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Background

•  With the recent installation of Cori KNL system, NERSC is 
transitioning from the multi-core to the more energy-efficient 
many-core era. 

•  Most of the applications at NERSC must be ported, optimized, or 
re-implemented to run efficiently on this new architecture.

•  Code optimizations need to address increased parallelisms on the 
node, larger vector units, high bandwidth on chip memory.





VASP, ranked #1 among ~700 application codes at NERSC, consumes 
more than 10-12% of the computing cycles at NERSC.

Vienna Ab initio Simulation Package (VASP), is 
a state-of-art electronic structure (ES) code.
•  Supporting a wide range of electronic structure 

methods, from Density-Functional-Theory (DFT), 
Hartree-Fock (HF) and hybrid (HF/DFT) functionals, to 
the many-body-perturbative approaches based on the 
random-phase-approximation (GW and ACFDT).

•  Solving non-linear eigenvalue problem iteratively. 
FFTs and Linear Algebra libraries (BLAS/LAPACK/
ScaLAPACK) are heavily depended on. 

•  Written in Fortran 90 and parallelized with MPI prior to 
the MPI/OpenMP hybrid VASP.

VASP has recently completed the transition from an MPI-
only to an MPI/OpenMP hybrid code base 



MPI/OpenMP hybrid VASP outperforms the pure MPI code by 
2-3 times on Cori KNL
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The optimal performance was not possible without using optimal 
build/run/boot time options and optimal number of MPI tasks and 
OpenMP threads.
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OpenMP threading are added into existing MPI code base

•  VASP solves a set of Schrodinger-like
     eigenvalue/function problems

– using iterative matrix diagonalization schemes, 
 e.g, Blocked Davidson or RMM-DIIS.

•  MPI parallelization (distributing data)
– over the bands (high level)
– over Fourier coefficient of the bands (low level) 

•  MPI + OpenMP parallelization
– MPI over bands (high level)
– OpenMP threading over the coefficients of bands, either by explicitly adding 

OpenMP directives or via using threaded FFTW and LAPACK/BLAS3 libraries
– No nested OpenMP

Transforming VASP to better exploit modern processors by introducing new paral-
lelisms is challenging: the organically grown VASP contains 100k lines of codes spread
across hundreds of FORTRAN(90) source files. Adapting the code base to meet mod-
ern computer platform requirements, we also have to ensure the portability, extensibility
and maintainability as well. This work summarizes our efforts to extend the parallelisms
on a node by adopting OpenMP multithreading and vectorization standards, including
the integration of threaded libraries, which itself is critical to performance. We apply
SIMD optimizations at various levels and focus on two specific examples of OpenMP
4.x SIMD constructs in FORTRAN codes to highlight its power and limitations.

2 Core computations in VASP

In essence, VASP solves a set of Schrödinger-like eigenvalue equations

H[{y}]yn = enyn, n = 1, ..,N (1)

for N eigen-value/function pairs {en,yn}, where N is of the order of the number of elec-
trons in the simulation box (typically N < 103). The operator H[{y}], the Hamiltonian,
depends on the set of solutions {y}, requiring iterations until the self-consistency is
achieved in terms of the total energy and electron density. These equations are solved by
means of iterative matrix diagonalization algorithms, e.g., Blocked-Davidson or RMM-
DIIS [1, 2]. The set of solutions {y} to Eq. 1 must be explicitly kept orthonormal:

Z
y⇤

n (r)ym(r)dr = dnm . (2)

This is done by means of Gram-Schmidt orthogonalization.
The eigenfunctions yn are basically expressed in a plane wave basis set, i.e., VASP

stores their Fourier coefficients. The last statement is a bit of a simplification since in
reality VASP uses a Projector-Augmented-Wave (PAW) basis. A description of the PAW
method, however, is beyond the scope of this paper. For details, we refer the reader to
the paper by Kresse and Joubert [7]. Here it suffices to know that a key ingredient of the
PAW method is the projection of the eigenfunctions onto a set of localized functions pa
centered on the atomic sites in the simulation box:

can =
Z

Wa
pa(r)yn(r)dr , (3)

where Wa is a certain volume around the atomic site on which pa is localized.
Computationally speaking, an N-electron VASP calculation consists of many in-

dependent 3d FFTs, matrix-matrix multiplications, matrix diagonalizations and other
linear algebra methods. The Gram-Schmidt orthogonalization of the eigenfunctions in-
volves Choleski decomposition and inversion of N ⇥N matrices and requires all-to-all
communication. Ideally, VASP can be expressed as a sequence of optimized library
calls and reap the benefits of highly optimized parallel numerical libraries (FFT, BLAS
and LAPACK/ScaLAPACK) on each platform. In practice, achieving a high fraction of
the peak FLOPS on a node and scaling towards hundreds of nodes is challenging: i)
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Ψn(r) = FFT{Ψn(G)}(r) 



SIMD vectorization is deployed extensively in the hybrid 
VASP 

Either implicitly within library calls or explicitly at the loop  level 
–  loop vectorization via !$omp simd
–  function vectorization via !$omp declare simd 

subroutine foo (..)
..
do i = 1, n

call bar(x(i),y(i))

enddo
..

end subroutine foo

subroutine bar(x, y)
real*8 :: x, y

y = log(x)

end subroutine bar

subroutine foo (..)
..
do i = 1, n, SIMD_WIDTH
!$omp simd

do ii = 0, SIMD_WIDTH -1
vmask%x(ii) = .false.
if ((i + ii) .le. n) then

vmask%x(ii) = .true.
vx%x(ii) = x(i + ii)

endif
enddo
call vbar(vx ,vy ,vmask)

!$omp simd

do ii = 0, SIMD_WIDTH -1
if (vmask%x(ii)) x(i + ii) = vx%x(ii)

enddo
enddo
..

end subroutine foo

subroutine vbar(x, y, mask)
type(simd_real8) :: x, y
type(simd_mask8) :: mask
integer :: ii

!$omp simd

do ii = 0, SIMD_WIDTH -1
if (mask%x(ii)) y%x(ii) = log(x%x(ii))

enddo
end subroutine vbar

Fig. 3. Manual scalar-to-vector (left to right) expansion of a simple Fortran code snippet.

been back-ported to the other code versions for a fair comparison. The GNU compiler,
however, achieved sucess in vectorizing only 5 out of the 20 loops, missing the most
compute intensive ones. Among these 5 loops are two with calls to log, exp and pow,
supporting our interface definitions to libmvec (we verified the respective calls in the
assembly). The remaining 15 loops contain control flow divergences and “smallish”
loop nests. However, it is not totally clear to us why gfortran failed vectorizing them,
as for similar loop structures gcc achieves success [10].

Considering the execution times for the hotspot loop in ggaall_grid, listed in
Tab. 1, the relevance of an effective SIMD vectorization is evident. With the Xeon Phi
behind the Haswell CPU in the reference case, switching to SIMD execution, it goes
ahead significantly when using the Intel compiler. The almost 3x gain over the execution
on the Haswell CPU to a large fraction results from twice the SIMD vector width and
the fact that on KNL there is two SIMD units per CPU core, together with native support
for vector masks. For the GNU compiler, we only see that our high-level vector scheme
is working at least in the sense that it improves data locality.

4.3 Loop Splitting

Another kind of computation with a significant amout of time spent in the user code is
the integration of the dynamically screened two electron integrals over frequency

s(w) =
i

2p

Z +•

�•

W (w 0)

w +w 0 � e2 + iDsign(e2 �µ)
dw 0. (5)

10

1.  SIMD Vectorization for nested 
subroutines calls
– by splitting the loops into chunks of SIMD 

length, pack and unpack data into vectors .

2.  LOOP splitting

The performance improvements over executing the hotspot loop in ggaall_grid

sequentially are quite different for the considered target platforms. The execution on the
Haswell CPU seems to benefit only slightly from SIMD vectorization. About a factor
1.3 gain can be measured opposed to a factor 4.3 on the Xeon Phi (see Tab. 1). For the
Haswell CPU, the assembly contains both SSE and AVX SIMD instructions, despite
building with -xore-avx2 and specifying the simdlen(VL) clause with VL=4 for ex-
ecution with AVX(2)—all these specifics are reported by the Intel compiler within its
optimization report. Currently, the Fortran !$omp declare simd construct seems to be
a tripping hazard when heading for code portability and effective SIMD vectorization.

To get rid of these limitations, we integrated into VASP a high-level vector coding
scheme combining real vectors with OpenMP 4.x compiler directives to promote SIMD
vectorization when looping over the vector elements. Figure 2 contains the definition of
the Fortran simd module [10]. For the GNU compiler, we provide an interface to access
vector math calls through libmvec [11].

Using these high-level vectors means to manually split the relevant loops into chunks
of size SIMD_WIDTH, pack and unpack data to vectors, and then to apply the scalar-to-
vector code expansion, including subroutine and function definitions. The scheme is
illustrated in Fig. 3—the overhead of vector un-/packing and mask creation becomes
negligible in case of complex loops. At the cost of more or less intensive code adap-
tations, the advantages of using this coding scheme comprise dealing with vectors and
masks in a natural way as well as a straighforward mixing of scalar and vector code,
e.g., if there is library calls or print statements throughout the SIMD execution. With the
SIMD_WIDTH parameter, vector lenghts can be easily adapted to any meaningful value,
matching at least the native SIMD vector length, of course.

Code compilation with the Intel compiler results in all code along the calling tree
(contained within 20 loops) can be effectively vectorized, with the (compiler-)estimated
performance gains close to the theoretical expectation (4x and 8x for computations
on 64-bit words with AVX(2) and AVX512, respectively). Additionally, we used the
optimization report to further tune the computation by removing unnecessary divides
and re-computations of intermediate values, for instance—all these optimizations have

module simd
type , public :: simd_real8

real*8 :: x(0 : SIMD_WIDTH -1)
end type simd_real8
type , public :: simd_mask8

logical :: x(0 : SIMD_WIDTH -1)
end type simd_mask8
..
interface

function simd_exp(x) bind(c,name="__exp_finite")
!$omp declare simd (simd_exp)

real*8 :: simd_exp
real*8, value , intent(in) :: x

end function simd_exp
..

end interface
end module simd

Fig. 2. Fortran simd module. SIMD WIDTH is definied as a constant in a separate file simd.inc.
For the GNU compiler, we provide an interface to access vector math calls through libmvec.

9

For GNU compiler 
to use libmvec 



Explicit use of MCDRAM was explored in hybrid VASP via Intel 
compiler directive, however, it was not adopted in the hybrid VASP 

•  To use MCDRAM, some of the stack variables had to be converted 
to allocatable heap variables, unfortunately this change itself 
slowed down the code significantly. 

•  VASP uses MCDRAM as cache or flat memory via numactl.
•  Other external tools such as Intel AutoHBW can be exploited as 

well  

 SUBROUTINE RACC0MU(NONLR_S, WDES1, CPROJ_LOC, CRACC, LD, NSIM, LDO) 
... 
    REAL(qn),ALLOCATABLE:: WORK(:),TMP(:,:) 
    GDEF,ALLOCATABLE    :: CPROJ(:,:) 
 
 
... 
    ALLOCATE(WORK(ndata*NSIM*NONLR_S%IRMAX),TMP(NLM,ndata*2*NSIM),CPROJ(WDES1%NPRO_TOT,NSIM)) 
... 
  END SUBROUTINE RACC0MU 

 
    !DIR$ ATTRIBUTES FASTMEM :: WORK,TMP,CPROJ 



VASP:	Basics
(DFT,	PW,	PAW,	…	)

University	of	Vienna,
Faculty	of	Physics	and	Center	for	Computational	Materials	Science,

Vienna,	Austria

Benchmarks and 
Performance Test setups



Cori hardware and software overview

•  Cori, a Cray XC40 system at NERSC based on Intel KNL and Haswell 
architectures, interconnected with Cray Aries network 
– Cori has over 9300 single-socket Intel® Xeon Phi™ Processor 7250 ("Knights Landing") 

nodes @1.4 GHz with 68 cores (272 threads) per node, two 512 bit vector units per 
core, and 16 GB high bandwidth on-package memory (MCDRAM) with 5X the 
bandwidth of DDR4 DRAM memory (>400 GB/sec) and 96 GB DDR4 2400 MHz 
memory per node. 

– Cori has over 2000 dual-socket 16-cor Intel® Xeon™ Processor E5-2698 v3 ("Haswell") 
nodes @2.3GHz with 32 cores (64 threads) per node, two 256 bit vector units per 
core, 128 GB 2133 MHz DDR4 memory. Cori nodes are interconnected with Cray’s 
Aries network with Dragonfly topology. 

•  Cori runs CLE 6.3 Update 4, and SLURM 2017.02.



Selected 6 benchmarks cover representative VASP workloads, 
exercising different code paths, ionic constituent and  problem sizes 

  PdO4 GaAsBi -64 CuC Si256 B.hR105 PdO2 

Electrons (Ions) 3288 (348) 266 (64) 1064 (98) 1020 (255) 315 (105) 1644(174) 

Functional DFT DFT vDW HSE HSE  DFT 

Algo RMM (VeryFast) BD+RMM (Fast) RMM (VeryFast) CG (Damped) CG (Damped) RMM (VeryFast) 

NEML(NELMDL) 5 (3) 8 (0) 10 (5) 3(0) 10 (5) 10 (4) 

NBANDS 2048 192 640 640 256 1024 

FFT grids 80x120x54 
160x240x108 

70x70x70 
140x140x140 

70x70x210 
120x120x350 

80x80x80 
160x160x160 

48x48x48 
96x96x96 

80x60x54 
160x120x108 

NPLWV 518400 343000 1029000 512000 110592 259200 

IRMAX 1445 4177 3797 1579 1847 1445 
 

IRDMAX 3515 17249 50841 4998 2358 3515 

LMDIM 18 18 18 18 8 18 

KPOINTS 1 1 1 4 4 4 3 3 1 1 1 1 1 1 1 1 1 1 



Benchmarking approach

•  Benchmark measures the LOOP+ time, which is the 
major portion of the execution time in the production 
execution of the VASP (disabled I/O). 

•  Run each benchmark multiple times (>3 times) and took 
the best run time.

•  Process/thread affinity controlled by the OpenMP 
runtime (memory affinity by numactl) across all compiler 
builds of of VASP. 
– Export OMP_PROC_BIND=true
– Export OMP_PLACES=Threads



VASP versions, compilers and libraries used

•  MPI+OpenMP hybrid version (last commit date 4/13/2017) was 
used in the most of the tests, some earlier versions, e.g., 3/23/2017 
was used in some of the tests as well. 

•  CDT 17.03 (cray-mpich/7.5.3, cray-libsci/16.11.1, fftw/ 3.4.6.6)
•  Intel compiler and MKL from 2017 Update 1 + ELPA (version 

2016.005)
•  GNU compiler 6.3
•  Cray compiler 8.5.4



MPI/OpenMP Parallel Scaling



Hybrid VASP performs best with 4 or 8 OpenMP threads/
MPI task
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The spikes at thread 
counts at 16 needs to 
be investigated, which 
could be some 
indication of the system 
issue, as Cori KNL 
system is undergoing 
continuous 
configuration change 
and system upgrades 
before entering 
productions.  



Hybrid VASP performs best with 4 or 8 OpenMP threads/
task
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At larger node counts, 
the code can make 
use of the more 
threads per task (e.g, 
16). This is a 
promising feature of 
the code, which opens 
door to scale to more 
nodes to solve bigger 
and more complex 
problems faster. 



Using 4 and 8 threads helps the performance.
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Hybrid VASP performs best with 4 or 8 OpenMP threads/task
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Hybrid VASP performs best with 4 or 8 OpenMP threads/task
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Hybrid VASP performs best with 4 or 8 OpenMP threads/
task
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NUMA,MCDRAM Modes



Hybrid VASP performs similarly under the cache/flat 
modes for the workloads that fit into MCDRAM 
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Hybrid VASP performs similarly under the cache/flat 
modes for the workloads that fit into MCDRAM 

NUMA/MCDRM
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Hyper-Threading



Hyper-Threading helps HSE workloads (arguably), but not 
other workloads in the parallel scaling regions on KNL

Hyper-Threading
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Hyper-Threading rarely helps the hybrid VASP 
performance on KNL

Hyper-Threading
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Hyper-Threading rarely helps the hybrid VASP 
performance on KNL

Hyper-Threading
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Hugepage Memory



Hugepage memory helps hybrid VASP performance on 
KNL

 Hugepages

*) VASP ran out of 2M hugepage memory with 1 thread/task runs for 
Si256_hse.
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The use of hugepage memory does not slow down the 
code for the workloads it does not help significantly

 Hugepages
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Hugepage memory helps hybrid VASP performance

 Hugepages
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Compilers and Libraries



Hybrid VASP linked to MKL outperforms that linked to Libsci + FFTW 
for all three compilers (Intel, Cray and GNU) on KNL

 Compilers & Libraries
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Hybrid VASP linked to MKL outperforms that linked to Libsci + FFTW 
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Summary and Future work



Conclusions and best practice tips

We studied the parallel/thread scaling of the MPI/OpenMP hybrid 
code with representative VASP workloads on Cori KNL system and 
tested the performance impact from a few build/boot/run time 
options. Our study shows that
1.  The hybrid code performs best at 4 or 8 threads per MPI task. 

Using 8 threads per task in production runs is recommended. 
2.  Intel compilers + MKL (and FFTW interface wrappers from MKL) 

delivers the best performance among other compiler and library 
combinations, e.g., Intel, Cray and GNU compilers + Libsci and 
FFTW.





Best practice

3.  Hugepages helps (or no hinder to) the performance almost in all 
cases, so the use of hugepages is recommended.

4.  For the workloads that fit into MCDRAM, the cache and flat 
mode performs similarly. We recommend to run the hybrid VASP 
under the cache mode for simplicity. 

5.  Hybrid VASP gets most performance benefit from using 
MCDRAM. So it could be beneficial to use more nodes and 
threads (8 threads) to reduce the memory requirement per node.



Best practice

6.  Using 1 hardware thread per core is recommended in general. 
However, hyper-threading could help the VASP performance 
with the HSE workloads, especially when running at a smaller 
node count.

7.  Using 64 cores out of 68 available cores were used. 



Issues and future work

• Further investigation is needed to understand the 
reproducible spikes in the performance data (at 
OpenMP thread counts 1 and 16)
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