
VASP:	Basics
(DFT,	PW,	PAW,	…)

University	of	Vienna,
Faculty	of	Physics	and	Center	for	Computational	Materials	Science,

Vienna,	Austria

VASP:	Basics
(DFT,	PW,	PAW,	…)

University	of	Vienna,
Faculty	of	Physics	and	Center	for	Computational	Materials	Science,

Vienna,	Austria

Performance of MPI/OpenMP
Hybrid VASP on Cray XC40 Based
on Intel Knights Landing Many
Integrated Core Architecture

Zhengji Zhao1 (zzhao@lbl.gov), Martijn Marsman2 (martijn.marsman@univie.ac.at), Florian
Wende3 (wende@zib.de), and Jeongnim Kim4 (jeongnim.kim@intel.com) 
 
1) National Energy Research Scientific Computing Center (ERSC), Lawrence Berkeley National Laboratory,
Berkeley, USA; 2) University of Vienna, Vienna, Austria;3) Zuse Institute Berlin (ZIB), Germany; 4) Intel, USA 
 
 Cray User Group Meeting, May 11, 2017, Redmond, WA

Acknowledgement

•  Intel Corp. within the “Research Center for Many-core
High-Performance Computing” (IPCC) at ZIB.

•  NERSC Exascale Science Applications Program
(NESAP).

Outline

•  Motivation
•  MPI+OpenMP Hybrid VASP – Optimizations for KNL
•  Benchmarks and Experiment Setups
•  Performance and Analysis

– Thread scaling, NUMA,MCDRAM modes, hugepages, Hyper-
Threading, compilers and libraries

•  Summary and Future work

Background

•  With the recent installation of Cori KNL system, NERSC is
transitioning from the multi-core to the more energy-efficient
many-core era.

•  Most of the applications at NERSC must be ported, optimized, or
re-implemented to run efficiently on this new architecture.

•  Code optimizations need to address increased parallelisms on the
node, larger vector units, high bandwidth on chip memory.

VASP, ranked #1 among ~700 application codes at NERSC, consumes
more than 10-12% of the computing cycles at NERSC.

Vienna Ab initio Simulation Package (VASP), is
a state-of-art electronic structure (ES) code.
•  Supporting a wide range of electronic structure

methods, from Density-Functional-Theory (DFT),
Hartree-Fock (HF) and hybrid (HF/DFT) functionals, to
the many-body-perturbative approaches based on the
random-phase-approximation (GW and ACFDT).

•  Solving non-linear eigenvalue problem iteratively.
FFTs and Linear Algebra libraries (BLAS/LAPACK/
ScaLAPACK) are heavily depended on.

•  Written in Fortran 90 and parallelized with MPI prior to
the MPI/OpenMP hybrid VASP.

VASP has recently completed the transition from an MPI-
only to an MPI/OpenMP hybrid code base

MPI/OpenMP hybrid VASP outperforms the pure MPI code by
2-3 times on Cori KNL

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

Cori	Haswell	(256;64,8)	 Cori	KNL	(192;128,8)	

Quad,Cache	

Cori	KNL(128,8),	

Quad,Flat,	used	DDR	

only	

	Cori	KNL	(128,8)	

Quad,Cache,	buit	with														

-xCORE-AVX2	

Cori	KNL	(128,8)	

Quad,Flat	

Cori	KNL	(128,8)									

Quad,Cache,No	

Hugepages	

LO
O
P	
Ti
m
e	
(s
ec
)	

System		(MPI	Tasks	for	VASP	5.4.1;	MPI	tasks,	OpenMP	Threads	per	Task	for	Hybrid	VASP)	Other		
	

VASP	Performance	on	Cori	KNL	and	Haswell	Nodes	
Test	case:	Si256_HSE;	all	runs	used	8	nodes;	2M	hugepages	used	except	where	noted		

VASP	5.4.1,	MPI	only	

MPI/OpenMP	Hybrid	VASP	

-xCORE-AVX2; ran with
MKL_ENABLE_INSTRUCTIONS=AVX2

All runs used 8 Haswell or KNL nodes on Cori. The numbers inside the “()”, [num;] num,num, are the number of MPI tasks
used for the MPI only VASP 5.4.1, if present; the MPI tasks, OpenMP threads per task used to run the Hybrid VASP.

MPI/OpenMP hybrid VASP outperforms the pure MPI code by
2-3 times on Cori KNL

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

Cori	Haswell	(256;64,8)	 Cori	KNL	(192;128,8)	

Quad,Cache	

Cori	KNL(128,8),	

Quad,Flat,	used	DDR	

only	

	Cori	KNL	(128,8)	

Quad,Cache,	buit	with														

-xCORE-AVX2	

Cori	KNL	(128,8)	

Quad,Flat	

Cori	KNL	(128,8)									

Quad,Cache,No	

Hugepages	

LO
O
P	
Ti
m
e	
(s
ec
)	

System		(MPI	Tasks	for	VASP	5.4.1;	MPI	tasks,	OpenMP	Threads	per	Task	for	Hybrid	VASP)	Other		
	

VASP	Performance	on	Cori	KNL	and	Haswell	Nodes	
Test	case:	Si256_HSE;	all	runs	used	8	nodes;	2M	hugepages	used	except	where	noted		

VASP	5.4.1,	MPI	only	

MPI/OpenMP	Hybrid	VASP	

-xCORE-AVX2; ran with
MKL_ENABLE_INSTRUCTIONS=AVX2

All runs used 8 Haswell or KNL nodes on Cori. The numbers inside the “()”, [num;] num,num, are the number of MPI tasks
used for the MPI only VASP 5.4.1, if present; the MPI tasks, OpenMP threads per task used to run the Hybrid VASP.

The optimal performance was not possible without using optimal
build/run/boot time options and optimal number of MPI tasks and
OpenMP threads.

VASP:	Basics
(DFT,	PW,	PAW,	…)

University	of	Vienna,
Faculty	of	Physics	and	Center	for	Computational	Materials	Science,

Vienna,	Austria

MPI/OpenMP Hybrid VASP
and Optimizations for KNL

More details on optimizations in the hybrid VASP can be found in a IWOMP17 submission:

Porting VASP from MPI to MPI + OpenMP [SIMD]
Optimization Strategies, Insights and Feature Proposals

OpenMP threading are added into existing MPI code base

•  VASP solves a set of Schrodinger-like
 eigenvalue/function problems

– using iterative matrix diagonalization schemes,
 e.g, Blocked Davidson or RMM-DIIS.

•  MPI parallelization (distributing data)
– over the bands (high level)
– over Fourier coefficient of the bands (low level)

•  MPI + OpenMP parallelization
– MPI over bands (high level)
– OpenMP threading over the coefficients of bands, either by explicitly adding

OpenMP directives or via using threaded FFTW and LAPACK/BLAS3 libraries
– No nested OpenMP

Transforming VASP to better exploit modern processors by introducing new paral-
lelisms is challenging: the organically grown VASP contains 100k lines of codes spread
across hundreds of FORTRAN(90) source files. Adapting the code base to meet mod-
ern computer platform requirements, we also have to ensure the portability, extensibility
and maintainability as well. This work summarizes our efforts to extend the parallelisms
on a node by adopting OpenMP multithreading and vectorization standards, including
the integration of threaded libraries, which itself is critical to performance. We apply
SIMD optimizations at various levels and focus on two specific examples of OpenMP
4.x SIMD constructs in FORTRAN codes to highlight its power and limitations.

2 Core computations in VASP

In essence, VASP solves a set of Schrödinger-like eigenvalue equations

H[{y}]yn = enyn, n = 1, ..,N (1)

for N eigen-value/function pairs {en,yn}, where N is of the order of the number of elec-
trons in the simulation box (typically N < 103). The operator H[{y}], the Hamiltonian,
depends on the set of solutions {y}, requiring iterations until the self-consistency is
achieved in terms of the total energy and electron density. These equations are solved by
means of iterative matrix diagonalization algorithms, e.g., Blocked-Davidson or RMM-
DIIS [1, 2]. The set of solutions {y} to Eq. 1 must be explicitly kept orthonormal:

Z
y⇤

n (r)ym(r)dr = dnm . (2)

This is done by means of Gram-Schmidt orthogonalization.
The eigenfunctions yn are basically expressed in a plane wave basis set, i.e., VASP

stores their Fourier coefficients. The last statement is a bit of a simplification since in
reality VASP uses a Projector-Augmented-Wave (PAW) basis. A description of the PAW
method, however, is beyond the scope of this paper. For details, we refer the reader to
the paper by Kresse and Joubert [7]. Here it suffices to know that a key ingredient of the
PAW method is the projection of the eigenfunctions onto a set of localized functions pa
centered on the atomic sites in the simulation box:

can =
Z

Wa
pa(r)yn(r)dr , (3)

where Wa is a certain volume around the atomic site on which pa is localized.
Computationally speaking, an N-electron VASP calculation consists of many in-

dependent 3d FFTs, matrix-matrix multiplications, matrix diagonalizations and other
linear algebra methods. The Gram-Schmidt orthogonalization of the eigenfunctions in-
volves Choleski decomposition and inversion of N ⇥N matrices and requires all-to-all
communication. Ideally, VASP can be expressed as a sequence of optimized library
calls and reap the benefits of highly optimized parallel numerical libraries (FFT, BLAS
and LAPACK/ScaLAPACK) on each platform. In practice, achieving a high fraction of
the peak FLOPS on a node and scaling towards hundreds of nodes is challenging: i)

2

Transforming VASP to better exploit modern processors by introducing new paral-
lelisms is challenging: the organically grown VASP contains 100k lines of codes spread
across hundreds of FORTRAN(90) source files. Adapting the code base to meet mod-
ern computer platform requirements, we also have to ensure the portability, extensibility
and maintainability as well. This work summarizes our efforts to extend the parallelisms
on a node by adopting OpenMP multithreading and vectorization standards, including
the integration of threaded libraries, which itself is critical to performance. We apply
SIMD optimizations at various levels and focus on two specific examples of OpenMP
4.x SIMD constructs in FORTRAN codes to highlight its power and limitations.

2 Core computations in VASP

In essence, VASP solves a set of Schrödinger-like eigenvalue equations

H[{y}]yn = enyn, n = 1, ..,N (1)

for N eigen-value/function pairs {en,yn}, where N is of the order of the number of elec-
trons in the simulation box (typically N < 103). The operator H[{y}], the Hamiltonian,
depends on the set of solutions {y}, requiring iterations until the self-consistency is
achieved in terms of the total energy and electron density. These equations are solved by
means of iterative matrix diagonalization algorithms, e.g., Blocked-Davidson or RMM-
DIIS [1, 2]. The set of solutions {y} to Eq. 1 must be explicitly kept orthonormal:

Z
y⇤

n (r)ym(r)dr = dnm . (2)

This is done by means of Gram-Schmidt orthogonalization.
The eigenfunctions yn are basically expressed in a plane wave basis set, i.e., VASP

stores their Fourier coefficients. The last statement is a bit of a simplification since in
reality VASP uses a Projector-Augmented-Wave (PAW) basis. A description of the PAW
method, however, is beyond the scope of this paper. For details, we refer the reader to
the paper by Kresse and Joubert [7]. Here it suffices to know that a key ingredient of the
PAW method is the projection of the eigenfunctions onto a set of localized functions pa
centered on the atomic sites in the simulation box:

can =
Z

Wa
pa(r)yn(r)dr , (3)

where Wa is a certain volume around the atomic site on which pa is localized.
Computationally speaking, an N-electron VASP calculation consists of many in-

dependent 3d FFTs, matrix-matrix multiplications, matrix diagonalizations and other
linear algebra methods. The Gram-Schmidt orthogonalization of the eigenfunctions in-
volves Choleski decomposition and inversion of N ⇥N matrices and requires all-to-all
communication. Ideally, VASP can be expressed as a sequence of optimized library
calls and reap the benefits of highly optimized parallel numerical libraries (FFT, BLAS
and LAPACK/ScaLAPACK) on each platform. In practice, achieving a high fraction of
the peak FLOPS on a node and scaling towards hundreds of nodes is challenging: i)

2

Ψn(r) = FFT{Ψn(G)}(r)

SIMD vectorization is deployed extensively in the hybrid
VASP

Either implicitly within library calls or explicitly at the loop level
–  loop vectorization via !$omp simd
–  function vectorization via !$omp declare simd

subroutine foo (..)
..
do i = 1, n

call bar(x(i),y(i))

enddo
..

end subroutine foo

subroutine bar(x, y)
real*8 :: x, y

y = log(x)

end subroutine bar

subroutine foo (..)
..
do i = 1, n, SIMD_WIDTH
!$omp simd

do ii = 0, SIMD_WIDTH -1
vmask%x(ii) = .false.
if ((i + ii) .le. n) then

vmask%x(ii) = .true.
vx%x(ii) = x(i + ii)

endif
enddo
call vbar(vx ,vy ,vmask)

!$omp simd

do ii = 0, SIMD_WIDTH -1
if (vmask%x(ii)) x(i + ii) = vx%x(ii)

enddo
enddo
..

end subroutine foo

subroutine vbar(x, y, mask)
type(simd_real8) :: x, y
type(simd_mask8) :: mask
integer :: ii

!$omp simd

do ii = 0, SIMD_WIDTH -1
if (mask%x(ii)) y%x(ii) = log(x%x(ii))

enddo
end subroutine vbar

Fig. 3. Manual scalar-to-vector (left to right) expansion of a simple Fortran code snippet.

been back-ported to the other code versions for a fair comparison. The GNU compiler,
however, achieved sucess in vectorizing only 5 out of the 20 loops, missing the most
compute intensive ones. Among these 5 loops are two with calls to log, exp and pow,
supporting our interface definitions to libmvec (we verified the respective calls in the
assembly). The remaining 15 loops contain control flow divergences and “smallish”
loop nests. However, it is not totally clear to us why gfortran failed vectorizing them,
as for similar loop structures gcc achieves success [10].

Considering the execution times for the hotspot loop in ggaall_grid, listed in
Tab. 1, the relevance of an effective SIMD vectorization is evident. With the Xeon Phi
behind the Haswell CPU in the reference case, switching to SIMD execution, it goes
ahead significantly when using the Intel compiler. The almost 3x gain over the execution
on the Haswell CPU to a large fraction results from twice the SIMD vector width and
the fact that on KNL there is two SIMD units per CPU core, together with native support
for vector masks. For the GNU compiler, we only see that our high-level vector scheme
is working at least in the sense that it improves data locality.

4.3 Loop Splitting

Another kind of computation with a significant amout of time spent in the user code is
the integration of the dynamically screened two electron integrals over frequency

s(w) =
i

2p

Z +•

�•

W (w 0)

w +w 0 � e2 + iDsign(e2 �µ)
dw 0. (5)

10

1.  SIMD Vectorization for nested
subroutines calls
– by splitting the loops into chunks of SIMD

length, pack and unpack data into vectors .

2.  LOOP splitting

The performance improvements over executing the hotspot loop in ggaall_grid

sequentially are quite different for the considered target platforms. The execution on the
Haswell CPU seems to benefit only slightly from SIMD vectorization. About a factor
1.3 gain can be measured opposed to a factor 4.3 on the Xeon Phi (see Tab. 1). For the
Haswell CPU, the assembly contains both SSE and AVX SIMD instructions, despite
building with -xore-avx2 and specifying the simdlen(VL) clause with VL=4 for ex-
ecution with AVX(2)—all these specifics are reported by the Intel compiler within its
optimization report. Currently, the Fortran !$omp declare simd construct seems to be
a tripping hazard when heading for code portability and effective SIMD vectorization.

To get rid of these limitations, we integrated into VASP a high-level vector coding
scheme combining real vectors with OpenMP 4.x compiler directives to promote SIMD
vectorization when looping over the vector elements. Figure 2 contains the definition of
the Fortran simd module [10]. For the GNU compiler, we provide an interface to access
vector math calls through libmvec [11].

Using these high-level vectors means to manually split the relevant loops into chunks
of size SIMD_WIDTH, pack and unpack data to vectors, and then to apply the scalar-to-
vector code expansion, including subroutine and function definitions. The scheme is
illustrated in Fig. 3—the overhead of vector un-/packing and mask creation becomes
negligible in case of complex loops. At the cost of more or less intensive code adap-
tations, the advantages of using this coding scheme comprise dealing with vectors and
masks in a natural way as well as a straighforward mixing of scalar and vector code,
e.g., if there is library calls or print statements throughout the SIMD execution. With the
SIMD_WIDTH parameter, vector lenghts can be easily adapted to any meaningful value,
matching at least the native SIMD vector length, of course.

Code compilation with the Intel compiler results in all code along the calling tree
(contained within 20 loops) can be effectively vectorized, with the (compiler-)estimated
performance gains close to the theoretical expectation (4x and 8x for computations
on 64-bit words with AVX(2) and AVX512, respectively). Additionally, we used the
optimization report to further tune the computation by removing unnecessary divides
and re-computations of intermediate values, for instance—all these optimizations have

module simd
type , public :: simd_real8

real*8 :: x(0 : SIMD_WIDTH -1)
end type simd_real8
type , public :: simd_mask8

logical :: x(0 : SIMD_WIDTH -1)
end type simd_mask8
..
interface

function simd_exp(x) bind(c,name="__exp_finite")
!$omp declare simd (simd_exp)

real*8 :: simd_exp
real*8, value , intent(in) :: x

end function simd_exp
..

end interface
end module simd

Fig. 2. Fortran simd module. SIMD WIDTH is definied as a constant in a separate file simd.inc.
For the GNU compiler, we provide an interface to access vector math calls through libmvec.

9

For GNU compiler
to use libmvec

Explicit use of MCDRAM was explored in hybrid VASP via Intel
compiler directive, however, it was not adopted in the hybrid VASP

•  To use MCDRAM, some of the stack variables had to be converted
to allocatable heap variables, unfortunately this change itself
slowed down the code significantly.

•  VASP uses MCDRAM as cache or flat memory via numactl.
•  Other external tools such as Intel AutoHBW can be exploited as

well

 SUBROUTINE RACC0MU(NONLR_S, WDES1, CPROJ_LOC, CRACC, LD, NSIM, LDO)
...
 REAL(qn),ALLOCATABLE:: WORK(:),TMP(:,:)
 GDEF,ALLOCATABLE :: CPROJ(:,:)

...
 ALLOCATE(WORK(ndata*NSIM*NONLR_S%IRMAX),TMP(NLM,ndata*2*NSIM),CPROJ(WDES1%NPRO_TOT,NSIM))
...
 END SUBROUTINE RACC0MU

 !DIR$ ATTRIBUTES FASTMEM :: WORK,TMP,CPROJ

VASP:	Basics
(DFT,	PW,	PAW,	…)

University	of	Vienna,
Faculty	of	Physics	and	Center	for	Computational	Materials	Science,

Vienna,	Austria

Benchmarks and
Performance Test setups

Cori hardware and software overview

•  Cori, a Cray XC40 system at NERSC based on Intel KNL and Haswell
architectures, interconnected with Cray Aries network
– Cori has over 9300 single-socket Intel® Xeon Phi™ Processor 7250 ("Knights Landing")

nodes @1.4 GHz with 68 cores (272 threads) per node, two 512 bit vector units per
core, and 16 GB high bandwidth on-package memory (MCDRAM) with 5X the
bandwidth of DDR4 DRAM memory (>400 GB/sec) and 96 GB DDR4 2400 MHz
memory per node.

– Cori has over 2000 dual-socket 16-cor Intel® Xeon™ Processor E5-2698 v3 ("Haswell")
nodes @2.3GHz with 32 cores (64 threads) per node, two 256 bit vector units per
core, 128 GB 2133 MHz DDR4 memory. Cori nodes are interconnected with Cray’s
Aries network with Dragonfly topology.

•  Cori runs CLE 6.3 Update 4, and SLURM 2017.02.

Selected 6 benchmarks cover representative VASP workloads,
exercising different code paths, ionic constituent and problem sizes

 PdO4 GaAsBi -64 CuC Si256 B.hR105 PdO2

Electrons (Ions) 3288 (348) 266 (64) 1064 (98) 1020 (255) 315 (105) 1644(174)

Functional DFT DFT vDW HSE HSE DFT

Algo RMM (VeryFast) BD+RMM (Fast) RMM (VeryFast) CG (Damped) CG (Damped) RMM (VeryFast)

NEML(NELMDL) 5 (3) 8 (0) 10 (5) 3(0) 10 (5) 10 (4)

NBANDS 2048 192 640 640 256 1024

FFT grids 80x120x54
160x240x108

70x70x70
140x140x140

70x70x210
120x120x350

80x80x80
160x160x160

48x48x48
96x96x96

80x60x54
160x120x108

NPLWV 518400 343000 1029000 512000 110592 259200

IRMAX 1445 4177 3797 1579 1847 1445

IRDMAX 3515 17249 50841 4998 2358 3515

LMDIM 18 18 18 18 8 18

KPOINTS 1 1 1 4 4 4 3 3 1 1 1 1 1 1 1 1 1 1

Benchmarking approach

•  Benchmark measures the LOOP+ time, which is the
major portion of the execution time in the production
execution of the VASP (disabled I/O).

•  Run each benchmark multiple times (>3 times) and took
the best run time.

•  Process/thread affinity controlled by the OpenMP
runtime (memory affinity by numactl) across all compiler
builds of of VASP.
– Export OMP_PROC_BIND=true
– Export OMP_PLACES=Threads

VASP versions, compilers and libraries used

•  MPI+OpenMP hybrid version (last commit date 4/13/2017) was
used in the most of the tests, some earlier versions, e.g., 3/23/2017
was used in some of the tests as well.

•  CDT 17.03 (cray-mpich/7.5.3, cray-libsci/16.11.1, fftw/ 3.4.6.6)
•  Intel compiler and MKL from 2017 Update 1 + ELPA (version

2016.005)
•  GNU compiler 6.3
•  Cray compiler 8.5.4

MPI/OpenMP Parallel Scaling

Hybrid VASP performs best with 4 or 8 OpenMP threads/
MPI task

 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

No. of OpenMP Threads per MPI Task /No. of Nodes

0

20

40

60

80

100

120

140

160

180

200

LO
O

P+
 T

im
e

(s
ec

)

KNL,Cache vs Haswell (Hugepages2M, 1 Thread/Core,PdO4)

1 node 2 nodes 4 nodes 8 nodes 16 nodes

KNL
Haswell

Thread Scaling

The spikes at thread
counts at 16 needs to
be investigated, which
could be some
indication of the system
issue, as Cori KNL
system is undergoing
continuous
configuration change
and system upgrades
before entering
productions.

Hybrid VASP performs best with 4 or 8 OpenMP threads/
task

 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

No. of OpenMP Threads per MPI Task /No. of Nodes

0

500

1000

1500

2000

2500

LO
O

P+
 T

im
e

(s
ec

)

KNL,Cache vs Haswell (Hugepages2M, 1 Thread/Core,Si256_hse)

1 node 2 nodes 4 nodes 8 nodes 16 nodes

KNL
Haswell

Thread Scaling

At larger node counts,
the code can make
use of the more
threads per task (e.g,
16). This is a
promising feature of
the code, which opens
door to scale to more
nodes to solve bigger
and more complex
problems faster.

Using 4 and 8 threads helps the performance.

 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

No. of OpenMP Threads per MPI Task /No. of Nodes

0

100

200

300

400

500

LO
O

P+
 T

im
e

(s
ec

)

KNL,Cache vs Haswell (Hugepages2M, 1 Thread/Core,CuC_vdw)

1 node 2 nodes 4 nodes 8 nodes 16 nodes

KNL
Haswell

Thread Scaling

Hybrid VASP performs best with 4 or 8 OpenMP threads/task

 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

No. of OpenMP Threads per MPI Task /No. of Nodes

0

50

100

150

LO
O

P+
 T

im
e

(s
ec

)

KNL,Cache vs Haswell (Hugepages2M, 1 Thread/Core,GaAsBi-64)

1 node 2 nodes 4 nodes 8 nodes

KNL
Haswell

Thread Scaling

Hybrid VASP performs best with 4 or 8 OpenMP threads/task

 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

No. of OpenMP Threads per MPI Task /No. of Nodes

0

50

100

150

200

250

LO
O

P+
 T

im
e

(s
ec

)

KNL,Cache vs Haswell (Hugepages2M, 1 Thread/Core,B.hR105_hse)

1 node 2 nodes 4 nodes 8 nodes

KNL
Haswell

Thread Scaling

The spikes were
reproducible, need further
investigation.

Hybrid VASP performs best with 4 or 8 OpenMP threads/
task

 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

No. of OpenMP Threads per MPI Task /No. of Nodes

0

20

40

60

80

100

120

LO
O

P+
 T

im
e

(s
ec

)

KNL,Cache vs Haswell (Hugepages2M, 1 Thread/Core,PdO2)

1 node 2 nodes 4 nodes 8 nodes

KNL
Haswell

Thread Scaling

NUMA,MCDRAM Modes

Hybrid VASP performs similarly under the cache/flat
modes for the workloads that fit into MCDRAM

 NUMA/MCDRAM

 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

No. of OpenMP Threads per MPI Task /No. of Nodes

0

20

40

60

80

100

120

140

160

180

200

LO
O

P+
 T

im
e

(s
ec

)

Cache vs Flat modes on KNL (Hugepages2M, 1 Thread/Core,PdO4)

1 node 2 nodes 4 nodes 8 nodes 16 nodes

Cache
Flat

 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

No. of OpenMP Threads per MPI Task /No. of Nodes

0

500

1000

1500

2000

2500

LO
O

P+
 T

im
e

(s
ec

)

Cache vs Flat modes on KNL (Hugepages2M, 1 Thread/Core,Si256_hse)

1 node 2 nodes 4 nodes 8 nodes 16 nodes

Cache
Flat

Hybrid VASP performs similarly under the cache/flat
modes for the workloads that fit into MCDRAM

NUMA/MCDRM

 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

No. of OpenMP Threads per MPI Task /No. of Nodes

0

100

200

300

400

500

LO
O

P+
 T

im
e

(s
ec

)

Cache vs Flat modes on KNL (Hugepages2M, 1 Thread/Core,CuC_vdw)

1 node 2 nodes 4 nodes 8 nodes 16 nodes

Cache
Flat

 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

No. of OpenMP Threads per MPI Task /No. of Nodes

0

50

100

150

LO
O

P+
 T

im
e

(s
ec

)

Cache vs Flat modes on KNL (Hugepages2M, 1 Thread/Core,GaAsBi-64)

1 node 2 nodes 4 nodes 8 nodes

Cache
Flat

Hybrid VASP performs similarly under the cache/flat
modes for the workloads that fit into MCDRAM

NUMA/MCDRAM

 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

No. of OpenMP Threads per MPI Task /No. of Nodes

0

50

100

150

200

250

LO
O

P+
 T

im
e

(s
ec

)

Cache vs Flat modes on KNL (Hugepages2M, 1 Thread/Core,B.hR105_hse)

1 node 2 nodes 4 nodes 8 nodes

Cache
Flat

 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

No. of OpenMP Threads per MPI Task /No. of Nodes

0

20

40

60

80

100

120

LO
O

P+
 T

im
e

(s
ec

)

Cache vs Flat modes on KNL (Hugepages2M, 1 Thread/Core,PdO2)

1 node 2 nodes 4 nodes 8 nodes

Cache
Flat

Hyper-Threading

Hyper-Threading helps HSE workloads (arguably), but not
other workloads in the parallel scaling regions on KNL

Hyper-Threading

 4 8 4 8 4 8 4 8 4 8

No. of OpenMP Threads per MPI Task /No. of Nodes

0

20

40

60

80

100

120

LO
O

P+
 T

im
e

(s
ec

)

Hyper-Threading Effect on KNL (Cache Mode, Hugepages2M,PdO4)

1 node 2 nodes 4 nodes 8 nodes 16 nodes

1 Thread/Core
2 Threads/Core

 4 8 4 8 4 8 4 8 4 8

No. of OpenMP Threads per MPI Task /No. of Nodes

0

500

1000

1500

LO
O

P+
 T

im
e

(s
ec

)

Hyper-Threading Effect on KNL (Cache Mode, Hugepages2M,Si256_hse)

1 node 2 nodes 4 nodes 8 nodes 16 nodes

1 Thread/Core
2 Threads/Core

Hyper-Threading rarely helps the hybrid VASP
performance on KNL

Hyper-Threading

 4 8 4 8 4 8 4 8 4 8

No. of OpenMP Threads per MPI Task /No. of Nodes

0

50

100

150

200

250

300

LO
O

P+
 T

im
e

(s
ec

)

Hyper-Threading Effect on KNL (Cache Mode, Hugepages2M,CuC_vdw)

1 node 2 nodes 4 nodes 8 nodes 16 nodes

1 Thread/Core
2 Threads/Core

 4 8 4 8 4 8 4 8

No. of OpenMP Threads per MPI Task /No. of Nodes

0

10

20

30

40

50

60

70

LO
O

P+
 T

im
e

(s
ec

)

Hyper-Threading Effect on KNL (Cache Mode, Hugepages2M,GaAsBi-64)

1 node 2 nodes 4 nodes 8 nodes

1 Thread/Core
2 Threads/Core

Hyper-Threading rarely helps the hybrid VASP
performance on KNL

Hyper-Threading

 4 8 4 8 4 8 4 8

No. of OpenMP Threads per MPI Task /No. of Nodes

0

10

20

30

40

50

60

70

80

90

LO
O

P+
 T

im
e

(s
ec

)

Hyper-Threading Effect on KNL (Cache Mode, Hugepages2M,B.hR105_hse)

1 node 2 nodes 4 nodes 8 nodes

1 Thread/Core
2 Threads/Core

 4 8 4 8 4 8 4 8

No. of OpenMP Threads per MPI Task /No. of Nodes

0

10

20

30

40

50

60

70

LO
O

P+
 T

im
e

(s
ec

)

Hyper-Threading Effect on KNL (Cache Mode, Hugepages2M,PdO2)

1 node 2 nodes 4 nodes 8 nodes

1 Thread/Core
2 Threads/Core

Hugepage Memory

Hugepage memory helps hybrid VASP performance on
KNL

 Hugepages

*) VASP ran out of 2M hugepage memory with 1 thread/task runs for
Si256_hse.

 4 8 4 8 4 8 4 8 4 8

No. of OpenMP Threads per MPI Task /No. of Nodes

0

20

40

60

80

100

120

LO
O

P+
 T

im
e

(s
ec

)

Hugepages Effect on KNL (Cache Mode, 1 Thread/Core,PdO4)

1 node 2 nodes 4 nodes 8 nodes 16 nodes

Hugepages2M
No Hugepages

 4 8 4 8 4 8 4 8 4 8

No. of OpenMP Threads per MPI Task /No. of Nodes

0

500

1000

1500

LO
O

P+
 T

im
e

(s
ec

)

Hugepages Effect on KNL (Cache Mode, 1 Thread/Core,Si256_hse)

1 node 2 nodes 4 nodes 8 nodes 16 nodes

Hugepages2M
No Hugepages

The use of hugepage memory does not slow down the
code for the workloads it does not help significantly

 Hugepages

 4 8 4 8 4 8 4 8 4 8

No. of OpenMP Threads per MPI Task /No. of Nodes

0

50

100

150

200

250

300

LO
O

P+
 T

im
e

(s
ec

)

Hugepages Effect on KNL (Cache Mode, 1 Thread/Core,CuC_vdw)

1 node 2 nodes 4 nodes 8 nodes 16 nodes

Hugepages2M
No Hugepages

 4 8 4 8 4 8 4 8

No. of OpenMP Threads per MPI Task /No. of Nodes

0

10

20

30

40

50

60

70

LO
O

P+
 T

im
e

(s
ec

)

Hugepages Effect on KNL (Cache Mode, 1 Thread/Core,GaAsBi-64)

1 node 2 nodes 4 nodes 8 nodes

Hugepages2M
No Hugepages

Hugepage memory helps hybrid VASP performance

 Hugepages

 4 8 4 8 4 8 4 8

No. of OpenMP Threads per MPI Task /No. of Nodes

0

10

20

30

40

50

60

70

80

90

LO
O

P+
 T

im
e

(s
ec

)

Hugepages Effect on KNL (Cache Mode, 1 Thread/Core,B.hR105_hse)

1 node 2 nodes 4 nodes 8 nodes

Hugepages2M
No Hugepages

 4 8 4 8 4 8 4 8

No. of OpenMP Threads per MPI Task /No. of Nodes

0

10

20

30

40

50

60

70

LO
O

P+
 T

im
e

(s
ec

)

Hugepages Effect on KNL (Cache Mode, 1 Thread/Core,PdO2)

1 node 2 nodes 4 nodes 8 nodes

Hugepages2M
No Hugepages

Compilers and Libraries

Hybrid VASP linked to MKL outperforms that linked to Libsci + FFTW
for all three compilers (Intel, Cray and GNU) on KNL

 Compilers & Libraries

 4 8 4 8

No. of OpenMP Threads per MPI Task /No. of Nodes

0

50

100

150

200

250

300

LO
O

P+
 T

im
e

(s
ec

)

Compiler + Libraries (Hugepages2M, 1 Thread/Core,PdO4)

4 nodes 8 nodes

intel-mkl-elpa
intel-mkl-elpa-dynamic
intel-libsci-fftw
intel-mkl
intel-mkl+libsci(scalapack)
cray-libsci-fftw
cray-mkl
cray-mkl-fftw
cray-mkl-libsci(scalapack)
gnu-libsci-fftw-pthread-iomp5
gnu-libsci-fftw
gnu-mkl

 4 8 4 8

No. of OpenMP Threads per MPI Task /No. of Nodes

0

200

400

600

800

1000

1200

LO
O

P
+

Ti
m

e
(s

ec
)

Compiler + Libraries (Hugepages2M, 1 Thread/Core,CuC_vdw)

4 nodes 8 nodes

Hybrid VASP linked to MKL outperforms that linked to Libsci + FFTW
for all three compilers (Intel, Cray and GNU) on KNL

Compilers & Libraries

 4 8 4 8

No. of OpenMP Threads per MPI Task /No. of Nodes

0

200

400

600

800

1000

1200

LO
O

P+
 T

im
e

(s
ec

)

Compiler + Libraries (Hugepages2M, 1 Thread/Core,CuC_vdw)

4 nodes 8 nodes

intel-mkl-elpa
intel-mkl-elpa-dynamic
intel-libsci-fftw
intel-mkl
intel-mkl+libsci(scalapack)
cray-libsci-fftw
cray-mkl
cray-mkl-fftw
cray-mkl-libsci(scalapack)
gnu-libsci-fftw-pthread-iomp5
gnu-libsci-fftw
gnu-mkl

 4 8 4 8

No. of OpenMP Threads per MPI Task /No. of Nodes

0

200

400

600

800

1000

1200

LO
O

P
+

Ti
m

e
(s

ec
)

Compiler + Libraries (Hugepages2M, 1 Thread/Core,CuC_vdw)

4 nodes 8 nodes

Summary and Future work

Conclusions and best practice tips

We studied the parallel/thread scaling of the MPI/OpenMP hybrid
code with representative VASP workloads on Cori KNL system and
tested the performance impact from a few build/boot/run time
options. Our study shows that
1.  The hybrid code performs best at 4 or 8 threads per MPI task.

Using 8 threads per task in production runs is recommended.
2.  Intel compilers + MKL (and FFTW interface wrappers from MKL)

delivers the best performance among other compiler and library
combinations, e.g., Intel, Cray and GNU compilers + Libsci and
FFTW.

Best practice

3.  Hugepages helps (or no hinder to) the performance almost in all
cases, so the use of hugepages is recommended.

4.  For the workloads that fit into MCDRAM, the cache and flat
mode performs similarly. We recommend to run the hybrid VASP
under the cache mode for simplicity.

5.  Hybrid VASP gets most performance benefit from using
MCDRAM. So it could be beneficial to use more nodes and
threads (8 threads) to reduce the memory requirement per node.

Best practice

6.  Using 1 hardware thread per core is recommended in general.
However, hyper-threading could help the VASP performance
with the HSE workloads, especially when running at a smaller
node count.

7.  Using 64 cores out of 68 available cores were used.

Issues and future work

• Further investigation is needed to understand the
reproducible spikes in the performance data (at
OpenMP thread counts 1 and 16)

VASP:	Basics
(DFT,	PW,	PAW,	…)

University	of	Vienna,
Faculty	of	Physics	and	Center	for	Computational	Materials	Science,

Vienna,	Austria

Thank you!

