig. 2 in the 
introduction, the biggest performance boost was from 
using MCDRAM (for HSE workloads), so it is important 
to make use of MCDRAM whenever possible.   

 

 
 
Figure 8. VASP performance comparison between using MCDRAM in the cache and flat modes. The horizontal axis shows the number of number of 
nodes used, and the vertical axis shows the LOOP+ time (the dominant portion in the execution time). All runs used eight threads per task, one hardware 
thread per core, and 64 cores per node. In addition, the 2M huge page memory was used.   All flat mode runs were done with the numactl –m 1, which 
enforce the user of MCDRAM (if a job does not fit into the MCDRAM, it is terminated).   



D. Huge pages  
Huge pages are virtual memory pages that are bigger 

than the 4Kbyte default base page size. Huge pages can 
improve memory performance for common access 
patterns on large data sets. Huge pages also increase the 
maximum size of data and text in a program accessible by 
the high speed network [20]. However, using huge pages 
has not been widely adopted among NERSC users 
because using the huge pages increases job failure rates 
presumably due to the decreased amount of available 
huge page memory on the node from memory 
fragmentation when the system has been running for some 
time. In addition, huge page effects are application-
dependent, and not all applications can get a benefit from 
using huge pages. Given the fact that KNL nodes are 
frequently rebooted by user jobs, huge page memory may 
benefit user applications more in comparison to the 
previous generation of Intel Xeon process nodes. As 
shown in Fig. 9 the huge page memory helped VASP 

performance in all our test cases.  

E. Compilers and libraries 
Fig. 10 shows the comparison between different 

compilers and libraries. As one can see using Intel 
compiler + MKL outperforms all other alternatives. The 
huge performance gap between using MKL and LibSci + 
FFTW may indicate some issues in the LibSci and/or 
FFTW libraries. Among the tested combinations within 
Intel compilers, the Intel + MKL + ELPA provides the 
best performance. We recommend the use of Intel 
compilers + MPL + ELPA libraries for the hybrid VASP 
until the performance gap between MKL and 
LibSci+FFTW is removed. There was a problem with the 
GNU compiler (GCC v6.3.3) build when linked to the 
GNU OpenMP runtime library, libgomp.a (too many 
thread error). Because of this, we linked the hybrid VASP 
to the Intel OpenMP runtime to be able to run the VASP  
binary built with GNU compilers.  

 

 
 

Figure 9. Effects of the huge page memory to the hybrid VASP performance (version 4/13/2017) on the Cori KNL nodes.  The horizontal axis shows the 
number of nodes used, and the vertical axis shows the LOOP+ time (the dominant portion in the execution time).  All runs were under the quad,cache 
mode, and used one hardware thread per core, 64 cores  per node.  



F. Core specializations 
We have evaluated the effect of using core 

specializations on Cori KNL. We have tested with 1,2,4, 
and 0 cores specialized for the system use (via SLURM’s 
sbatch option #SBATCH –S 1), but did not see any 
obvious performance gain from using the core 
specializations. Occasionally, we saw a slightly better 
performance with one core specialization, but using more 
cores slightly slows down the code. It should be noted 
that in our tests there was no heavy I/O involved, which 
may have some effect on the core specialization tests.  

V. CONCLUSIONS 
We have studied the parallel/thread scaling of the 

hybrid MPI/OpenMP VASP code with representative 
workloads on the Cori KNL system, and have tested its 
performance impact from a few build/boot/run time 
options. Our study shows that the hybrid code performs 
best at four or eight threads per MPI task. Using eight 
threads per task in production runs is generally 
recommended while for small cases four threads per task 
may perform better. It should be noted that in our tests the 
number of bands/plane-waves were selected such that the 

 

 
 
Figure 10. Performance comparison between different compilers and libraries. The horizontal axis shows the number of nodes used, and the vertical axis 
shows the LOOP+ time (the dominant portion in the execution time). The “intel”, “cray”, and “gnu” in the legend strings denote Intel, Cray and GNU 
compilers, and the “mkl”, “elpa”, “libsci”, and “fftw” denote the MKL, ELPA, Cray LibSci, and the FFTW libraries. The “intel-mkl-elpa” denotes the 
VASP binary built with an Intel compiler and linked to the MKL and ELPA libraries. The “dynamic” means a dynamically linked binary. The “intel-
mkl-libci (scalapack)” means the VASP binary built with an Intel compiler and linked to the MKL for its LAPACK/BLAS/FFT libraries, and the Cray 
LibSci for its ScaLAPACK libraries. The “gnu-libsci-fftw-iomp5” denotes a binary built with a GNU compiler and linked to the LibSci, FFTW, and the 
Intel OpenMP runtime library (libiomp5.a) instead of the GNU OpenMP runtime (libgomp.a).  Note that some of the binaries failed to run (e.g., two of 
the GNU builds).  In addition, Cray builds failed to run with the HSE test cases.  



load on each MPI task/thread are well balanced in most of 
the tests. A reference number when choosing the number 
of MPI tasks to use for a given system is 1/8 - 1/4 of the 
atoms in the system (assuming using eight threads/tasks) 
for a single k-point calculation. Intel compilers + MKL 
(and FFTW wrappers to MKL) deliver the best 
performance among other compiler and library 
combinations - e.g., an Intel, Cray or GNU compiler + 
LibSci and FFTW. Huge pages either help or do not 
hinder VASP performance in almost all cases, so their use 
is recommended. For the workloads that fit into the 
MCDRAM, the cache and flat modes perform similarly, 
although we would recommend the cache mode for the 
hybrid VASP for ease of use.  The hybrid VASP (HSE 
workloads) gets the most performance benefit from using 
MCDRAM, so it could be beneficial to use more nodes 
and threads (eight threads) to reduce the memory 
requirement per node, thus fitting the workloads to 
MCDRAM wherever possible. In general, using one 
hardware thread per core is recommended. However, 
hyper-threading (using two hardware threads per core) 
could help VASP performance with the HSE workloads, 
especially when running at smaller node counts. Using 64 
cores out of 68 available is recommended. 

For future work, we are planning to further analyze 
the profiling data that we have recently collected, as well 
as the performance bottlenecks reported by APS and 
Craypat. We will also address the compiler portability 
issue - e.g., the hybrid VASP did not run with the HSE 
test cases if built with a Cray compiler. We will also 
explore the MPI turning options, such as the 
asynchronous progress engine that is available in Cray 
MPICH. Lastly, we will investigate the reproducible 
runtime spikes observed at thread counts 16 and 1 with 
some of the tests. 
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