
Performance of Hybrid MPI/OpenMP VASP on Cray XC40 Based on Intel Knights Landing Many
Integrated Core Architecture

Zhengji Zhao1, Martijn Marsman2, Florian Wende3, and Jeongnim Kim4

1) National Energy Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory,
Berkeley, USA. E-mail: zzhao@lbl.gov

2) Computational Materials Physics, University of Vienna, Vienna, Austria, E-mail: martijn.marsman@univie.ac.at
3) Zuse Institute Berlin (ZIB), Germany. E-mail: wende@zib.de

4) Intel, USA. E-mail: jeongnim.kim@intel.com

Abstract - With the recent installation of Cori, a Cray XC40
system with Intel Xeon Phi Knights Landing (KNL) many
integrated core (MIC) architecture, NERSC is transitioning
from the multi-core to the more energy-efficient many-core
era. The developers of VASP, a widely used materials
science code, have adopted MPI/OpenMP parallelism to
better exploit the increased on-node parallelism, wider
vector units, and the high bandwidth on-package memory
(MCDRAM) of KNL. To achieve optimal performance, KNL
specifics relevant for the build, boot and run time setup must
be explored. In this paper, we will present the performance
analysis of representative VASP workloads on Cori, focusing
on the effects of the compilers, libraries, and boot/run time
options such as the NUMA/MCDRAM modes, Hyper-
Threading, huge pages, core specialization, and thread
scaling. The paper is intended to serve as a KNL
performance guide for VASP users, but it will also benefit
other KNL users.

Keywords – Hybrid MPI/OpenMP VASP, KNL,
MCDRAM, Cache mode, Flat mode, Hyper-Threading,
Huge pages, Performance

I. INTRODUCTION
With the recent installation of Cori [1], a Cray XC40

system based on the Intel Xeon Phi Knights Landing
(KNL) many integrated core (MIC) architecture [2],
NERSC is transitioning from the previous MPI-dominant
multi-core era to a more energy-efficient many-core era,
which favors the MPI/OpenMP programming model.
Most application codes currently running at NERSC need
to be ported, optimized, or re-implemented in order to run
efficiently on this new architecture. The Vienna Ab initio
Simulation Package (VASP) [3-4], a widely used
materials science code that is highly ranked at NERSC
(Fig. 1) and other supercomputing centers worldwide, has
recently completed the transition from the former MPI-
only to a hybrid MPI/OpenMP code base [6], and is
currently under beta testing. The hybrid VASP code has
been highly optimized for CPUs including KNL,
achieving a 2-3 times speedup on KNL in comparison to
the MPI-only VASP v5.4.1, the current production release
(Fig. 2). Although the main KNL features, such as the
increased on-node parallelism (68 cores and 272 hardware

threads per node), wider vector units (512 bits and AVX-
512 instruction sets), and the high bandwidth on-package
memory (MCDRAM) have been addressed throughout the
code optimization process, other KNL specifics relevant
for the build, boot time options and runtime setup have
yet to be explored to achieve optimal performance.

In this paper, we will present our performance
evaluation of the hybrid MPI/OpenMP VASP code under
the various execution configurations on Cori KNL
system. We studied the effects of NUMA/MCDRAM
modes, Hyper-Threading, huge pages, and core
specialization, as well as compilers and libraries on the
code performance. The tested compilers include Intel,
GNU, and Cray compilers, and the tested libraries include
the FFT and BLAS/LAPACK/ScaLAPACK libraries from
Intel MKL [7], ELPA [8-9], Cray LibSci [10], and FFTW
[11]. We have also studied the parallel/thread scaling of
the hybrid MPI/OpenMP VASP, which is essential to run
the hybrid code at optimal MPI task and OpenMP thread
counts. To cover the representative workloads and to
exercise different code paths in VASP, we have used
multiple test cases with different problem sizes,
constituent ionic types, and electronic structure
calculation methods. Based on our performance

Figure 1. The computing cycles breakdown by application codes at
NERSC in 2015. VASP used about 12% of the total computing
cycles [5].

evaluation and analysis, we will provide the best practice
tips for VASP users. Additionally, the performance data
presented in this paper provides feedback for computer
vendors about the architecture’s performance in a real
world scientific application with a large user base.

The rest of the paper is organized as follows: we will
describe the Cori configuration and environment in
Section II, and will describe the VASP code and the test
cases used in Section III. In Section IV, we will present
the VASP performance results under the various
combinations of build/boot/run time options, and discuss
the observed performance results. We will conclude the
paper by summarizing our observations in Section V.

II. SYSTEM CONFIGURATION AND ENVRIONMENTS
SETUP

A. Cori
Cori is a Cray XC40 system that has been recently

installed at NERSC. Cori has 9688 single-socket Intel®
Xeon Phi™ Processor 7250 ("Knights Landing")
nodes @1.4 GHz with 68 cores (272 hardware threads or
CPUs) per node, 16 GB high bandwidth on-package
memory (MCDRAM) (>460 GB/sec) and 96 GB DDR4
2400 MHz memory (102 GB/s) per node. Each core has
two 512-bit wide vector units, and a 64 KB L1 cache.
Two cores form a tile that share 1 MB L2 cache. In
addition to the KNL nodes, Cori has 2388 dual-socket 16-
core Intel® Xeon™ Processor E5-2698 v3 ("Haswell")
nodes @2.3GHz with 32 cores (64 hardware threads or
CPUs) per node, and 128 GB 2133 MHz DDR4 memory.
Each core has a 256-bit vector unit, and has 64 KB and
256 KB L1 and L2 caches. There is also a 40 MB shared

L3 cache per socket. Cori nodes are interconnected with
Cray’s Aries network with Dragonfly topology.

Compared to the previous generations of Intel Xeon
processors (e.g, Haswell), KNL features a more flexible
boot time and more runtime options. For example, the
MCDRAM can be configured at the boot time as a third
level cache (the cache mode), as a distinct NUMA node
(the flat mode), or somewhere in between (the hybrid
mode) (Fig. 3, upper panel). The advantage of configuring
MCDRAM as a third level cache is that it does not require
any changes in application source codes. However, the
misses are expensive because applications need to access
both the MCDRAM and the DDR memory. If the
MCDRAM is configured in the flat mode, it is mapped to
physical address space and exposed as a NUMA node
(allocatable memory). Therefore it allows application
developers and users to have full control over how to use
the MCDRAM. The downside is that code modifications
may be required in order to utilize the MCDRAM
efficiently. In addition to MCDRAM, the KNL mesh can
be configured to three different clustering modes: all-to-
all, quadrant, and sub-NUMA clustering, which results in
at least nine different combinations of NUMA/MCDRAM
modes (Fig. 3 lower panel illustrates the quadrant cluster
mode). Each mode has its pros and cons, and it is very
challenging from a software perspective to understand the
most suitable mode for an application. The NERSC staff
has done extensive tests with the available

Figure 2. Performance comparison between the hybrid
MPI/OpenMP (red bars) and the MPI-only VASP v5.4.1 code (blue
bars) on Cori KNL and Haswell nodes. Where the numbers inside
the parenthesis, ([num;] num, num), are the number of MPI tasks
used for the MPI-only VASP (v5.4.1), if present; the MPI tasks and
OpenMP threads per task used to run the hybrid VASP. The hybrid
VASP outperforms the MPI-only code by 2-3 times (the second bar
groups). The figure also shows the performance comparison
between other build/boot/run time configurations on KNL. The
hybrid VASP ran with 8 nodes and 8 threads per task.

MCDRAM modes

KNL Mesh Interconnect and Cluster Mode: Quadrant

Figure 3. MCDRAM modes (upper panel), and the KNL mesh
interconnect and the quadrant mode illustration.

NUMA/MCDRAM modes at the early testing stage of the
Cori KNL system, and has recommended using
quad,cache and quad,flat modes based on their ease of
use and performance. Because of this, our test cases have
run on the quad,cache and quad,flat modes only.

Cori runs Cray Linux Environment (CLE) 6.0 Update
3 [12] as its compute node OS, and SLURM 17.02 [13] as
its batch system. All our tests were performed on Cori and
its development and test system, Gerty, which is a smaller
version of Cori.

III. CODE DESCRIPTION AND TEST CASES

A. VASP
The Vienna Ab-initio Simulation Package (VASP)

[3-4] is a widely used materials science application for
performing Ab-initio electronic structure calculations and
quantum-mechanical molecular dynamics (MD)
simulations using pseudopotentials or the projector-
augmented wave method and a plane wave basis
set. VASP computes an approximate solution to the
many-body Schrödinger equation, either within the
Density Functional Theory (DFT) to solve the Kohn-
Sham equation or the Hartree-Fock (HF) approximation
to solve the Roothaan equation. Hybrid functionals that
mix the HF approach with DFT have been implemented,
and Green's functions methods (GW quasi-particles and
ACFDT-RPA) and many-body perturbation theory (2nd-
order Møller-Plesset) have also been implemented in
VASP.

The fundamental mathematical problem that VASP
solves is a non-linear eigenvalue problem (Eq. (1)) that is
solved iteratively via self-consistent iteration cycles until
a desired accuracy is achieved.
While εn and Ψn are an eigenvalue (energy) and
eigenfunction (wavefunction or band) pair, N is the
number of wavefunctions to solve (N is roughly the same
as the number of electrons in the system). These N
wavefunctions must be orthonormal to each other (Eq.
(2)). VASP stores the wavefunctions as coefficients of the
Fourier components (or plane-wave basis sets) as shown
in Eq. (3). VASP makes use of efficient iterative matrix
diagonalization techniques such as the residual
minimization method with direct inversion of the iterative
subspace (RMM-DIIS) and the blocked Davidson (BD)
algorithms. It heavily depends on FFT and Linear Algebra
libraries (BLAS/LAPACK/ScaLAPACK).

The majority of the VASP code is written in
Fortran90. So far, all released codes including the most
recent release, VASP v5.4.4, are MPI-only codes. The
MPI-only VASP is parallelized in two levels (the top
level k-point parallel is not counted here). At the high
level, the bands are distributed over MPI tasks in a round-
robin fashion; at the lower level, the Fourier components
of each band are distributed across multiple MPI tasks. In
general, VASP execution is dominated by the back and

forth FFTs (from/to the real space to/from the Fourier
space or G space), and zgemm/dgemm calls. The MPI
time is dominated by the MPI_Allreduce calls. More
details about parallel implementation of VASP can be
found in [6].

B. Hybrid MPI/OpenMP VASP and optimizations for
KNL
In the hybrid MPI/OpenMP VASP the bands are

distributed over MPI tasks (high level) as they are in the
MPI-only code, and the Fourier components of the bands
are distributed over OpenMP threads, either explicitly via
adding OpenMP directives in the LOOP level, or
implicitly via the use of the threaded libraries, such as
FFTW and LAPACK/BLAS3 libraries. So far (up to
4/13/2017), there has been no nested OpenMP usage in
the hybrid VASP code. More details about the OpenMP
implementation in the hybrid VASP can be found in [6].

Another major optimization in the hybrid VASP code
is SIMD (Single Instruction, Multiple Data) vectorization
to promote the execution of parts of the program on
KNL’s 512 bit wide vector units. To stay within the high-
level Fortran language and to keep the code portable, we
have fully drawn upon OpenMP 4.x SIMD constructs in
the user code using both explicit loop-level vectorization
via !$omp simd, and sub-routine/function vectorization
through !$omp declare simd. Optimization targets
comprise, beside simple loops, the vectorization of nested
function calls (“deep” calling hierarchies) and complex
loop structures mixing scalar and vector codes. For that
purpose, we partly use a combination of user-defined
high-level vectors together with OpenMP SIMD loop
vectorization to process these vectors. The latter must be
packed/unpacked manually, but can be easily moved in

context of the SIMD function context and in combination
with scalar code via loop splitting.

 The Intel Application Performance Snapshot [14]
reports more than 94% of packed SIMD instructions for
the code execution (Fig. 4). More details about SIMD
vectorization and other optimization efforts in the hybrid
VASP, such as the SIMD optimization portability among
compilers, can be found in [6].

The explicit use of MCDRAM via Intel compiler’s
FASTMEM directive and the Memkind libraries [15] was
also explored in the hybrid VASP [16]. Although the
expected performance boost from the targeted MCDRAM
use was observed with the emulated MCDRAM using
dual-socket Intel Ivy Bridge nodes, the code unfortunately
slowed down significantly on KNL due to the conversion

𝐻[{𝜓}]𝜓!(𝒓) = 𝜀!𝛹!(𝒓), 𝑛 = 1,… ,𝑁 (1)

∫𝛹!∗(𝒓)𝛹!(𝒓)𝑑𝒓 = δnm (2)

 𝜓!(𝒓) = 𝐹𝐹𝑇{𝛹!(𝑮)}(𝒓) (3)
	

of some stack array variables to heap variables in order to
use MCDRAM. Because of this, the FASTMEM
directives were not adopted in the hybrid VASP. VASP
uses MCDRAM as a cache or a flat memory via the
numactl (or using srun –mem_bind) in the preferred

mode. Intel’s AutoHBW tool [17] can be used with
VASP if the explicit management of array allocations (by
array sizes only) is preferred.

C. Test cases
In this study, we used six different test cases, as

shown in Table 1. The first test case, denoted as PdO4 in
Table 1, is a PdO slab containing 348 atoms in total (300
Pd atoms and 48 O atoms). This system was chosen to test
the most commonly used (and basic) code path, the DFT
functional calculation with PBE potentials using the
RMM-DIIS iteration scheme. Since problem size matters
in benchmarking, we added a smaller PdO slab (denoted
as PdO2 in Table 1), which has 174 atoms (150 Pd and 24
O atoms) in the tests. A ternary alloy structure, GaAsBi-
64, was included to cover the metalic systems with the
default iteration scheme, Block Davidson + RMM-DIIS
algorithms. Two HSE hybrid functional calculations with
different atomic configurations and problem sizes were
included in the tests, because hybrid functional
calculations are increasingly important workloads in
VASP. Si256_hse is a 256-atom silicon supershell with a
vacancy, and B.hR105_hse is a small hexa-boron
structure (105 atoms). The Van Der Waals functional
calculation was also included (denoted as CuO_vdw in
Table 1).

We disabled heavy I/O (LWAVE = .FALSE.) in the
tests. All runs started from a given WAVECAR file so
that different runs for the same benchmark always start
with an exact same initial wavefunction. Each test was
run multiple times (>3 times) and reported the best
LOOP+ time, which will be the dominant portion in the
execution time for the production runs.

Figure 4. Intel APS report for the HSE functional calculation of
VASP on Cori KNL. This is a run on Si256_hse test case with 8
nodes, 128 processors with 8 threads/task.

TABLE 1. Test cases used in the performance tests. These cases were chosen to cover the representative VASP workloads and to exercise different code

paths.

 PdO4 GaAsBi -64 CuC_vdw Si256_hse B.hR105_hse PdO2

Electrons (Ions) 3288 (348) 266 (64) 1064 (98) 1020 (255) 315 (105) 1644(174)

Functional DFT DFT VDW HSE HSE DFT

Algo RMM (VeryFast) BD+RMM (Fast) RMM (VeryFast) CG (Damped) CG (Damped) RMM (VeryFast)

NEML(NELMDL) 5 (3) 8 (0) 10 (5) 3(0) 10 (5) 10 (4)

NBANDS 2048 192 640 640 256 1024

FFT grids 80x120x54
160x240x108

70x70x70
140x140x140

70x70x210
120x120x350

80x80x80
160x160x160

48x48x48
96x96x96

80x60x54
160x120x108

NPLWV 518400 343000 1029000 512000 110592 259200

IRMAX 1445 4177 3797 1579 1847 1445

IRDMAX 3515 17249 50841 4998 2358 3515

LMDIM 18 18 18 18 8 18

KPOINTS 1 1 1 4 4 4 3 3 1 1 1 1 1 1 1 1 1 1

D. Cori software and runtime specifications
In this study, we have used the hybrid MPI/OpenMP

code (last commit date: 4/13/2017). Wannier90 v1.2 was
enabled in the VASP builds. The majority of the tests
used the binaries built with the Intel compiler (2017
Update1) and linked to the MKL (2017 Update1) and
ELPA (2016.05.004) libraries, except where noted. The
FFT routines were also from MKL via the FFTW3
wrapper interfaces. The binaries for the compiler/library
performance tests used GCC 6.3.0 and CCE 8.5.8 and
were linked to the LibSci 16.11.1, FFTW 3.3.4.11, and
the MKL 2017 Update1. All binaries are linked to Cray
MPICH 7.5.3 as well.

A proper process/thread/memory affinity is the basis
for optimal performance. On Cori, we used the –cpu_bind
and –c options of the srun (SLURM’s parallel job
launcher) to pin MPI tasks to a subset of CPUs and used
OpenMP environment variables like OMP_PROC_BIND
and OMP_PLACES to control the thread affinity. When
running in the flat mode, the “numactl –m 1” was used to
enforce the use of the MCDRAM. A representative job
script was as follows:

The resulting thread affinity of this script is the same as
that of KMP_AFFINITY="granularity=thread,scatter” of
Intel compilers, and generates the same or compatible
thread affinity for applications built with Cray and GNU
compilers on KNL.

IV. PERFORMANCE RESULTS AND DISCUSSION

A. Thread scaling of hybrid VASP
Understanding the parallel/thread scaling of

applications is critical to run the codes efficiently on HPC
systems. Running a code outside the parallel scaling
region either slows down scientific productivity or wastes
valuable computing resources. It may even cause various
unexpected runtime errors and issues. While the MPI-only
code is known to scale up to one core per atom (the non-
collinear VASP scales further out), the hybrid

MPI/OpenMP code is still new to the VASP community.
We have studied the parallel/thread scaling of the hybrid
VASP on the Cori KNL and Haswell nodes (Fig. 5) using
the six selected benchmarks that were carefully chosen to
cover representative workloads and to exercise commonly
used code paths. Note that these selected benchmarks are
for the day-to-day scientific runs (not designed for heroic
runs). Among the six selected benchmarks, the first three
cases, PdO4, Si256_hse, and CuC_vdw, were relatively
larger systems, so we ran tests with up to 16 nodes, at
which an MPI-only code could run with up to 1024 MPI
ranks (or 4096 with four hardware threads per core) on
KNL. This would be already beyond the parallel scaling
regions of the MPI-only VASP for these test systems (see
Table 1 for the atomic configurations, the number of
bands and plane-waves, and the real/Fourier space grids
for each case). The rest of the test cases ran with up to
eight nodes. At all node counts, 1, 2, 4, 8, and 16
OpenMP threads per MPI task were tested. The number of
MPI tasks used for the node and thread counts are shown
in Table 2 for both the KNL and Haswell runs.

Fig. 5 shows that the hybrid VASP performs better
with four or eight threads per MPI task at all node counts
for all benchmarks. For the runs with smaller node counts
(one or two nodes), using four threads per task performs
best. However, when the node count increases, using
eight threads per task outperforms four threads per task
for all benchmarks except PdO2, the smaller DFT
functional calculation (for which VASP performs best
with four threads). VASP scales up to 8 nodes for all the
benchmarks used in the tests. For the Si256_hse and
CuC_vdw test cases (two larger cases), the hybrid VASP
scales further out to 16 nodes and 16 threads per task. We
ran the Si256_hse case using 32 nodes with 8 16, and 32
threads per task and compared it to the 16 node results
(Fig. 6). One can see that the hybrid VASP further scales
to 32 nodes with all 8, 16 and 32 threads per task. Craypat
[18], a Cray profiling tool, reports 28% of MPI time for
the runs using 32 nodes and 32 threads per task, which is
still within the acceptable MPI time for a production run.
These results show that VASP scales to more nodes and
threads for large problems. Being able to use more threads
per task and to scale up to larger number of nodes makes
it possible for the hybrid VASP to solve larger and
complex problems faster. In practice, we would
recommend using eight threads per task (except small
cases) and 16 threads or more for larger systems.

As described in Section III, the MPI parallelism over
the Fourier components (lower level MPI parallelism) has
been replaced by the OpenMP parallelism (threads),
meaning the hybrid VASP no longer uses the NCORE (or
NPAR), which was used to specify how many bands to
solve simultaneously in the MPI-only VASP. Since the
MPI parallelism is over the bands only in the hybrid code,
it imposes an upper limit on how many MPI tasks the
code can make use of efficiently. In practice, when

#!/bin/bash -l

#SBATCH -p debug
#SBATCH -C knl,quad,cache # to request cache mode
#SBATCH -N 8
#SBATCH -t 30:00

module load craype-hugepages2M
export MKL_FAST_MEMORY_LIMIT=0

export OMP_PROC_BIND=true
export OMP_PLACES=threads
export OMP_STACKSIZE=512m
export OMP_NUM_THREADS=8

to run with 1 hardware thread per core
srun -n 64 -c 32 --cpu_bind= cores ./vasp_std

deciding how many MPI tasks to use for a given problem,
a reference number would be 1/8 - 1/4 of the number of
atoms in the system (for a single k-point calculation),
although the sweet spot of the parallel scaling is problem-
dependent. To get optimal performance the calculations

need to be addressed case by case.
Fig. 5 also shows the comparison between KNL (blue

bars) and Haswell (yellow bars). One can see that at
smaller node counts, the hybrid VASP performs better on
KNL, but eventually, at larger node counts, its

Figure 5. The parallel/thread scaling of the hybrid MPI/OpenMP VASP (version 4/13/2017) on the Cori KNL and Haswell nodes. The horizontal axis
shows the number of OpenMP threads per task and the number of nodes used, and the vertical axis shows the LOOP+ time (the dominant portion in the
execution time). All runs used one hardware thread per core, and 64 cores per node. The 2M huge page memory was used. All the KNL runs were under
the quad,cache mode. Note, the spikes at the thread count 1 and 16 are reproducible results. It is not clear yet what was the root cause. Need further
investigation to understand the cause. The Si256_hse tests ran out of the 2M huge page memory when using one OpenMP thread per MPI task. Note that
the hybrid VASP does not use NCORE any more (or NCORE=1), however for the runs with one OpenMP thread per task, i.e., running the hybrid VASP
as an MPI-only code, 𝑁𝐶𝑂𝑅𝐸 ≠ 1 is still supported. We used NCORE=4 for all the runs with one OpenMP thread per task for fair comparison.

TABLE 2. The MPI tasks used for each node and thread combination shown in Fig. 1. All runs used one hardware thread per core. For the KNL runs, 64

cores out of 68 available were used.

No. of
Nodes 1 2 4 8 16

No. of
Threads 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

MPI Tasks
(KNL) 64 32 16 8 4 128 64 32 16 8 256 128 64 32 16 512 256 128 64 32 1024 512 256 128 64

MPI Tasks
(Haswell) 32 16 8 4 2 64 32 16 8 4 128 64 32 16 8 256 128 64 32 16 512 256 128 64 32

performance on Haswell catches up and shows a better

parallel scaling trend then KNL.
Note that those spikes at thread counts 1 and 16 are

reproducible results, and are not yet well understood.
Further investigation is needed to understand its root
cause.

B. Hyper-Threading (HT)
Each Cori KNL core has four hardware threads

(CPUs). HT could improve the application performance
through increasing the resource utilization by
simultaneously running multiple process/threads on the
hardware threads on the core, making use of the cycles
that would otherwise be wasted due to cache misses,
branch mis-predictions, data dependencies, and/or waiting
for other resources in a single process/thread execution on
the core. A previous study on the effects of HT on the
performance of MPI or MPI/OpenMP applications [19]
on a Cray XC30 system based on Intel Sandy Bridge

Figure 6. The hybrid VASP performance with 16 and 32 Cori KNL
nodes. The 8, 16, and 32 threads per task were tested. The runs used
the Craypat instrumented code.

Figure 7. The performance effects of Hyper-Threading to the hybrid MPI/OpenMP VASP on the Cori KNL nodes. The horizontal axis shows the
number of nodes, and the vertical axis shows the LOOP+ time (the dominant portion in the execution time). All runs were under the quad,cache mode
with one hardware thread per core. All runs used 64 cores out of 68 available on the KNL node. The 2M huge page memory was used.

processor nodes showed that its effect is highly
application-dependent. In general, HT may increase the
performance if an application is efficiently parallelized
and runs at smaller node counts. However, the MPI-only
VASP did not get any performance benefit from using
HT, and the code was instead slowed down by more than
50% on Sandy Bridge nodes (two hardware threads per
core, 16 cores per node). Now with the KNL system,
which provides more hardware threads per core (4), it is
worth exploring whether or not HT helps VASP
performance. Fig. 7 shows the comparison between using
one (64 CPUs per node were used) and two (128 CPUs
per node were used) hardware threads per core. Fig. 7
shows that HT does not help hybrid VASP for most of the
workloads, except the HSE workloads. We have also run
tests with four hardware threads per core, but it greatly
worsened the code performance (data not shown).

C. NUMA/MCDRAM modes
Fig. 8 shows the comparison between using the

quad,cache and quad,flat modes. We choose to run the six
benchmarks at the selected MPI/Thread counts that would
be used by production runs. There is no obvious
performance difference between using the flat and the
cash modes in all six benchmarks. Note that all these runs
were using a memory much lower than 16 GB and can
therefore fit within the MCDRAM when running in the
quad,flat mode. In practice, it is a good strategy to use
more nodes and threads in order to reduce the memory
footprint on the node so that the run can fit into the
MCDRAM memory (for the flat mode and also for the
cache mode). As one can see from Fig. 2 in the
introduction, the biggest performance boost was from
using MCDRAM (for HSE workloads), so it is important
to make use of MCDRAM whenever possible.

Figure 8. VASP performance comparison between using MCDRAM in the cache and flat modes. The horizontal axis shows the number of number of
nodes used, and the vertical axis shows the LOOP+ time (the dominant portion in the execution time). All runs used eight threads per task, one hardware
thread per core, and 64 cores per node. In addition, the 2M huge page memory was used. All flat mode runs were done with the numactl –m 1, which
enforce the user of MCDRAM (if a job does not fit into the MCDRAM, it is terminated).

D. Huge pages
Huge pages are virtual memory pages that are bigger

than the 4Kbyte default base page size. Huge pages can
improve memory performance for common access
patterns on large data sets. Huge pages also increase the
maximum size of data and text in a program accessible by
the high speed network [20]. However, using huge pages
has not been widely adopted among NERSC users
because using the huge pages increases job failure rates
presumably due to the decreased amount of available
huge page memory on the node from memory
fragmentation when the system has been running for some
time. In addition, huge page effects are application-
dependent, and not all applications can get a benefit from
using huge pages. Given the fact that KNL nodes are
frequently rebooted by user jobs, huge page memory may
benefit user applications more in comparison to the
previous generation of Intel Xeon process nodes. As
shown in Fig. 9 the huge page memory helped VASP

performance in all our test cases.

E. Compilers and libraries
Fig. 10 shows the comparison between different

compilers and libraries. As one can see using Intel
compiler + MKL outperforms all other alternatives. The
huge performance gap between using MKL and LibSci +
FFTW may indicate some issues in the LibSci and/or
FFTW libraries. Among the tested combinations within
Intel compilers, the Intel + MKL + ELPA provides the
best performance. We recommend the use of Intel
compilers + MPL + ELPA libraries for the hybrid VASP
until the performance gap between MKL and
LibSci+FFTW is removed. There was a problem with the
GNU compiler (GCC v6.3.3) build when linked to the
GNU OpenMP runtime library, libgomp.a (too many
thread error). Because of this, we linked the hybrid VASP
to the Intel OpenMP runtime to be able to run the VASP
binary built with GNU compilers.

Figure 9. Effects of the huge page memory to the hybrid VASP performance (version 4/13/2017) on the Cori KNL nodes. The horizontal axis shows the
number of nodes used, and the vertical axis shows the LOOP+ time (the dominant portion in the execution time). All runs were under the quad,cache
mode, and used one hardware thread per core, 64 cores per node.

F. Core specializations
We have evaluated the effect of using core

specializations on Cori KNL. We have tested with 1,2,4,
and 0 cores specialized for the system use (via SLURM’s
sbatch option #SBATCH –S 1), but did not see any
obvious performance gain from using the core
specializations. Occasionally, we saw a slightly better
performance with one core specialization, but using more
cores slightly slows down the code. It should be noted
that in our tests there was no heavy I/O involved, which
may have some effect on the core specialization tests.

V. CONCLUSIONS
We have studied the parallel/thread scaling of the

hybrid MPI/OpenMP VASP code with representative
workloads on the Cori KNL system, and have tested its
performance impact from a few build/boot/run time
options. Our study shows that the hybrid code performs
best at four or eight threads per MPI task. Using eight
threads per task in production runs is generally
recommended while for small cases four threads per task
may perform better. It should be noted that in our tests the
number of bands/plane-waves were selected such that the

Figure 10. Performance comparison between different compilers and libraries. The horizontal axis shows the number of nodes used, and the vertical axis
shows the LOOP+ time (the dominant portion in the execution time). The “intel”, “cray”, and “gnu” in the legend strings denote Intel, Cray and GNU
compilers, and the “mkl”, “elpa”, “libsci”, and “fftw” denote the MKL, ELPA, Cray LibSci, and the FFTW libraries. The “intel-mkl-elpa” denotes the
VASP binary built with an Intel compiler and linked to the MKL and ELPA libraries. The “dynamic” means a dynamically linked binary. The “intel-
mkl-libci (scalapack)” means the VASP binary built with an Intel compiler and linked to the MKL for its LAPACK/BLAS/FFT libraries, and the Cray
LibSci for its ScaLAPACK libraries. The “gnu-libsci-fftw-iomp5” denotes a binary built with a GNU compiler and linked to the LibSci, FFTW, and the
Intel OpenMP runtime library (libiomp5.a) instead of the GNU OpenMP runtime (libgomp.a). Note that some of the binaries failed to run (e.g., two of
the GNU builds). In addition, Cray builds failed to run with the HSE test cases.

load on each MPI task/thread are well balanced in most of
the tests. A reference number when choosing the number
of MPI tasks to use for a given system is 1/8 - 1/4 of the
atoms in the system (assuming using eight threads/tasks)
for a single k-point calculation. Intel compilers + MKL
(and FFTW wrappers to MKL) deliver the best
performance among other compiler and library
combinations - e.g., an Intel, Cray or GNU compiler +
LibSci and FFTW. Huge pages either help or do not
hinder VASP performance in almost all cases, so their use
is recommended. For the workloads that fit into the
MCDRAM, the cache and flat modes perform similarly,
although we would recommend the cache mode for the
hybrid VASP for ease of use. The hybrid VASP (HSE
workloads) gets the most performance benefit from using
MCDRAM, so it could be beneficial to use more nodes
and threads (eight threads) to reduce the memory
requirement per node, thus fitting the workloads to
MCDRAM wherever possible. In general, using one
hardware thread per core is recommended. However,
hyper-threading (using two hardware threads per core)
could help VASP performance with the HSE workloads,
especially when running at smaller node counts. Using 64
cores out of 68 available is recommended.

For future work, we are planning to further analyze
the profiling data that we have recently collected, as well
as the performance bottlenecks reported by APS and
Craypat. We will also address the compiler portability
issue - e.g., the hybrid VASP did not run with the HSE
test cases if built with a Cray compiler. We will also
explore the MPI turning options, such as the
asynchronous progress engine that is available in Cray
MPICH. Lastly, we will investigate the reproducible
runtime spikes observed at thread counts 16 and 1 with
some of the tests.

ACKNOWLEDGEMENT
The authors would like to thank Heidi Paxon at Cray

for resolving multiple Craypat issues allowing us to
collect profiling data for the hybrid VASP with Craypat.
The authors would also like to thank Dmitry Prohorov at
Intel for his timely help and support with APS. This work
is partially supported by Intel Corp. within the “Research
Center for Many-Core High-Performance Computing”
(IPCC) at ZIB, by NERSC’s Exascale Science
Applications Program (NESAP) [21], and by the ASCAR
Office in the DOE Office of Science, under the contract
number DE-AC02-05CH11231. The computational
resources are from the National Energy Scientific
Computing Center (NERSC).

REFERENCES

[1] http://www.nersc.gov/users/computational-systems/cori/
[2] Sodani, A., Gramunt, R., Corbal, J., Kim, H.S., Vinod, K.,

Chinthamani, S., Hutsell, S., Agarwal, R., Liu, Y.C.: Knights
landing: Second-generation intel xeon phi product. IEEE Micro
36(2) (2016) 34–46

[3] G. Kresse and J. Furthm_ller. Efficiency of ab-initio total energy
calculations for metals and semiconductors using a plane-wave
basis set. Comput. Mat. Sci., 6:15, 1996

[4] http://www.vasp.at/
[5] http://portal.nersc.gov/project/mpccc/baustin/NERSC_2014_Workl

oad_Analysis_30Oct2015.pdf
[6] Florian Wende, Martijn Marsman, Zhengji Zhao and Jeongnim

Kim, “Porting VASP from MPI to MPI + OpenMP [SIMD] -
Optimization Strategies, Insights and Feature Proposals”,
submitted to IWOMP 2017.

[7] Intel® Math Kernel Library, http://software.intel.com/en-
us/articles/intel-math-kernel-library-documentation

[8] Andreas Marek, Volker Blum, Rainer Johanni, Ville Havu, Bruno
Lang, Thomas Auckenthaler, Alexander Heinecke, Hans-Joachim
Bungartz, and Hermann Lederer, “The ELPA Library - Scalable
Parallel Eigenvalue Solutions for Electronic Structure Theory and
Computational Science”, The Journal of Physics: Condensed
Matter 26, 213201 (2014).

[9] Eigenvalue Solvers for Petaflop-Applications (ELPA),
https://elpa.mpcdf.mpg.de/about

[10] Cray Scientific and Math Libraries (CSML, also known as LibSci),
http://pubs.cray.com/content/S-2529/16.10/xctm-series-
programming-environment-user-guide-1705-s-2529/cray-
scientific-and-math-libraries-csml

[11] FFTW, http://www.fftw.org/
[12] Cray Linux Environment (CLE) 6.0 update 3,

http://docs.cray.com/PDF/XC_Series_System_Administration_Gui
de_CLE60UP03_S-2393.pdf

[13] Morris A. Jette , Andy B. Yoo , and Mark Grondona, SLURM:
Simple Linux Utility for Resource Management (2002), In Lecture
Notes in Computer Science: Proceedings of Job Scheduling
Strategies for Parallel Processing (JSSPP) 2003;
https://slurm.schedmd.com/

[14] Intel Application Performance Snapshots (APS),
https://software.intel.com/sites/products/snapshots/application-
snapshot

[15] Christopher Cantalupo, Vishwanath Venkatesan, Jeff R.
Hammond, Krzysztof Czurylo and Simon Hammond, User
Extensible Heap Manager for Heterogeneous Memory Platforms
and Mixed Memory Policies,
http://memkind.github.io/memkind/memkind_arch_20150318.pdf

[16] Zhengji Zhoa and Martijn Marsman, “Estimating the Performance
Impact of the MCDRAM on KNL Using Dual-Socket Ivy Bridge
Nodes on Cray XC30”, Cray User Group meeting, May 8-12,
2016, England, UK.

[17] http://memkind.github.io/memkind/examples/autohbw_README
[18] Craypat, http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
[19] Zhengji Zhao, Nicholas J. Wright and Katie Antypas, “Effects of

Hyper-Threading on the NERSC workload on Edison”, Cray User
Group meeting, May 6-9, 2013, Napa Valley, CA.

[20] Huge pages man page, “man intro_hugepages” on Cray XC40.
[21] http://www.nersc.gov/nesap

