
An Operational Perspective on a Hybrid and Heterogeneous Cray XC50 System

Sadaf Alam, Nicola Bianchi, Nicholas Cardo, Matteo Chesi, Miguel Gila, Stefano Gorini, Mark Klein,

Colin McMurtrie, Marco Passerini, Carmelo Ponti, Fabio Verzelloni

CSCS – Swiss National Supercomputing Centre

Lugano, Switzerland

Email: {sadaf.alam, nicola.bianchi, nicholas.cardo, matteo.chesi, miguel.gila, stefano.gorini, mark.klein,

colin.mcmurtrie, marco.passerini, carmelo.ponti, fabio.verzelloni}@cscs.ch

Abstract—The Swiss National Supercomputing Centre
(CSCS) upgraded its flagship system called Piz Daint in Q4
2016 in order to support a wider range of services. The
upgraded system is a heterogeneous Cray XC50 and XC40
system with Nvidia GPU accelerated (Pascal) devices as well as
multi-core nodes with diverse memory configurations. Despite
the state-of-the-art hardware and the design complexity, the
system was built in a matter of weeks and was returned to
fully operational service for CSCS user communities in less
than two months, while at the same time providing significant
improvements in energy efficiency. This paper focuses on the
innovative features of the Piz Daint system that not only
resulted in an adaptive, scalable and stable platform but also
offers a very high level of operational robustness for a complex
ecosystem.

Keywords-XC40; XC50; hybrid; heterogeneous; Slurm; rout-
ing

I. INTRODUCTION

A. Overview of the Cray XC50 Architecture

The Cray XC50 at CSCS is composed of two distinct Cray

XC series components. The characteristic feature of the Cray

XC50 system is the design of a different dimension of Cray

XC blades that are a little deeper than the earlier Cray XC30

and XC40 series blades. As a result, the entire cabinet and

service blade design has been altered. Nevertheless, it was

possible to seamlessly connect physical partitions of both

the Cray XC40 and XC50 design via Aries connections so

that they are totally transparent to users. Details on hybrid

and heterogeneous compute, storage and service blade con-

figuration are provided in the following subsections.

B. Cray XC50 Hybrid Compute Node and Blade

The Cray XC50 represents Cray’s latest evolution in sys-

tem cabinet packaging. The new larger cabinets provide the

necessary space to handle NVIDIA’s® Tesla® P100 GPU

accelerator[1][2]. While the cabinet width has not changed

relative to the Cray XC30 or XC40, the cabinet’s depth has

increased in order to accommodate longer modules. The new

Cray XC50 supports the same module layout as with its

predecessor, the Cray XC40. The cabinet contains 3 chassis,

each with 16 modules and each compute module provides

4 compute nodes for a total of 192 nodes per cabinet. The

added depth provides the necessary space for full-sized PCI-

e daughter cards to be used in the compute nodes. The use

of a standard PCI-e interface was done to provide additional

choice and allow the systems to evolve over time[1].

Figure 1 clearly shows the visible increase in length of

37cm between an XC40 compute module (front) and an

XC50 compute module (rear).

Figure 1. Comparison of Cray XC40 (front) and XC50 (rear) compute
modules.

The XC50 compute nodes of Piz Daint have a host

processor of an Intel® Xeon® CPU E5-2690 v3 @ 2.60GHz

(aka 12-core Haswell). Each node has 64GB of DDR4

configured at 2133MHz. Along with the host processor,

the Piz Daint XC50 compute nodes include an NVIDIAs

Tesla P100 GPU accelerator with 16 GB of High Bandwidth

Memory (HBM).

As can be seen in Figure 2, the new GPU accelerators

require the full width of the XC50 compute module. The

added length of the modules provides all the space needed to

still permit 4 nodes per compute module. In this layout, the

Aries connection can be seen to the far left, followed by two

compute nodes with their two GPUs and then another two

compute nodes with their two GPUs. With this configuration

there are two GPUs in series within a single airstream.

This design differs from the previous hybrid XC30 design

where there were 4 SXM form-factor GPUs in a single

airstream, which was challenging from a cooling perspective.

With the new design, the layout of the PCI form-factor

GPUs in the cooling airstream was very similar to CS-Storm

systems containing Nvidia K80 GPUs which were already

in production use at CSCS. Hence, despite the fact that the



Tesla P100 GPUs were new, the expectation was that there

would not be problems with the cooling of the GPUs in

the system. This was indeed found to be the case and no

GPU throttling was observed, even when running compute-

intensive workloads such as HPL.

Figure 2. A hybrid Cray XC50 module.

C. Cray XC50 Service Blade

Another advantage of the XC50 cabinets is the increased

packaging of I/O nodes. Each I/O Module now has 4 I/O

nodes where the XC40 and XC30 were limited to just 2 (a

service module is shown in Figure 3).

Figure 3. The front of a Cray XC50 service module.

However, there isn’t enough real estate on the front of

the module to provide for 2 slots for each I/O node. Since

there is only enough space for 6 I/O slots, all I/O nodes

on the module are not equal. There are 2 I/O nodes with

2 PCI-e slots and 2 I/O nodes with only 1 PCI-e slot. The

added density of the I/O nodes yields greater capability in

a single I/O module but requires careful planning of each

node’s intended purpose.

D. Cooling

The increase in length of modules meant that the XC40

blowers would no longer be sufficient for the XC50; the

blower cabinets were not deep enough and hence there

would be insufficient airflow over the components in the

back of the XC50 module. So with the new compute cabinets

comes new, deeper, blower cabinets with new fan units.

Figure 4 shows a comparison of an XC50 blower cabinet

on the left with an XC40 blower cabinet on the right.

Similarly the air to water heat exchangers in each cabinets

are deeper, but apart from these differences the rest of the

cooling design is the same as that on the Cray XC40 cabinets

(water flows, water control valves, sensor placements etc).

E. Interconnect

The nodes in the Cray XC50 (see Figure 5) are connected

via the Cray Aries High Speed Network in a Dragonfly

topology.

Figure 4. Comparison of Cray XC50 row (left) and XC40 row (right).

The design utilizes 3 network ranks for communications

in order to build full interconnectivity. Network Rank 1

is achieved through the chassis backplane for 16 modules.

Network Rank 2 is built using electrical cables to connect

together 6 chassis from 2 cabinets forming a cabinet group.

Each cabinet group is then connected via the Rank 3 optical

network. While both Rank 1 and Rank 2 are fully connected

for maximum bandwidth by design, Rank 3 is configurable.

Rank 3 bandwidth is determined by the number of connected

optical cables between cabinet groups.

Figure 5. Schematic showing the Cray XC node design (courtesy of Cray).

F. Special Handling

Due to the size and weight of the new XC50 modules,

special handling is required for the extraction, movement and

insertion of XC50 modules. To facilite this, Cray engineers

now use a specialised lift (see Figure 6) designed specifically

to handle the size and weight of the XC50 modules. While

the manipulation of modules has been made safer and easier,

there are side effects of such a change. The aisle between

two cabinet rows has been increased to 1.8m (6̃ feet) when

using 600mm floor tiles. This was necessary in order to

accommodate the length of the modules along with the

added space required for the lifting device.

There are visible changes to the front of all XC50 modules

(see Figure 7) that are required in order to support the

2



Figure 6. Specialised lift for Cray XC50 blade handling.

Figure 7. Image showing the front of a complete chassis. Note the removal
handles.

procedure of using the new lift for module manipulation.

To help facilitate the insertion and extraction of the longer

and heavier modules, a handle has been added to the front.

Now comes the challenge of proper alignment of the lift to

module in order to prevent damage. The new design includes

alignment pins to the left and right of each module. The

lift will latch onto these pins to ensure proper alignment,

making insertion and extraction easy. To help mitigate the

weight of the module, the lift utilizes a series of rollers under

the module and guides to the side.

II. SCRATCH FILE SYSTEM CONFIGURATION

In addition to the update of the computing environment,

the parallel file system and storage environment has been

reengineered to reflect user needs in terms of performance,

capacity, stability and availability. Details on the pre-upgrade

Piz Daint file-system setup is available in [3] while Sonexion

performance details are provided in [4]. The updated layout

is shown in Figure 8.

A review of the incidents related to the pre-upgrade

Lustre scatch file system (/scratch/daint), which was

based on Cray’s Sonexion 1600 storage, showed a clear

Figure 8. Schematic showing the file-system configuration.

weakness in the handling of metadata operations. The file

system was based on the Lustre 2.1 technology and was not

able to efficiently manage heavy metadata workloads and,

because of the shared-resource nature of the file system,

other concurrent workloads on the system suffered because

of this issue. Having a way to mitigate these problems,

without simply preventing heavy metadata workloads to run,

was a key factor in the new I/O backend design.

Another key factor for the new system design, to-

gether with the file system choices, was to improve the

overall availability of Piz Daint. Due to the fact that

/scratch/daint was the one and only file system avail-

able on the compute nodes, any incident or planned activity

on the file system affected the entire system availability.

The upgraded design for Piz Daint removed this single point

of failure by introducing a second file system for compute

nodes that could be used as the primary scratch parallel file

system.

Hence the new file system, named

/scratch/snx3000, is a Lustre scratch file system

provided by a Cray Sonexion 3000 appliance. The Sonexion

3000 is composed of 2 MDS (MetaData Server) nodes,

with one of them acting also as MGS (Management Server)

and 14 OSS (Object Storage Server) nodes configured in

High-Availability (HA) pairs where each couplet has direct

access to 82 8TB disk drives in the same SSU (Scalable

Storage Unit) enclosure and other 82 disk drives in the

attached ESU (Expansion Storage Unit) enclosure. The

system is thus composed of 7 SSUs and 7 ESUs for a total

raw capacity of 9.18 PB and 6.2 PiB of usable capacity in

the /scratch/snx3000 file system.

On each disk enclosure, SSU or ESU, the disk drives

are assigned to two different 41 disks GridRAID ldiskfs

arrays leveraging the benefits of parity declustering. In stan-

dard conditions, each OSS manages 2 OST (Object Storage

Target) for a total of 28 OSTs, but in case of incidents or

for planned operations a single OSS can manage all 4 direct

3



attached OSTs. This capability allows the partner OSS to

stay offline without affecting the global availability of the

Lustre service, but just degrading the peak performance of

that OSS pair.

The file system service is linked to Piz Daint compute

nodes via 16 LNET router nodes, these being internal

XC50 service nodes. Two LNET routers are reserved for

metadata traffic towards the MDS nodes with the purpose

of preventing any conflict between metadata operations that

are usually very sensitive to network latency and the other

types of I/O block operations that can charge the link with

high volume transfers.

The remaining 14 LNET routers are coupled to the 14

OSS nodes in order to balance the I/O bandwidth between

XC50 demand and Sonexion supply.

The Sonexion 3000 provides InfiniBand EDR connec-

tivity but because there was no EDR option available

for XC50 service nodes during the deployment phase,

/scratch/snx3000 is linked to Piz Daint LNET routers

with FDR (4x links). This is not a strong bottleneck for

peak I/O bandwidth performance, however, because the I/O

bandwidth provided by a single Sonexion 3000 OSS is

referenced at 5 GB/s ([5], pg. 39) which is less than the

available bandwidth provided by FDR (4x links).

In addition to /scratch/snx3000 Piz Daint compute

nodes mount also /scratch/snx1600 another Sonexion

hosted Lustre file system designed and deployed together

with the original Piz Daint as shown in Figure 8.

The peak performance of the two scratch file systems of

Piz Daint was measured using IOR with the full machine

reserved and in an empty file system condition. The perfor-

mance achieved with 1200 compute nodes with 1200 IOR

threads in a one thread per node configuration are listed in

Table I.

Table I
SCRATCH FILE-SYSTEM PERFORMANCE AS MEASURED WITH THE IOR

BENCHMARK TOOL.

Storage Target Seq. Reads Seq. Writes

snx3000 64 GB/s 81 GB/s

snx1600 54 GB/s 144 GB/s

These results highlight the fact that

/scratch/snx3000 has a peak performance for

sequential writes which is less than the original file system

(i.e. the Sonexion 1600) but it has a better balance between

writes and reads and, moreover, it provides more than

double of the original capacity.

Combining the capacity of the two available scratch file

systems, the upgraded Piz Daint has triple the capacity

available for computational output. Moreover the decision

to put, side by side, another Sonexion, rather than upgrade

or replace the original one, protects the machine from the

original single point of failure, thereby enabling Piz Daint

to be operational even without one of these two file systems.

III. FILE SYSTEM POLICIES

Additional mechanisms have been enabled on Piz Daint

in order to mitigate the workloads that are problematic for

Lustre: a cleaning policy to purge old data is enabled by

a single Robinhood instance per Lustre file system and

a mechanism of soft quotas is enabled on the scheduler

preventing the job submission for those users who generate

an excessive number of files (inodes).

All these barriers for the users are there to keep the

/scratch file systems clean and well performing and to

establish a data workflow by which the data are moved

into the scratch file system before the computation, are

modified or re-generated during the computation and are

finally filtered and moved out after it. This workflow is

needed because the scratch file systems cannot be globally

protected by backup without impacting the computations and

is enabled by a new data-mover facility introduced with the

upgrade of Piz Daint.

The file systems where the users save their important

data are provided by a common centralized infrastructure

available from all the CSCS machines. Those file systems

are based on IBM’s GPFS technology and the way they are

accessed by Daint nodes has changed in the upgrade process.

Before the upgrade the GPFS file systems were exported

via the NFS protocol using the CNFS (Clustered NFS)

feature of GPFS to 8 service nodes that mounted them with

the NFS client and then exported them to the compute nodes

on the Aries network via the Cray DVS (Data Virtualization

Service) protocol.

The main issue of this pre-upgrade configuration was that

the NFS protocol was added to the I/O chain only because

the of the lack of official support from Cray for a pure GPFS

solution. Moreover the standard Linux NFS client and server

used in the implementation lacked many debugging features

of a full GPFS solution.

Consequently, during the upgrade the NFS protocol was

removed and, after installing a GPFS client, the DVS nodes

have been directly connected to the central GPFS infrastruc-

ture.

Moreover the upgrade increased the number of DVS

service nodes from the original 8 to 20 and they have been

specialized in groups serving a single central file system and

assembled together as independent GPFS client clusters in a

multi-cluster configuration where the central infrastructure

acts as GPFS server cluster and export its file systems to

the DVS clusters. This design in turn facilitates debugging

in case of issues with external file systems.

IV. INNOVATIVE FEATURES OF PIZ DAINT

Piz Daint is the first Cray XC50 system. There are a

number of unique and innovate aspects of the system ranging

from hardware configuration to resource management to

4



policy configuration. This section compares and contrasts

the node level aspects of its predecessor Cray XC30 and

Cray XC40 systems, discusses the versatility and complexity

of CLE 6.0UP02, describes the new accessibility models

for the compute nodes and details extensions to the system,

specifically GPU monitoring, analysis, troubleshooting and

diagnosis.

A. CLE 6.0 UP02

Along with the hardware upgrade, the new XC50 cabinets

with the Tesla P100s required a move to CLE 6.0UP02

(Rhine) and SMW 8.0 (Redwood). Additionally, the external

login (eLogin) servers are no longer managed by Bright

Cluster Manager, but controlled by a new OpenStack based

Cray Management Controller.

The transition to this new operating environment required

a completely fresh install of the system. Many procedures

have completely changed in regards to the administration of

the system. The differences between the previous CLE5.2

and SMW 7.0 and the new system are worthy of a paper

themselves and many have already been published. There are

some highlighted benefits that CSCS has taken advantage of

in the initial months of deployment:

1) Node-Independent images: Prior to CLE6.0, all images

booted a shared image and mounted a shared remote

root. Node and class specific changes were handled

using xtopview and xtspec which was both quite

limited in scope and also created a very non-standard

/etc directory. CLE6.0 adds a new Cray Image

Management and Provisioning Service (IMPS). This

new system allows for individual nodes to now run a

much more standard SLES 12 image. A recipe system

is used to define a list of packages which can be

grouped into subrecipes and collections. These are

able to be extended and mixed to create a specialized

image for a given node or class. The same image

building is done for internal and external nodes which

allows for keeping site-specific changes easily in sync.

Further configuration modifications can be automated

at boot time using Ansible or SimpleSync;

2) The new standard SLES12 image provides a much

more current software level and has also allowed

for such things as Xorg running without having to

maintain a custom build. On the previous system,

patches were required for Xorg in order to provide

visualization capabilities to our users. With the new

more standard SLES install, the only thing that needed

to be done was add the Cray driver search path to the

Xorg configuration file. Adding additional software

is as easy as finding an RPM and adding it to the

recipes. VirtualGL and TurboVNC were additional

visualization software that became much simpler to

support with this new image model;

3) Live Updates and Rolling Upgrades: Due to the fact

that each image is self-contained, the nodes are now

able to be modified live at a per-node granularity.

These changes need to live in a ramdisk, however,

so they come at the cost of reducing the available

system memory. For this reason, only small changes

are generally pushed out live. This has also allowed for

security updates to be done to delay a reboot. Given

that each node is running a standard SLES install,

zypper can be run directly on booted nodes. Larger

changes can be ‘baked’ into a new image and staged

so the nodes pick up the changes as they are rebooted

following job completion. There are utilities available

to help automate this with the job scheduler;

4) Independent Programming Environment (PE) Image.

This change made it so the PE is now independent of

the node images. This helps to keep the PE software

and libraries in sync no matter which image is booted.

This also extends to the eLogin nodes. The same

software is seen system-wide through the use of bind

mounts, and changes are able to be pushed out live.

While overall the process of learning the new system man-

agement workflow has taken some time to adapt the above

improvements have gone a long way towards increasing

system availability and reducing downtime for maintenance

activities.

B. Public IP Routing

Since compute nodes on a Cray XC are located on their

own High Speed Network (HSN) with private IPs, the

method to provide external connectivity outside of the HSN

is usually to use RSIP (Realm Specific Internet Protocol).

The intended purpose of RSIP is to allow internal nodes to

reach license or authentication servers external to the Cray

system and has certain inherent limitations, in particular

when it comes to reaching external entities that require mul-

tiple port connectivity (such as GridFTP) or when external

entities require direct connectivity to nodes that are behind

one or more RSIP servers.

As an alternative to using RSIP and by leveraging CSCS’

network infrastructure and environment, nodes in the HSN

of Piz Daint are configured with public IPs and use standard

static routing through a set of service nodes with 40GbE

connectivity to reach the outside world. Automatic load-

balancing and resiliency in this scenario is not possible as the

feature of the kernel IP_ROUTE_MULTIPATH that permits

having multiple default gateways is not enabled on compute

nodes running Cray CLE 6.0 UP02. Cray is working on this

front, but it is not yet clear when and if this feature will

be enabled and supported. Hence, with this configuration,

a portion of Piz Daint would be rendered unable to reach

the external networks should one or more gateway service

nodes fail and go down.

5



To partially overcome the above limitation, the external

routing infrastructure has been configured to utilise a set of

virtual IPs that float across the gateway service nodes to

reach Piz Daint’s internal nodes. These virtual IPs can be

moved to a different service node as needed and are automat-

ically assigned by a tool named keepalived. Note that

floating virtual-IPs can only exist on the external ethernet

devices of the service nodes, as the current implementation

of the HSN does not easily move IPs across nodes. However,

since keepalived can identify and react when a member

of the virtual IP pool goes down, it is then possible to instruct

the system to issue a massive pdsh command and alter static

routes as needed.

With this configuration, compute nodes in Piz Daint are

capable of reaching external services with no overhead due

to address translation. This, in turn, not only enhances

user experience in certain pre-existing workflows (remote

visualization), but also allows the system to take on new

complex workflows.

C. GPU Monitoring

CSCS is no stranger to accelerated computing with GPUs.

The experience gained from running Piz Daint with K20x

GPUs has been used to enhance diagnostic capabilities and

catch suspect GPUs quickly. The years of experience have

shown that existing automated diagnostics are very limited

and often failed to remove suspect nodes from service.

Building upon the knowledge gained, CSCS was able

to introduce an automated diagnostic that would remove

suspect nodes from service. At the start and end each

batch job, a series of quick diagnostic checks are performed

to establish the overall health of the GPU and the node.

Any failure would result in the node being placed in a

special maintenance reservation for further investigation,

automatically. The problem of continuing to use a suspect

node on follow on batch jobs has now been solved.

There are 9 automated checks that are performed as part

of the Slurm prolog and epilog for every batch job on

every node of that batch job. The accumulated checks take

approximately 4 seconds to complete. These checks are:

1) ckgpuXID: Check for XID errors, excluding 13, 31,

and 43;

2) ckgpumem: Validates the amount of memory on the

GPU;

3) ckgpudrvr: Validates the CUDA driver version on

the node;

4) ckgpufw: Validates the Inforom and VBIOS versions

of the GPU;

5) ckgpughost: Looks for hung processes in the GPU;

6) ckgpuhealth: Validates the GPU’s power draw and

checks for retired pages pending;

7) ckgpulink: Validates the PCIe linkwidth for the

GPU;

8) cksvcs: Generic check for system services. Cur-

rently monitoring sssd and slurm;

9) ckldap: Verifies that ldap services are working cor-

rectly for user and group lookups.

The NVIDIA driver reports error conditions back to the

operating system as an XID error code. These error codes

can then be cross referenced to locate the root cause. The

driver not only monitors and reports on the errors in the

driver, but also application induced errors and GPU device

errors. The check, ckgpuXID, monitors for these XID error

codes which determines the corrective actions to take.

There are two important firmware versions to monitor for

a GPU: Inforom and VBIOS. Experience has shown that

keeping these two firmware packages in sync across the

system can help to reduce strange errors in parallel codes

as well as keep the error reporting consistent. The check,

ckgpufw, monitors the firmware versions on the GPUs

and flags any that contain an unexpected version. This can

happen when a GPU is replaced.

Keeping performance optimal across all GPUs is nec-

essary in order to provide the best possible platform for

scientific discoveries. Identifying GPUs that are not per-

forming well can be difficult and challenging. However,

experience has shown that the majority of our historical GPU

performance issues were the result of an incorrect PCI-e

linkwidth. When the PCI-e linkwidth for a GPU drops from

16x to 8x, so does the performance for the application. The

check, ckgpulink, monitors for degraded PCI-e links.

Embedded in all the checks is one test to verify that a

GPU actually exists and is reachable. When a compute node,

that is supposed to have a working GPU installed, can no

longer communicate with the GPU, the error “GPU is lost”

is reported. Each of the custom diagnostic checks validates

a functioning GPU exists and as a result will catch a GPU

that has truly failed.

A custom written test harness is used to perform these

diagnostic checks. The harness allows for different modes

of operation including one for use in prologs and epilogs as

well as running interactively. When a node is detected to be

suspect and is removed from service, system administrators

can rerun the tests with additional messaging options to

confirm the error condition and determine a corrective course

of action.

Automatic detection and handling of errors means that it

is possible to prevent other applications from being allocated

a suspect GPU. The end result is fewer application failures

due to known GPU errors.

D. Slurm Configuration

The principles of user interface design dictate that the

complexities of the system are hidden and the user is

provided with a simple, clear, and easy to use interface.

Being that the workload manager is the user’s interface to

the computation resources, a simple easy to explain structure

6



was required that would enhance the user experience and

meet their needs.

The first exercise was to characterize the workload in a

manner that could then be translated into requirements. For

Piz Daint, the following production characterizations were

made:

• Small, short jobs for debugging purposes;

• Single node, relatively short jobs for pre and post

processing. Normal production jobs;

• Full scale production jobs, by arrangement only;

• High priority work for quicker turn around at double

the cost;

• Extremely low priority work with no expectation of ser-

vice for projects who have exhausted their allocation;

• Ability to transfer data without reserving a compute

node.

Next came the exercise of characterising the complexities

of the system in order to map them to the workload

characterization. The compute resources were able to be

characterized as follows:

• Hybrid (GPU) compute nodes;

• Multicore (dual Broadwell, 64 GB memory) compute

nodes;

• Multicore (dual Broadwell, 128 GB memory) compute

nodes.

The easiest thing to implement would be to create a single

queue for each workload/compute combination. However,

that would create a nightmare of queues and result in mass

confusion. By utilizing the features of Slurm, it was possible

to reduce this down to just a handful of queues:

• debug: hybrid and multicore 64GB;

• normal: hybrid (up to 2400 nodes) and multicore;

• large: hybrid only (greater than 2400 nodes);

• low: hybrid and multicore;

• high: hybrid and multicore;

• prepost: multicore only.

By specifying a constraint of gpu (hybrid nodes) or

mc (multicore nodes), users can select which node type

to target. This allows for a single queue to feed all node

types in the system. Furthermore, the large memory nodes

can be requested simply by specifying a memory limit.

The Slurm job_submit.lua script has been enhanced to

insure proper settings for constraints and gres are made.

For example, requesting a node with a GPU also requires a

request for the GPU. While the node is selected by choosing

a constraint of gpu, to use the GPU requires a gres of

gpu:1. This enhancement means the user only needs to

indicate which node type they require and the rest is done

automatically.

Projects on the system are granted time on either the hy-

brid or multicore nodes. Furthermore, the prepost queue

is available to all projects, regardless of where they are

authorised to run. The job_submit.lua script has been

enhanced to call a utility that validates a project and its

ability to use certain queues. The utility performs a quick

database lookup to obtain the characteristics of the project

which then ensures it is a valid project and checks the

batch job requirements to enforce jobs to run only where

authorized.

There are two physically separated parts to the user

environment: login versus compute. One of the advanced

features of the system is the use of routable IP addresses for

the entire system. By doing this, it was possible to ensure

direct communication between all nodes of Slurm and the

login(submit) nodes. This greatly simplified the configura-

tion and permits the transfer of the user’s environment to the

batch job. Another added benefit is that it opens the door

to move the Slurm Control Daemon outside of the Cray

XC. The advantage to this is that even though the Cray XC

might be out of service, users can still submit new jobs to

the system as long as the login environment is available.

V. CONSOLIDATION OF SERVICES

CSCS’s mission is to enable world-class scientific re-

search by pioneering, operating and supporting leading-edge

supercomputing technologies. Scientists today require an

integrated support for not only massive computing resources

but also complex workflows involving data analysis. Piz

Daint offers a list of services for a diverse set of re-

search communities. This includes computing, storage, data

analysis, visualization as well as middleware services for

research communities that tend to have dedicated resources.

Details and examples of how these services are enabled and

supported on Piz Daint will be provided in the paper.

A. Compute and Compute Acceleration with Nvidia P100

and CUDA 8

Compute and data acceleration in the Cray XC50 comes

from Nvidia Tesla P100 GPU device. Nvidia Tesla P100 is

the built on Nvidia Pascal architecture. Cray XC30 system

was composed of Nvidia Tesla K20X architecture. A notable

feature of P100 is HBM, a new generation of memory

technology that offers 732 GB/s bandwidth. Table II lists

key compares and contrasts key features of two generations

of GPU devices:

Tesla P100 not only comes with increased compute and

data processing power but also with a new computing model

called sm_60. The new features include support for HPC

and data analysis (deep learning) applications thus:

• Page migration engine;

• Unified memory;

• Support for FP16 for Deep Learning applications;

• Better atomics for parallel programming;

• Modified cache architecture to support data sharing;

• Shared memory block size has increased to 64 KB per

SM.

7



Table II
COMPARISON OF K20X AND P100 PERFORMANCE METRICS.

Feature Tesla K20X Tesla P100

SMs 13 56

Base Clock 732 MHz 1328 MHz

GPU Boost Clock 1480 MHz

Double Precision 1.31 TeraFLOPS 4.7 TeraFLOPS

Performance (not DGEMM)

Single Precision 3.95 TeraFLOPS 9.3 TeraFLOPS

Performance

Half Precision 18.7 TeraFLOPS

Performance

PCIe x16 16 GB/s 32 GB/s

Interconnect bidirectional bidirectional

Bandwidth (PCIe Gen 2.0) (PCIe Gen 3.0)

Memory 384-bit GDDR5 4096-bit (CoWoS

Interface HBM2 Stacked Memory)

Memory capacity 6 GB 16 GB

Memory Bandwidth 250 GB/s 732 GB/s

Compute capability 3.5 6.0

B. High Performance Computing Service

The programming and execution environment for high

performance computing applications (HPC) before and after

the upgrade remain the same. Major differences include

CUDA 8 programming interface for Tesla P100 devices. The

main programming environment, Cray, GNU, Intel and PGI

are available together with the standard numerical libraries,

including the libraries from the CUDA toolkit. Some minor

changes to the Slurm environment are listed in the Slurm

sub-section. Users can request a GPU device with different

operating modes to share a GPU with multiple processes

as well as to control clock frequencies. Recently, dynamic

RDMA credentials (DRC) have been enabled.

C. Visualization and Data Analysis Service

Tesla P100 allowed CSCS to consolidate and offer visual-

ization and data science services. The key features include:

• EGL enabled driver: EGL is an interface between

Khronos rendering APIs (such as OpenGL, OpenGL

ES or OpenVG) and the underlying native platform

windowing system. EGL handles graphics context man-

agement, surface/buffer binding, rendering synchro-

nization, and enables ”high-performance, accelerated,

mixed-mode 2D and 3D rendering using other Khronos

APIs.” From a user point of view, this means enabling

graphics without running an X server [6];

• Deep Learning applications including cuDNN:

The NVIDIA CUDA Deep Neural Network library

(cuDNN) is a GPU-accelerated library of primitives for

deep neural networks. cuDNN provides highly tuned

implementations for standard routines such as forward

and backward convolution, pooling, normalization,

and activation layers. cuDNN is part of the NVIDIA

Deep Learning SDK. A number of GPU accelerated

frameworks, for instance, Caffe, CNTK, TensorFlow,

etc. have been accelerated using this library [7] [8].

D. Data Mover Service

For some time now CSCS has had a data mover service

that takes care of file transfer from within CSCS to the

outside world and vice versa. During the planning phase

of the upgrade, consideration was given to how this concept

could be used to optimize and simplify internal data transfer

in a standard job submission; the goal was to enable efficient

workflow management on Piz Daint.

Prior to the upgrade, users at CSCS had 3 ways to move

data between filesystems:

1) Interactively move data via the external login node

(EsLogin);

2) Move the data on the internal login node before or

after the call of the aprun job;

3) Use a job on an external CSCS cluster for data

movement.

Today with Native Slurm on Daint [9], without aprun

Option 2 above is slightly changed and the users have

to scp data from a login node to the scratch filesystem.

Moreover the decommissioning of the external cluster at

CSCS removes option 3.

Considering Option 1 as unique data transfer alternative

makes it impossible to have completely automated work-

flows where CSCS users can move files from and to the

scratch filesystems in pre and post processing phases.

This clearly identified that CSCS needed a batch data

transfer solution integrated with the Piz Daint environment.

The following options are under investigation for enabling

data transfer workflows for Big Data:

• GridFTP (already in use for external transfers)

• Psync

• PCP

• Bbcp

Many of these options have been developed by major

HPC sites, but none of them have a completely automated

solution for the data transfer of their users. However, these

solutions offer different tools for users and administrators to

copy substantial amounts of data and permit users to choose

the best option available for a given workflow.

None of these HPC sites are providing a web interface for

user data transfers at the moment. Out of the HPC world,

also the cloud providers are facing the challenge of large

data transfers taking in the highest consideration the need

of REST APIs.

A preliminary study was performed for using Slurm for

pre- and post-processing data transfers on Piz Daint and the

overall outcome was very positive.

Three main hurdles were identified for using Slurm as a

data transfer orchestrator:

8



1) Cross-cluster job dependencies will probably be avail-

able in 2017 (see [10]). The Piz Daint Slurm configu-

ration could include external nodes as a workaround;

2) The Development and Maintenance of customized

users software tools bring overheads in terms of main-

tainability, upgradability and support;

3) Providing an interface for the users will facilitate some

of workflows, but it will also limit other workflows

that may not have flexibility to tune and optimize.

Moreover, a few issues needed to be resolved in order to

implement a data transfer Slurm queue. First of all, Slurm

is made for handling computation resources like cores and

memory, but I/O transfers are dependent on other factors

like file size and number, which are often unknown to the

users who initiate the transfer. This obviously makes it more

challenging especially considering how to dimension, size

and configure Slurm nodes to handle such data transfers.

After doing the overall evaluation it was decided to deploy

4 Data Mover nodes and include them as part of the Piz

Daint Slurm configuration (see Figure 9). In the long-term

however, once the new “Cross-cluster Job dependencies”

feature of Slurm is available the plan is to make the data

mover nodes a separate Slurm cluster.

Figure 9. Schematic showing the Data Mover service for Piz Daint.

These four nodes have access to all the CSCS filesystems

and they provides the following services:

• GridFTP

• Copy

• Move

As first step in order to evaluate how the user will react on

handling their data transfer as pre/post-process automating

their job workflow.

A further step CSCS is looking into is how to provide a

Web interface to the Data Mover nodes, a clear option seems

to be the SLURM-WEB project which can be found at [11].

E. Container Service

The concept of containerized applications is becoming

increasingly popular because it allows users to develop, test

and package applications onto container images that can

then be shipped to a facility and executed at a larger scale.

CSCS supports the utilization of containerized applica-

tions on Piz Daint by means of Shifter, a tool created

by researchers at the National Energy Research Scientific

Computing Center (NERSC), that allows users to run con-

tainerized applications on Cray XC systems.

As an early adopter, contributor and supporter of Shifter,

CSCS builds, maintains and provides its own GPU-enabled

version of Shifter that is regularly ported back to the

mainstream GitHub repository at [12].

In addition to benefiting certain traditional HPC applica-

tions and workloads, the container service allows Piz Daint

to extend beyond traditional HPC and accommodate other

types of workflows. For instance, the Swiss Institute of

Particle Physics (CHIPP) is capable of running RedHat-

based Large Hadron Collider (LHC) production jobs on Piz

Daint, which runs SLES 12, without any change to their

workflows.

VI. OPERATIONAL MANAGEMENT AND SUPPORT

Despite being the first Cray XC50 architecture upgrade in-

corporating pre-existing compute, storage, service and other

peripheral components, the system installation, deployment

and operational readiness has been extremely efficient. This

section details timelines for system boot, stability during

early installation phases and system robustness since the

system has been returned to the CSCS user communities.

Furthermore, an overview is provided of system manage-

ment and monitoring tools that have been developed to

ensure high availability and reliability of services.

A. Installation and Operational Timeline

The installation process including the merging of the

XC50 with CSCS’s already successful XC40, Piz Dora.

Logistically, the complete upgrade would include an upgrade

to both Piz Daint and Piz Dora and then merge the two

systems into one. The end result would be a single system

with mixed node types. To further complicate the process,

the XC40 cabinets would be relocated as they occupied the

space needed for the XC50 cabinets.

As part of the overall upgrade, the XC40 nodes would

gain a technology refresh and have their Haswell processors

replaced with Broadwell processors. The Intel Xeon CPU

E5-2690 v3 @ 2.60GHz (aka 12-core Haswell) processors

would all be replaced with Intel Xeon CPU E5-2695 v4 @

2.10GHz (aka 18-core Broadwell). This processor upgrade

was able to be completed ahead of the main system upgrade

and marked the start of the exciting upgrade ahead.

Taking two systems out of service with minimal inter-

ruption to the users required careful planning and some out

of the box thinking (see Figure 10). On October 17, 2016,

Piz Daint was shutdown in preparation for its upgrade from

an XC30 to an XC50. This now allowed for the physical

9



removal of the XC30 cabinets and final facility preparations.

On October 31, 2016, Piz Dora was shutdown in preparation

for its move and integration into Piz Daint as well as final

facility preparations for the XC50 cabinets that would enter

the space once occupied by Piz Dora. The Cray Engineers

worked diligently and were able to have the system’s first

boot on November 16, 2016. After a brief stress test and

checkout, the system was stabilized and on November 22,

2016, the system was able to begin load and stress testing

by CSCS. Testing concluded successfully and at 10:00am

on Monday December 12, 2016, the system was opened up

to the full CSCS user community.

Figure 10. Timeline for the Piz Daint upgrade and the return to service
for users.

B. System Management and Monitoring

CSCS has many facilities in place to assist with the

management and monitoring of Piz Daint.

The main health of the system is monitored by Na-

gios which implements checks from multiple different data

sources. A large number of custom checks have been written

that query various system services at regular intervals, and

set to alert when certain thresholds have been crossed.

Additionally, Ganglia has been setup to monitor loads,

filesystems, and memory metrics of the various internal and

external service nodes on the system. These monitors are

also used to feed Nagios alerts.

Another source of alerts are based on log messages. CSCS

has set up graylog to consolidate all system logs to give a

quick place to search for messages and correlate events that

have been seen. Additionally, GrayLog is configured to alert

when certain triggers are seen. Things like GPU errors and

draining nodes over threshold will send an alert for further

investigation.

In addition to system health, various performance and

environmental monitors are in place. The Cray Power Man-

agement Database (PMDB) is configured to gather frequent

(1Hz) power consumption data across every node in the

system. Due to the large amounts of data involved, only

8 hours of live data is currently configured to remain in

database at a given time. This means that old data is

constantly being retired and pushed off-system to archives.

To help give a general idea of usage over time, and keep the

data manageable, every minute an average of the per-chassis

power usage is sent to an external ElasticDB to allow for an

overview of energy usage over time (see Figure 11). Slurm

energy counters have also been enabled in the accounting

database to give a rough estimate of energy usage per job.

If additional analysis is necessary, the archived pmdb can

then be restored for access to more precise measurement

data.

Figure 11. Grafana dashboard for power usage.

Additional Slurm data sent to this ElasticDB, allows

for dashboards to be created using Grafana. A high level

system overview has been created allowing for quick visual

appraisal on the health of the job scheduling system. Metrics

such as system utilization by node type, as well as pending

job breakdowns by both job type, and project allocation are

shown. Additional dashboards have been created purely to

analyze the performance of slurm, tracking metrics such as

thread counts, cycle times, and backfill statistics. This data

has been very helpful to monitor performance as scheduling

parameters are modified to accommodate the new hybrid

system workloads (see Figure 12).

Figure 12. Grafana dashboard for Slurm statistics.

10



C. Availability and Reliability of Services

As with any new system, it is anticipated to have some

instability for the first 3 to 6 months as the hardware burns

in. In addition to the general system hardware stability,

software updates are also anticipated as fixes are released.

However, since opening the system to the CSCS user com-

munity, Piz Daint has been very stable. CSCS categorizes

and tracks each system outage. A System Maintenance is

a planned and scheduled service interruption whereas a

System Wide Outage is unscheduled and can have either a

Graceful Shutdown or a Total Failure. Overall, in the first 3

months of service, Piz Daint experienced only 3 unscheduled

service interruptions.

VII. SUMMARY AND NEXT STEPS

CSCS’s mission is to enable world-class scientific re-

search by pioneering, operating and supporting leading-

edge supercomputing technologies. The upgraded Piz Daint

system and a set of consolidated services enable CSCS to

support its key mission. This paper highlights the design

details as well as several background, supporting processes

at CSCS to ensure robust service to the research community.

In the future, CSCS plans on improving efficiencies of

existing services and our monitoring and troubleshooting

infrastructure as well as seek to introduce new services that

are enabled by the leading-edge accelerator technology in

the Piz Daint platform.

ACKNOWLEDGMENT

The research into providing the container service was

supported by the Swiss National Science Foundation.

A special thanks to all the Cray Engineers who worked

collaboratively with CSCS to successfully accomplish the

upgrade in a short time.

REFERENCES

[1] “Cray XC50 NVIDIA Tesla P100 GPU Ac-
celerator Compute Blade,” 2016. [Online]. Avail-
able: http://www.cray.com/sites/default/files/Cray-XC50-
NVIDIA-Tesla-P100-GPU-Accelerator-Blade.pdf

[2] “G100 white-paper.” [Online]. Available:
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-
architecture-whitepaper.pdf

[3] C. McMurtrie, N. Bianchi, and S. Alam, “Cray XC30 Instal-
lation A System Level Overview,” in Proceedings of the Cray
User Group Conference, 2013.

[4] M. Swan and D. Petesch, “Toward Understanding Life-long
Performance of a Sonexion File System,” in Proceedings of
the Cray User Group Conference, 2015.

[5] “XC Series Lustre Administra-
tion Guide.” [Online]. Available:
http://docs.cray.com/PDF/XC Series Lustre Administration Guide CLE 6.0 UP03 S-
2648.pdf

[6] “EGL Eye: OpenGL Visualization with-
out an X Server.” [Online]. Avail-
able: https://devblogs.nvidia.com/parallelforall/egl-eye-
opengl-visualization-without-x-server/

[7] “cuDNN (GPU accelerated deep learning).” [Online].
Available: https://developer.nvidia.com/cudnn

[8] M. Staveley, “Adapting Microsoft’s CNTK and ResNet-18 to
Enable Strong-Scaling on Cray Systems,” in Neural Informa-
tion Processing Systems (NIPS), 2016.

[9] “Native SLURM on Cray XC30,” 2013. [Online]. Available:
https://slurm.schedmd.com/SC13 BOF/SC13 BOF Cray.pdf

[10] A. Sanchez and M. Jette, “Directions
in Workload Management,” 2016. [Online].
Available: http://www.hpckp.org/images/conference/2016/16-
HPCKP16-Alejandro-Sanchez-Graells.pdf

[11] “Slurm web.” [Online]. Available: http://edf-
hpc.github.io/slurm-web/

[12] “Shifter.” [Online]. Available: https://github.com/nersc/shifter

11


