
Cray® XC40TM System Diagnosability: Functionality, Performance, and Lessons

Learned

Jeffrey J. Schutkoske

Platform Services Group (PSG)

Cray, Inc.

Bloomington, MN, USA

jjs@cray.com

Abstract— The Intel® Xeon PhiTM CPU 7250 processor presents

new opportunities for diagnosing the nodes based on this

processor in the Cray® XCTM system. This processor supports a

new high-bandwidth on-package MCDRAM memory and related

interfaces. It also provides the ability to support different Non-

Uniform Memory Access (NUMA) configurations. The new

Cray Processor Daughter Card (PDC) also supports an optional

PCIe SSD card. This processor requires new BIOS,

administrative commands, power and thermal limits, as well as

new diagnostics to validate functionality and performance. This

paper describes the diagnostic tool chain changes required to

support this processor and PCIe SSD card. It describes the

functionality, performance, and lessons learned from diagnosing

problems at scale. It also provides detailed examples on how to

diagnose node faults within the Cray® XC40TM system.

Keywords: Cray® XC40TM system, Cray Linux Environment,

CLE, Intel® Xeon PhiTM CPU 7250 processor, MCDRAM,

diagnostic, diagnosability

I. INTRODUCTION

The Cray® XC40TM system includes the new Cray

Processor Daughter Card (PDC) which supports the new
Intel® Xeon PhiTM CPU 7250 processor and an optional PCIe
SSD card. Previous work [1] [2] [3] has outlined Cray
system diagnosability for the Cray® XCTM Series. There are
a number of enhancements required to support the new node
processor and optional SSD card in the Cray® XC40TM
system.

The Cray Hardware Supervisory System (HSS) supports
the new high-bandwidth on-package MCDRAM memory
and interfaces. It supports the On-Demand configuration of
the MCDRAM and NUMA. The MCDRAM and NUMA
configurations, as well as SSD enable/disable, are
configurable from both the command line on the System
Management Workstation (SMW) and by a workload
manager (WLM) running under the Cray Linux Environment
(CLE) utilizing the Cray Advanced Platform Monitoring and
Control (CAPMC) interface.

The HSS commands, utilities, and diagnostics are used to
diagnose a faulty node. Initially BIOS is used to verify that
the node has powered on correctly and that the node is
initialized and all interface ports are trained successfully. It
also validates that any on-demand configuration settings are
valid. Any errors or warnings are reported to HSS.

Once the node is successfully initialized by BIOS, the
CLE is booted. Cray Linux Environment (CLE) utilizes the
Resiliency Communication Agent (RCA) interface to
communicate between HSS and nodes. The Hardware Error
Log channel is used to send hardware errors to HSS.

HSS monitors a number of power and thermal sensors
within the Cray® XC40TM system at the blade and cabinet
level. These sensors and devices are managed via the out-
of-band paths on the blade by HSS.

HSS also utilizes a number of Intel Reliability,
Availability, and Service (RAS) features including Platform
Environment Control Interface (PECI) and In-Target Probe
(ITP).

New Intel® Xeon PhiTM CPU 7250 processor on-line
diagnostics have been written to validate the node and
MCDRAM functionality and performance. The diagnostics
validate the node based on the MCDRAM and NUMA
configurations. The Workload Test Suite (WTS) has also
been updated to detect and diagnose Intel® Xeon PhiTM CPU
7250 processor problems under CLE.

There are new utilities and diagnostics to support the
PCIe SSD card. There is a new diagnostic utility that
executes in CLE on the Data Warp Node or the compute
node to support the SSD. This diagnostic utility is
periodically scheduled to check the health of the SSD. It
reports the status to the SMW via RCA. The system
administrator can query and display the current SSD health,
as well as historical data. The results of the SSD diagnostic
utility can also be viewed on the SMW.

This paper describes the tool chain changes required to
support the new blade with the Intel® Xeon PhiTM CPU 7250
processor and optional PCIe SSD cards. It also provides
detailed examples on how to diagnose Intel® Xeon PhiTM
CPU 7250 processor faults within the Cray® XC40TM
system. Section II describes the on-demand configuration
options for the node and the attached SSD cards. BIOS
initialization is covered in Section III. The Resiliency
Communication Agent (RCA) interface and monitoring are
cover in Section IV and Section V respectively. Section VI
covers the HSS Out-Of-Band (OOB) debug, Section VII
covers the online diagnostics, and Section VIII explains the
Workload Test Suite (WTS). Section IX describes the PCIe
SSD cards. Related work is described in Section X. Finally,
Section XI provides a summary.

II. ON-DEMAND CONFIGURATION

The Intel® Xeon PhiTM CPU 7250 processor can be
reconfigured on-demand using the Cray Advanced Platform
Monitoring and Control (CAPMC) interface [11]. The new
configuration is applied on the next cold boot of the node or
nodes. This processor supports five different NUMA modes
including All-to-All, Sub NUMA Cluster 2, Sub NUMA
Cluster 4, Hemisphere, and Quadrant. It also supports 5
different MCDRAM modes including Cache, Flat, Hybrid
Equal, and Hybrid Split. All the permutations and
combinations of these NUMA modes and MCDRAM modes
are supported. Note that not all modes and combinations
have proven effective, but this discussion is outside the scope
of this paper. [21] The PCIe SSD cards can be enabled or
disabled via the CAPMC interface.

CAPMC provides a published interface [12], shown in
Table I, that allows the WLM to make reconfiguration
requests to HSS as shown in the table below. System
administrators and operators can also use the CAPMC
interface on the SMW. The changed settings are stored in
the power management database (PMDB). The changes are
applied on the next reboot. Typically, the WLM requests
the reboot via the CAPMC node_reinit command.

TABLE I. ÇRAY CAPMC CONFIGURATION REQUESTS

Command Description

get_ssd_enable Return list of enabled SSD cards

set_ssd_enable Enable/disable SSD

get_mcdram_cfg_capabilities Return supported MCDRAM configurations

get_mcdram_cfg Return current MCDRAM configuration

set_mcdram_cfg Set new MCDRAM configuration

get_numa_cfg_capabilities Return supported NUMA configurations

get_numa_cfg Return current NUMA configuration

set_numa_cfg Set new NUMA configuration

node_reinit Reinitialize node

node_status Returns current node status

Once HSS receives the CAPMC node_reinit request, the

node is stepped through the standard states of ready, halt, on,
standby, and returning to the ready state. Any node that fails
while in a state remains in that state. For example, if a node
fails to complete the CLE boot, the node persists in the
standby state. The WLM can check the current state of the
node using the CAPMC node_status command.

Failures that occur during a reboot initiated by CAPMC
are logged in /var/opt/cray/log/xtremoted-YYYYMMDD.
xtremoted logs the full xtbounce output when xtbounce
returns non-zero. xtremoted logs the full xtcli boot output
regardless of return code.

III. BIOS INITIALIZATION

The Cray BIOS is used to initialize and configure the
Intel® Xeon PhiTM CPU 7250 processor node as requested by
CAMPC. When HSS brings the node out of reset, BIOS is
loaded and executed. HSS passes the new configuration
settings to BIOS, which uses them to configure the NUMA
and MCDRAM modes as requested.

BIOS is used to initialize the Intel® Xeon PhiTM CPU
7250 processor, initialize and train the attached memory and

MCDRAM, and initialize and train any attached PCIe
devices including the Aries network interface (NIC).

BIOS executes the Rank Margining Tool (RMT) as part
of the normal BIOS process. The RMT generates,
calculates, and reports out the system memory interface cold
boot signal timing and voltage reference (VREF) margins.
This ensures that the DDR4 and MCDRAM interfaces can
support expected memory performance. If BIOS determines
that RMT was successful on the previous cold boot, BIOS
skips the RMT thereby enabling a cold fast boot. RMT is
run by default after each BIOS flash.

The Cray BIOS reports any MCDRAM or DIMM
failures during memory training including any Machine
Check Architecture (MCA) errors that were detected.
NUMA and MCDRAM configurations are verified and
reported.

BIOS detected errors or failures are logged to the BIOS
logs. All errors are logged to the BIOS log on the Blade
Controller (BC). Controller log forwarding with the
Lightweight Log Manager (LLM) can be configured to
forward the BIOS logs to the SMW. The Blade and
Cabinet Controllers are diskless Linux systems, so log
forwarding is enabled by default.

CrayBdsHook.Entry(B9E00300)
AddLpcFaultEntry: PostCode 0x68
LPC_SCRATCH_FAULT_REPORT_ENTRY
FaultNum: 1
Type: 11
Flags: 0x00
CodeMajor: 0x68
CodeMinor: 0x00
ApicId: 0x00
CpuNum: 0
Timestamp: 04/05/2017 18:18:20
LogData: 0x00000020
FaultMsg: BIST disabled via POC_RESET_STRAPS
LPC_SCRATCH_FAULT_INFO_ENTRY
LineNum: 1085
FileName: z:\knl\CrayPkg\Dxe\CrayBdsHook\CrayBdsHook.c

Figure 1. BIOS Hardware Failure Detected

In Figure 1. BIOS Hardware Failure Detected BIOS
requested that the Intel® Xeon PhiTM CPU 7250 processor
BIST execute and BIOS detected that it did not execute. In
Figure 2. Figure 2. BIOS MCDRAM Failure Detected BIOS
detected multiple MCDRAM failures where the MCDRAM
did not train successfully and it reported the errors.

** EDC-0 Memory Init: cmdcrc_err = 1
** EDC-4 Memory Init: cmdcrc_err = 1

EDC Meminit Time Elapsed: 99ms
EDC-0: memory Init Status 0x0003

LPC_SCRATCH_FAULT_REPORT_ENTRY

FaultNum: 1
Type: 9
Flags: 0x00
CodeMajor: 0xA1
CodeMinor: 0x06
ApicId: 0x00
CpuNum: 0
Timestamp: 07/29/2015 22:29:22
LogData: 0x0000FFFF
FaultMsg: CRAY_MCDRAM_WARNING

A warning has been logged! Warning Code = 0xA1, Minor Warning Code =
0x6, Data = 0xFFFF

S0 Ch0

EDC-3: memory Init Status 0x0001
EDC-4: memory Init Status 0x0003

LPC_SCRATCH_FAULT_REPORT_ENTRY

FaultNum: 2
Type: 9
Flags: 0x00
CodeMajor: 0xA1
CodeMinor: 0x06
ApicId: 0x00
CpuNum: 0
Timestamp: 07/29/2015 22:29:22
LogData: 0x0004FFFF
FaultMsg: CRAY_MCDRAM_WARNING

A warning has been logged! Warning Code = 0xA1, Minor Warning Code =
0x6, Data = 0x4FFFF

Figure 2. BIOS MCDRAM Failure Detected

Any errors are logged and reported to the SMW
command, xtbounce, as part of the system boot sequence.

The node is prevented from booting if any hardware
failure is detected during BIOS execution. The Cray BIOS
logs are copied to the Cray SMW on any BIOS detected
error or failure for further analysis. This ensures that at the
time of system boot all devices are properly discovered,
initialized, and trained successfully or flagged as failed,
without stopping the boot process.

IV. RESILIANCY COMMUNICATION AGENT (RCA)

The CLE kernel captures node hardware errors. It reads
MCA errors (correctable and uncorrectable) and logs them in
the node console log, which is saved on the SMW. It also
reports them via the Hardware Error Log Channel connected
from the node to the BC, which forwards them to the SMW
Hardware Error Logger Daemon (xthwerrlogd). The SMW
command, xthwerrlog, displays all hardware errors logged
via the Hardware Error Channel including MCA errors as
shown in Figure 3. HSS provides the decoding for all Intel®
Xeon PhiTM CPU 7250 processor machine check registers.

This includes banks 7-14 where MCDRAM errors are
reported.

HWERR[c1-0c2s14n1]:0xfd0b:

Uncorrectable:MFG[0]:CPUID[50671]:SOCKET[0]:APIC[0]:
BANK[11]:STATUS[0xf60000800040009e]:MISC[0x0]:
ADDR[0x153fffc300]:CTL2[0x0]

HWERR[c1-0c1s6n0]:0xfd07:
Uncorrectable:MFG[0]:CPUID[50671]:SOCKET[0]:APIC[0]:
BANK[7]:STATUS[0xf60000800040009e]:MISC[0x0]:
ADDR[0x176477c000]:CTL2[0x0]

HWERR[c1-0c1s3n2]:0xfd09:
Uncorrectable:MFG[0]:CPUID[50671]:SOCKET[0]:APIC[0]:
BANK[9]:STATUS[0xf60001000040009e]:MISC[0x0]:
ADDR[0x17647f8000]:CTL2[0x0]

HWERR[c0-0c0s11n2]:0xfd0d:
Uncorrectable:MFG[0]:CPUID[50671]:SOCKET[0]:APIC[0]:
BANK[13]:STATUS[0xf60000400040009e]:MISC[0x0]:
ADDR[0x17647a2000]:CTL2[0x0]

Figure 3. xthwerrlog Output

The SMW command, xtmcadecode, decodes and
provides detailed explanation for Intel MCA errors as shown
in Figure 4.

xtmcadecode -t knl 16 84000040000800C0

Bank 16: IMC1: Integrated Memory Controller 1:
MCA Status = 0x84000040000800c0:

MCACOD = 0x00c0, MSCOD = 0x0008
Other Info = 0x00
Corrected Error Count = 1
Threshold-based Error Status = 0, No Tracking

Common Status Info:

VALID = 1 = Valid Error Detected
OVER = 0 = No overflow
UC = 0 = Error Corrected by HW
EN = 0 =
MISCV = 0 =
ADDRV = 1 = Error address in MCi_ADDR
PCC = 0 =
S = 0 =
AR = 0 =

Model-specific error: Correctable Patrol Scrub
Channel: 0
MCA: Undefined Error

Figure 4. xtmcadecode Output

Advanced Error Reporting (AER) is enabled in the CLE
kernel by default. With AER enabled the PCIe SSD card
errors are reported to the SMW. The Compute Node Linux
(CNL) kernel reads these PCIe errors and logs them in the
node console log, which is saved on the SMW. It also
reports them via the Hardware Error Log Channel connected
from the node to the BC, which forwards them to the SMW
Hardware Error Logger Daemon (xthwerrlogd). The PCIe
errors are viewable using the SMW command, xtpcimon.

V. MONITORING

The Cray Processor Daughter Card (PDC) has 26 sensors
available for monitoring node power and memory power.
[14] The sensors are connected to seven separate I2C buses.
This topology allows the node power readings to be scanned
both at a higher rate and in greater detail than was possible in
previous designs.

The HSS utility System Environment Data Collections
(SEDC) [10] monitors the system health and records the
environmental data coming from the system's hardware
components. The telemetry data is logged to the PMDB.

To validate the HSS hardware and software, the SMW
HSS debug utility, xtcheckhss, is used. The SMW command
validates the Cray® XC40TM system HSS infrastructure by
checking each blade and each cabinet. It can be used to get a
quick validation that the HSS infrastructure is functioning
normally and can also be used to troubleshoot a blade or a
given cabinet. On a blade, it validates the basic blade
functionality. It can also validate HSS voltages, Aries
voltages and current, temperatures, PDC sensors, as well as
the Intel processor and DIMM temperatures and voltages.

The SMW command SEDC command, xtgetsedcvalues,
returns the available SEDC values.

To view the System Environment Data Collections
(SEDC) temperature telemetry data collected for the node as
stored in the PMDB, use the database query as follows:

SELECT value FROM pmdb.bc_sedc_data WHERE

bc_sedc_data.id where (sensor_id >= 1300 and sensor_id
<= 1306)

The results of the above query are shown in TABLE II.

TABLE II. NODE TEMPERATURE OUTPUT

SEDC PMDB Temperature Data

Node Sensor ID Sensor Name Value

c1-0c0s10 1306 BC_T_NODE3_CPU0_TEMP 36

c1-0c0s10 1304 BC_T_NODE2_CPU0_TEMP 34

c1-0c0s10 1302 BC_T_NODE1_CPU0_TEMP 36

c1-0c0s10 1300 BC_T_NODE0_CPU0_TEMP 38

c1-0c0s14 1306 BC_T_NODE3_CPU0_TEMP 27

c1-0c0s14 1304 BC_T_NODE2_CPU0_TEMP 25

c1-0c0s14 1302 BC_T_NODE1_CPU0_TEMP 29

c1-0c0s14 1300 BC_T_NODE0_CPU0_TEMP 27

 To view the SEDC processor global power telemetry

data collected for the node as stored in the PMDB, use the
database query as follows:

 SELECT value FROM pmdb.bc_sedc_data WHERE

bc_sedc_data.id where (sensor_id >= 2776 and sensor_id
<= 2779)

The results of the above query are shown in TABLE III.

Node Global Power Usage.

TABLE III. NODE GLOBAL POWER USAGE

SEDC PMDB Temperature Data

Node Sensor ID Sensor Name Value

c1-0c0s10 2776 BC_P_NODE0_GLOBAL_PROC

_POWER

23

c1-0c0s10 2777 BC_P_NODE1_GLOBAL_PROC
_POWER

22

c1-0c0s10 2778 BC_P_NODE2_GLOBAL_PROC

_POWER

23

c1-0c0s10 2779 BC_P_NODE3_GLOBAL_PROC

_POWER

23

c1-0c0s14 2776 BC_P_NODE0_GLOBAL_PROC
_POWER

25

c1-0c0s14 2777 BC_P_NODE1_GLOBAL_PROC

_POWER

25

c1-0c0s14 2778 BC_P_NODE2_GLOBAL_PROC

_POWER

25

c1-0c0s14 2779 BC_P_NODE3_GLOBAL_PROC

_POWER

27

It is also possible to search for a specific window of time

and for specific nodes. This data is invaluable when
troubleshooting hardware or software failures.

VI. HSS OUT-OF-BAND (OOB) DEBUG

The HSS system management platform performs
monitoring and management out-of-band to the compute
node and high-speed network. HSS also implements
interfaces to various vendors Out-Of-Band interfaces to
enhance OOB debug of the Cray® XC40TM system. These
interfaces are as follows:

• Intel Platform Environment Control Interface (PECI)

• Intel In-Target Probe (ITP)

A. Intel Platform Environment Control Interface (PECI)

Debug

Intel processors provide a single wire signal for their
Platform Environment Control Interface (PECI). During
some early debug, Cray uses PECI to dump out various
Intel® Xeon PhiTM CPU 7250 processor registers to aid in
debugging when a node failed and no other dump
mechanism is available.

Intel uses the Intelligent Platform Management Interface
(IPMI) Specification [1] as the protocol to connect to the
Intel Management Engine (ME) within the Intel Wellsburg
Platform Controller Hub (PCH). This interface is primarily
used to collect power, thermal, and status information by the
HSS utility SEDC, which monitors the system health and
records the environmental data coming from the system's
hardware components. And finally, the data can be viewed
real-time using the HSS debug utility, xtcheckhss.

To display the various HSS telemetry data for a select
blade in the system use the xtcheckhss command line as
follows:

xtcheckhss --cclist=none --bclist=c0-0c2s0 --detail=f

This command outputs the details of all the components

that are part of the blade. The partial output shown in
Figure 5. xtcheckhss Blade Output focuses on the DIMM

temperature, node power, and node temperature readings for
two of the nodes on the blade.

c0-0c2s0n0 kpdc1_n1_s0

 dimm0_temp n/a n/a n/a 30 degc n/a n/a

c0-0c2s0n0 kpdc1_n1_s0
 dimm1_temp n/a n/a n/a 29 degc n/a n/a

c0-0c2s0n0 kpdc1_n1_s0

 dimm2_temp n/a n/a n/a 29 degc n/a n/a

c0-0c2s0n0 kpdc1_n1_s0

 dimm3_temp n/a n/a n/a 30 degc n/a n/a
c0-0c2s0n0 kpdc1_n1_s0

 knl_power n/a n/a n/a 83252 w*1000 n/a n/a

c0-0c2s0n0 kpdc1_n1_s0

 knl_temp n/a n/a n/a 38 n/a n/a n/a

c0-0c2s0n1 kpdc0_n1_s0

 dimm0_temp n/a n/a n/a 25 degc n/a n/a

c0-0c2s0n1 kpdc0_n1_s0

 dimm1_temp n/a n/a n/a 25 degc n/a n/a
c0-0c2s0n1 kpdc0_n1_s0

 dimm2_temp n/a n/a n/a 25 degc n/a n/a

c0-0c2s0n1 kpdc0_n1_s0

 dimm3_temp n/a n/a n/a 25 degc n/a n/a

c0-0c2s0n1 kpdc0_n1_s0
 knl_power n/a n/a n/a 29000 w*1000 n/a n/a

c0-0c2s0n1 kpdc0_n1_s0

 knl_temp n/a n/a n/a 26 n/a n/a n/a

Figure 5. xtcheckhss Blade Output

The detailed output definitions for xtcheckhss are
described in TABLE IV.

TABLE IV. XTCHEXHSS DETAIL DESCRIPTIONS

xtcheckhss Detail Column Descriptions

Name Description

Component Cray component name (cname)

Sensor Hardware sensor name

FRSH Freshness Counter

HLMIN Hardware Limit Minimum (cannot be modified)

SLMIN Software Limit Minimum (software configurable)

DATA Data value

UNIT Data units (i.e. Degrees Celsius, Watts, etc.)

SLMAX Software Limit Maximum (software configurable)

HLMAX Hardware Limit Maximum (cannot be modified)

xtcheckhss reports the component, sensor, data, and unit

for all detailed telemetry data. There are a number of HSS
devices where the additional fields become important. In the
case below where a Voltage Regulator Module (VRM) is
reporting a low voltage reading, the VRM is below the
SLMIN but higher than the HLMIN where a VRM fault
would occur. When any device reading is outside of these
limits, a message is sent to the SMW. xtcheckhss is used to
verify that the device reading is out of the expected range as
shown in Figure 6.

c0-0c0s7n2 qpdc0_n0_s0_mem_vrm vdd_vdr01_s0_c_i
 1200 1350 1339 v*1000

1650 1800

Figure 6. HSS Low Voltage Output

B. Intel In-Target Probe (ITP) Debug

The Intel In-Target Probe (ITP) [2] is a JTAG bus with
some Intel-specific signals and protocol added. Typically,
this is done with a physical Intel ITP interface connected to
the processor via the eXtended Debug Port (XDP). Cray has
implemented an embedded ITP so that no external hardware
needs to be connected to the Cray® XC40TM system. The
embedded ITP is used as a processor hardware debug tool by
launching and executing scripts to debug the node. These
scripts reside on the SMW and are executed via the SMW
command xtitp.

Many of the scripts provide useful hardware debug
information about the PCIe configuration and status,
processor information, MCA errors, and model specific
register (MSR) data.

To query for any machine check errors in Node 0 use the
xtitp command as follows:

xtitp -t c3-0c2s15 mca-error-check-all 0

Sometimes a node can crash due to an MCDRAM error.

In this case xtitp can be used to pull the MCDRAM error as
shown in Figure 7.

xtitp -t c0-0c0s13 mca-error-check-all 2

Check for MCA errors - Node 2, Socket 0

 MCA_ERR_SRC_LOG = 0x00000000

MCA found in bank 14, socket 0, core 0

 IA32_MC14_STATUS = 0xf40000400040009e
 IA32_MC14_ADDR = 0x18be8bcbc0

MCA found in bank 0, socket 0, core 46
 IA32_MC0_STATUS = 0xf600000092000810
 IA32_MC0_ADDR = 0x18be8bcd00

MCA found in bank 0, socket 0, core 47

 IA32_MC0_STATUS = 0xf600000092000810
 IA32_MC0_ADDR = 0x18be8bcd00

Figure 7. xtitp MCDRAM Error Output

The xtitp command can be used to read the CPUID as
shown in Figure 8.

xtitp -t c3-0c2s15 cpuid-brand-string 3

CPUID Processor Brand String (Functions 0x80000002, 0x80000003,
0x80000004)
Intel(R) Xeon Phi(TM) CPU 7210 @ 1.30GHz

Figure 8. xtitp CPUID Error Output

The xtitp command can also be used to read the PPIN as
shown in Figure 9.

xtitp -t c3-0c2s15 msr-read 0 0x4f

>>> MSR 0x0000004f (Socket 0, Core 0, Thread 0) <<<
0x5a8e4e432e06638e

Figure 9. xtitp PPIN Output

Executing any script via the xtitp command on the SMW
temporarily pauses the node, until the data is read from the
processor and resumes the processor once the read is
complete. Therefore, running any script causes a temporary
performance degradation and should be avoided under
normal operations. It is also important to note that if the
processor is paused for greater than 30 seconds, HSS would
lose the node heartbeat and consider the node down.

VII. XEON PHI DIAGNOSTICS

The Cray® XC40TM system provides four diagnostic tests
available for the compute nodes that validate the nodes
functionality and performance. These diagnostic tests
execute under CLE and are installed in /opt/cray/diag/bin.

A. Xeon Phi Memory

The Cray Xeon Phi memory test, xtphimemory, targets all
external DDR memory and internal MCDRAM memory.
xtphimemory is an effective user space memory test for
stress-testing the memory subsystem. The maximum amount
of memory that xtphimemory can test is less than the total
amount of memory installed in the system; the kernel,
libraries, and other system usage limits the memory available
for testing.

The xtphimemory diagnostic provides four primary test
algorithms as follows:

• DDR4 Memory Validation: Tests access from each
Core, L2 Cache, and Caching Agent (CHA) to
DDR4 DIMM

• MCDRAM Memory Validation: Tests access from
each Core, L2 Cache, and CHA to MCDRAM
module

• DDR4 Memory Stress: Stresses all DDR4 memory
channels. Optionally, the user can define a stride to
use when performing memory accesses, to allow for
flexibility in creating additional conflicts

• MCDRAM Memory Stress: Stresses all MCDRAM
memory channels

The parent process allocates the shared memory region to

test, and one child thread is created per division of the shared
memory region. For example, a 68-core processor supports
272 threads with the Intel® Hyper-Threading Technology
enabled. If the node is configured to support four NUMA
nodes, then the test creates 68 threads per NUMA node. If
the user selected two divisions on the command line

(ddr_num_slices = 2), then each division would support 34
threads. The divisions are a way to group threads within a
NUMA node to allow for better failure isolation within the
node and memory.

It is extremely rare to have the xtphimemory test provide
failure information. If the hardware indicates a single bit
error (SBE) has occurred, it is corrected and the diagnostic
will not see the SBE as it is corrected. If the diagnostic
forces a double bit error (DBE), the diagnostic is terminated
with an EC_NODE_FAILED status by the kernel.
Therefore, it is important to review the SBE and DBE that
are logged on the SMW. The SMW command, xthwerrlog,
can be used to display the output on the SMW for the time
period when the diagnostic executes on the node under CLE.

Single bit MCDRAM errors are silent on the node (no
machine checks are generated). Double bit MCDRAM
errors cause a correctable MCA to be generated. Any greater
than two bit MCDRAM errors are uncorrectable. The
MCDRAM error are logged to the SMW and are viewable
using the xthwerrlog command.

The diagnostic reports a data miscompare in Figure 10.

c0-0c2s9n3, nid00167,

testName: testRandomValue,
loopNum: 2,
CpuId [88] compare regions test FAILURE:
0x28000 != 0x50000 at offset 0xba62f0.

Figure 10. Memory Diagnostic Data Miscompare Output

B. Xeon Phi Non-Uniform Memory Access (NUMA)

The Cray NUMA test, xtphinuma, validates the NUMA
capabilities of node for any given memory model that is
configured with more than one NUMA node. xtphinuma
validates both local memory and remote memory. It also
provides an interleave test where memory is allocated across
all the NUMA nodes. The remote memory in the context of
this test does not include memory connected to other nodes
that may be accessible via the Aries network, but instead
only refers to memory that is in a “remote” NUMA node
within the physical node. To perform the standard NUMA
verification, execute the command as follows:

xtphinuma -s 0x9f

The diagnostic allocates buffers of memory and validates

the ability of the Intel® Xeon PhiTM CPU 7250 processor to
properly read and write the buffers. The libnuma API is used
to control the NUMA allocations to local or remote NUMA
nodes. The diagnostic uses threads pinned to logical cores to
validate that each logical core can access memory allocated
under the desired NUMA memory policy.

 xtphinuma provides a bandwidth test that performs
writes and reads for local and remote NUMA nodes for each
core. To perform the NUMA bandwidth verification
execute the command as follows:

xtphinuma -s 0x60

xtphinuma also provides a stress test that exercises all
cores simultaneously to stress the memory paths from each
CPU to local and remote memory. To perform the NUMA
stress verification execute the command as follows:

xtphinuma -s 0x100

 The diagnostic reports all data miscompares that are

detected Figure 11.

c0-0c2s15n1, nid00189, Fail: Data Failure for word: 1245416

Exp Data: 1245416 Act Data: 0
c0-0c2s15n1, nid00189, Fail: Data Failure for word: 1245417

Exp Data: 1245417 Act Data: 0
c0-0c2s15n1, nid00189, Fail: Data Failure for word: 1245418

Exp Data: 1245418 Act Data: 0

Figure 11. NUMA Diagnostric Data Miscompare Output

The diagnostic may also fail when allocating memory
and will output an appropriate error message as follows:

• allocateNumaMemoryInterleave failed

• allocateNumaMemory failed

• allocateNumaMemory failed for expected data

• allocateNumaMemory failed for read buffer

• allocateNumaMemoryInterleave failed for write
buffer

• allocateNumaMemory failed for write buffer

C. Xeon Phi Processor Performance

The Cray Xeon Phi performance test, xtphiperf, provides
a computationally intensive processor test to validate the
node. This test outputs the performance and the power for
the processor during each pass of the diagnostic test. This
test uses the standard CBLAS DGEMM. It validates the
results of the DGEMM matrix multiply. The diagnostic
supports a command line option to enable MPI. When MPI
is enabled, the diagnostic compares the results across the
other nodes under test using the same input data.

Three arrays are allocated to maximum memory usage as
shown in Figure 12.

A x B = C

Array A:[k,m] B:[n,k] and C:[n,m]

Figure 12. DGEMM Maximum Memory Usage

An extra matrix is used to store the initial C matrix data
as shown in Figure 13.

So {k x m} + {n x k} + {n x m} + {n x m} < max mem

Where default values are: m = 8192, n = 8192, k = 8192

Figure 13. DGEMM Matrix Multiply

xtphiperf can target the DDR4, MCDRAM, or both. This
is controlled through the command line option -t. To
effectively target both DDR4 and MCDRAM, the user must
select a memory size of matrix size (m, n, k) greater than the
available DDR4 memory or the -d option should be set to
option 3, NUMA node.

The xtphiperf diagnostic provides significant control over
testing each processor core. The diagnostic outputs the
performance, power, and temperature for each iteration of
the diagnostic as shown in Figure 14.

c0-0c0s14n3, nid00059, Iteration, GFLOPS, Power(W), Temp(C)

c0-0c0s14n3, nid00059, 0, 1964, 215, 38
c0-0c0s14n3, nid00059, 1, 1968, 224, 40

c0-0c0s14n3, nid00059, 2, 1968, 223, 42

c0-0c0s14n3, nid00059, 3, 1978, 222, 44

c0-0c0s14n3, nid00059, 4, 1978, 219, 44

Figure 14. Performance Diagnostic Standard Output

When the xtphiperf diagnostic detects a residual error a
non-zero return code is output and the diagnostic prints the
actual and expected values as shown in Figure 15.

13:52:20, c0-0c2s12n2, nid00178, 3, 2039.3, 197.806, 44

13:52:21, c0-0c2s12n2, nid00178, Failed:

CPU actual: 502.630097504761,

CPU expected: 502.63009941210

Figure 15. Performance Diagnostic Residual Output

When the xtphiperf diagnostic detects a performance
issue, the diagnostic prints the actual GFLOPS and the
expected GFLOPS as shown in Figure 16.

13:55:22, c0-0c2s12n2, nid00178, 1, 1999.9, 197.906, 46
13:55:22, c0-0c2s12n2, nid00178, Failed:

actual: 1899.9 GFLOPS, expected greater than: 1900 GFLOPS

Figure 16. Performance Diagnostic Performance Failure Output

The user expected performance target is defined in the
xtphiperf.ini file. It is important to note that xtphiperf
assumes that the node is dedicated to performance testing.
Any other jobs that are running on the node affect the
performance of the node.

D. Xeon Phi Processor Stress Test

 The diagnostic, xtphinls, is both validation test and a
stress test for the node. This test is a collection of diagnostic
tests that validate functionality of a specific node. The test
supports concurrent execution of independent test programs
exercising all or part of the node resources. There are two
diagnostic tests that are executed concurrently on different
cores: xtphimemory and xtphiperf. These are the same
diagnostics that were previously discussed. However, in this
case the diagnostics are run as a single threaded test with

multiple copies of these tests executing in different threads
on a core. Currently the odd threads run the memory test and
the even threads run the performance test. In this way one
core is executing a computationally intense test and the next
core is executing a memory intensive test. The combination
of these two tests running on alternating cores stresses the
node. Each test is pinned to a thread which is pinned to a
core so on failure the failing core is properly identified.
Each thread also reports a heartbeat status to the parent
thread to indicate the general thread health. The thread
manager within the diagnostic watches for the heartbeat and
reports any stalled or failed threads.

xtphinls only verifies the results. So, when a test fails the
validation check of the diagnostic, it outputs a failed message
as shown in Figure 17.

aprun -n 1 -N 1 -L 225 --cc=none ./xtphinls -v 1

xtphinls -v 1

c1-0c0s8n1, nid00225, Version 1.0
c1-0c0s8n1, nid00225, Test, ThreadID, Status

c1-0c0s8n1, nid00225, xtphimemory, 17532, Pass

c1-0c0s8n1, nid00225, xtphimemory, 17534, Failed

 .

 .
c1-0c0s8n1, nid00225, xtphiperf, 17629, Failed

c1-0c0s8n1, nid00225, xtphiperf, 17757, Pass

c1-0c0s8n1, nid00225, Number of passing tests: 128

c1-0c0s8n1, nid00225, Number of failing tests: 128

c1-0c0s8n1, nid00225, Test Failed

Figure 17. Node Stress Diagnostic Failure Output

E. Xeon Phi Processor Check

The diagnostic utility, xtphicheck, provides a simple

verification of the node within the system. It uses MPI to

gather basic information about each node and returns the

data to stdout. Any nodes that report values that are

different from the root node (first node in the list), are

reported with the cname, nid, and value. Sample outout is

shown in Figure 18.

aprun -n 2 -N 1 -L 50-51 /opt/cray/diag/bin/knl/xtphicheck -v 3

/opt/cray/diag/bin/knl/xtphicheck -v 3

/opt/cray/diag/bin/knl/xtphicheck -v 3

c0-0c0s12n2 nid00050 2 node(s) Sockets : 1

c0-0c0s12n2 nid00050 2 node(s) Processor : KnightsLanding
c0-0c0s12n2 nid00050 2 node(s) Cores Per Socket : 68

c0-0c0s12n2 nid00050 2 node(s) CPU MHz : 1401.000

c0-0c0s12n2 nid00050 2 node(s) L1d cache : 32K

c0-0c0s12n2 nid00050 2 node(s) L1i cache : 32K

c0-0c0s12n2 nid00050 2 node(s) L2 cache : 1024K
c0-0c0s12n2 nid00050 2 node(s) L3 cache : N/A

c0-0c0s12n2 nid00050 2 node(s) Memory Total : 98880724kB

c0-0c0s12n2 nid00050 2 node(s) Memory cluster config: a2a

c0-0c0s12n2 nid00050 2 node(s) Memory cache config: cache
c0-0c0s12n2 nid00050 2 node(s) Mcdram Total : 0x400000000

c0-0c0s12n2 nid00050 2 node(s) Numa Nodes : 1

Figure 18. Node Diagnostic Utility Output

This diagnostic utility proved extremely useful during

initial bring up and testing of nodes within the system. It

also provided a simple check to validate the nodes

configuration is set as expected.

VIII. WORKLOAD TEST SUITE (WTS)

The Workload Test Suite (WTS) consists of a control
script, xtsystest, and a number of benchmarks and
diagnostics. The benchmarks and diagnostic tests are used to
simulate a generic application workload to verify that the
system is ready to execute user applications. In some cases, a
customer may have one or two applications that are
representative of the workload on-site. In other cases,
standard benchmarks are used as follows:

1. Intel MPI Benchmarks (IMB): Performs a set of
MPI performance measurements for point-to-point
and global communication operations for a range of
message sizes [3].

2. High Performance Computing Challenge
(HPCC): Consists of seven tests including HPL,
DGEMM, STREAM, PTRANS, Random Access,
FFT, and Communication bandwidth and latency
[4].

3. High Performance Linpack (HPL): Cray uses
HPL as two different tests: one to test out the
processor running HPL (DGEMM) and the second
to use as large a memory foot print as possible [5].

These benchmarks have been updated to support the

Intel® Xeon PhiTM CPU 7250 processor. The Workload Test
Suite is comprised of a script, xtsystest.py, a default
configuration file, xtsystest.ini, a set of standard component
test modules located under the tests folder, and a set of
utilities located under the util folder. When executed, the tool
sequentially executes the defined set of benchmarks,
diagnostics, and applications. The site can also define a
custom configuration file. Upon completion, the script
outputs a summary of all the tests that have been executed.

 By default, xtsystest.py continuously runs the set of tests
defined in xtsystest.ini on the maximum number of compute
nodes available until the <Ctrl-C> signal is sent. However, it
is possible to limit the set of tests that are executed, the
number of times each test is executed, and the set of
resources under test, using the available command-line
options. There is also a command line option to show the
results of a given session upon completion. Each test script
has a corresponding check utility that provides additional
information about a failure.

 On larger systems, especially for systems with multiple
rows, it is recommended that an instance of the workload
script is targeted to each row within the system. Each
instance of the WTS script should also be initiated from a
separate login node. The xtsystest.py script launches a
diagnostic or benchmark on each node within the system
concurrently. It also logs each instance individually.
Therefore, a 10k node system will start 10k copies of xhpl
and will generate 10k output files. This has been shown to
quickly consume the login node and WLM resources.

The Workload Test Suite executes on CLE and supports
ALPS and SLURM. SLURM support is available as a patch
for CLE 6.0 UP02, CLE 6.0 UP03, and CLE 6.0 UP04.

IX. SSD DIAGNOSTIC UTILITES

There are new utilities and diagnostics used to debug and

verify the configured PCIe SSD cards within the Cray®

XCTM Series. There is a new diagnostic utility, xtcheckssd,

that executes in CLE on the Data Warp node or the compute

node to verify the SSD card. [13] This diagnostic utility is

periodically scheduled to check the health of the SSD cards

on DataWarp nodes. On compute nodes, the SSD utility is

run manually as required by the site. It reports the status to

the SMW via RCA. The system administrator can query

and display the current SSD health, as well as the historical

data. They can also query and display the results of the

SSD diagnostic utility on the SMW.

There are two tools available under CLE are described in

TABLE V.

TABLE V. CLE SSD DIAGNOSTIC TOOLS AND UTILITES

SSD Diagnostic Tools and Utilities

Name Description

xtcheckssd Report SSD health

xtiossdflash Update the firmware on the SSD card

xtcheckssd reports the health of the attached PCIe SSD

cards. The diagnostic utility supports both the DataWarp

SSD cards and the optional SSD cards attached to the node

on the Cray PDC. The xtcheckssd output is shown in

Figure 19.

PCIe slot#:1,Name:INTEL SSDPECME040T4,

SN:CVF8515300094P0DGN-1, Size: 4000GB, Remaining life:100%,

Temperature:22(c)

PCIe slot#:1,Name:INTEL SSDPECME040T4,

SN:CVF8515300094P0DGN-2, Size: 4000GB, Remaining life:100%,

Temperature:24(c)

PCIe slot#:0,Name: INTEL SSDPECME040T4,

SN:CVF85153001V4P0DGN-1, Size: 4000GB, Remaining life:100%,

Temperature:22(c)

PCIe slot#:0,Name: INTEL SSDPECME040T4,
SN:CVF85153001V4P0DGN-2, Size: 4000GB, Remaining life:100%,

Temperature:24(c)

Figure 19. xtcheckssd SSD Health Output

The SSD utility, xtssdconfig, is available on the SMW,

which is used to display the SSD configuration information.

When a DataWarp SSD reaches 90% of its life

expectancy, a message is written to the console log file. If

enabled, the Simple Event Correlator (SEC) monitors

system log files for significant events such as this and sends

a notification (either by email, IRC, writing to a file, or

some user-configurable combination of all three) that this

has happened. [9] The xtcheckssd results are logged on the

SMW in the xtdiag log.

Additionally, xtcheckhss reports the PCIe attached SSD

cards. xtcheckhss reports the targeted and trained PCIe

speed and width as shown in Figure 20.

===
============= PCIe Card Info ==============

===

Node Slot Name

Target Gen Trained Gen Target Width Trained Width

c0-0c2s0n0 0 Samsung_SM951_M.2_SSD

Gen2 Gen2 x4 x4

c0-0c2s0n1 0 Samsung_SM951_M.2_SSD

Gen2 Gen2 x4 x4

c0-0c2s0n2 0 Samsung_SM951_M.2_SSD
Gen2 Gen2 x4 x4

c0-0c2s0n3 0 Samsung_SM951_M.2_SSD

Gen2 Gen2 x4 x4

Figure 20. xtcheckhss SSD configuration

This ensures that the state of the PCIe SSD card is known

at time of boot.

X. RELATED WORK

As mentioned previously, an earlier paper has described

in detail the Cray® XCTM system level diagnosability toolset

[1]. That paper focused on the Aries high speed network
(HSN), compute processors, co-processors, GPUs, and

Cray® XCTM cabinet power and cooling. The system

diagnostics included boot, confidence, stress, performance,

workload, and error and data reporting.

A subsequent paper then described the Cray® XCTM

system node level diagnosability [2] toolset in greater detail.

Various troubleshooting examples were presented with

detailed examples. The Cray® XCTM system diagnosability

roadmap [3] was also presented. The roadmap covered

Intel® node, Nvidia® GPU, and I/O diagnosability

enhancements. It also covered the workload test suite

(WTS), HSS diagnostic utilities, telemetry data, HSS

controller monitoring, notification, and Cray® Data

Virtualization Service (Cray DVS).

D. Petesch and M. Swan [16] described mechanisms to

properly instrument a user level application to quickly

checkout the hardware and software components in a large

external Lustre® file system [19]. That paper also provided

insights into full scale performance issues and how IOR

[18] can be used to troubleshoot them.

M. Swan [17] described the mechanisms and tool sets

required to tune and analyze Cray® Sonexion 1600

performance issues in a Cray® XCTM system.

J. Fullop and R. Sisneros [19] have created a framework

for identifying causes for observed differences in job

performance from one run to another. Their approach is to

analyze the various logs over a period of time looking for

any noteworthy events. This work was done at the

University of Illinois at Urbana-Champaign on the Blue

Waters system.

Finally, A. DeConnick, et.al. [20] have described a

scalable monitoring system for Trinity. The authors work

with the Baler log file analysis tool to extract a greatly

reduced set of patterns from the voluminous number of logs

on a Cray® XCTM system is particularly important as the

number of nodes and controllers increases and the

requirement for additional automated analysis grows.

XI. SUMMARY

Cray has provided a number of diagnostics, commands,
and utilities that enhance the diagnosability of the Cray®
XC40TM system. The focus of system diagnosability has
been on ensuring that each component is functioning
properly by ensuring that each component can be validated
and that all data is captured at the time of failure.

Each aspect of the tool chain has been enhanced on the
Cray® XC40TM system to better ensure that the Cray®
XC40TM system is performing as expected. The changes to
support the Intel® Xeon PhiTM CPU 7250 processor include
BIOS, SMW commands, utilities, and diagnostics, as well as,
power and thermal telemetry data, and event logs. Future
enhancements are planned to continue to improve system
diagnosability of the Cray® XC40TM system.

REFERENCES

[1] J. Schutkoske, “Cray XC System Level Diagnosability: Commands,
Utilities and Diagnostic Tools for the Next Generation of HPC
Systems ”, Proceedings of the Cray User Group (CUG), 2014,
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap1
20.pdf

[2] J. Schutkoske, “Cray XC System Node Level Diagnosability”,
Proceedings of the Cray User Group (CUG), 2015,
https://cug.org/proceedings/cug2015_proceedings/includes/files/pap1
30.pdf

[3] J. Schutkoske, “Cray XC System Diagnosability Roadmap”,
Proceedings of the Cray User Group (CUG), 2015,
https://cug.org/proceedings/cug2015_proceedings/includes/files/pap1
31.pdf

[4] Intelligent Platform Management Interface Specification, version 2.0,
2004, http://www.intel.com/design/servers/ipmi/spec.htm.

[5] ITP700 Debug Port, Design Guide, February 2004,
http://download.intel.com/support/processors/xeon/sb/24967914.pdf

[6] High Performance Computing Challenge (HPCC) Benchmark,
Version 1.4.2, [Online], http://icl.cs.utk.edu/hpcc/.

[7] High Performance Linpack (HPL) Benchmark, Version 2.1, [Online]
http://www.netlib.org/benchmark/hpl/.

[8] Intel MPI Benchmark, Version 3.2.4, [Online],
https://software.intel.com/en-us/articles/intel-mpi-benchmarks.

[9] “XCTM Series SEC Software Configuration Guide”, (CLE 6.0.UP03),
S-2542,
http://docs.cray.com/PDF/XC_Series_SEC_Software_Configuration_
Guide_CLE60UP03_S-2542.pdf

[10] “XCTM Series System Environment Data Collections (SEDC)
Administration Guide”, (CLE 6.0.UP03), S-2491,
http://docs.cray.com/PDF/XC_Series_System_Environment_Data_Co
llections_SEDC_Administration_Guide_CLE60UP03_S-2491.pdf

[11] “XCTM Series Power Management Administration Guide”, (CLE
6.0.UP03), S-0043,
http://docs.cray.com/PDF/XC_Series_Power_Management_Administ
ration_Guide_CLE60UP03_S-0043.pdf

[12] “CAPMC API Documentation,”
http://docs.cray.com/PDF/CAPMC_API_Documentation_1.2.pdf

[13] “XCTM Series DataWarpTM Installation and Administration Guide”,
(CLE 6.0.UP03), S-2564,
http://docs.cray.com/PDF/XC_Series_DataWarp_Installation_and_A
dministration_Guide_CLE60UP03_S-2564.pdf

[14] S. Martin, D. Rush, M. Kappel, M. Sandstedt, and J. Williams, “Cray
XC40 Power Monitoring and Control for Knights Landing,”
Proceedings of the Cray User Group (CUG), 2016,
https://cug.org/proceedings/cug2016_proceedings/includes/files/tut10
3.pdf

[15] M. Swan, “Tuning and Anlyzing Sonexion Performance”,
Proceedings of the Cray User Group (CUG), 2014,
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap1
19.pdf

[16] D. Petesch and M Swan, “Instrumenting IOR to Diagnose
Performance Issues on Lustre File Systems”, Proceedings of the Cray
User Group (CUG), 2013,
https://cug.org/proceedings/cug2013_proceedings/includes/files/pap1
52.pdf

[17] IOR HPC Benchmark, Version 2.10.3, [Online],
https://github.com/LLNL/ior

[18] Lustre filesystem, [Online], http://lustre.org

[19] J. Fullop and R. Sisneros, “A Diagnostic Utility For Analyzing
Periods of Degraded Job Performance”, Proceedings of the Cray User
Group (CUG), 2014,
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap1
61.pdf

[20] A. DeConinck, A. Bonnie, K. Kelly, S. Sanchez, C. Martin, M.
Mason, J. Brandt, A. Gentile, B. Allan, A. Agelastos, M. Davis, and
M. Berry, “Design and implementation of a scalable monitoring
system for Trinity”, Proceedings of the Cray User Group (CUG),
2016,
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap1
26.pdf

[21] P. Hill, C. Snyder, and J. Sygulla, “KNL System Software”,
Proceedings of the Cray User Group (CUG), 2017

https://cug.org/proceedings/cug2014_proceedings/includes/files/pap120.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap120.pdf
https://cug.org/proceedings/cug2015_proceedings/includes/files/pap130.pdf
https://cug.org/proceedings/cug2015_proceedings/includes/files/pap130.pdf
https://cug.org/proceedings/cug2015_proceedings/includes/files/pap131.pdf
https://cug.org/proceedings/cug2015_proceedings/includes/files/pap131.pdf
http://www.intel.com/design/servers/ipmi/spec.htm
http://download.intel.com/support/processors/xeon/sb/24967914.pdf
http://icl.cs.utk.edu/hpcc/
http://www.netlib.org/benchmark/hpl/
https://software.intel.com/en-us/articles/intel-mpi-benchmarks
http://docs.cray.com/PDF/XC_Series_SEC_Software_Configuration_Guide_CLE60UP03_S-2542.pdf
http://docs.cray.com/PDF/XC_Series_SEC_Software_Configuration_Guide_CLE60UP03_S-2542.pdf
http://docs.cray.com/PDF/XC_Series_System_Environment_Data_Collections_SEDC_Administration_Guide_CLE60UP03_S-2491.pdf
http://docs.cray.com/PDF/XC_Series_System_Environment_Data_Collections_SEDC_Administration_Guide_CLE60UP03_S-2491.pdf
http://docs.cray.com/PDF/XC_Series_Power_Management_Administration_Guide_CLE60UP03_S-0043.pdf
http://docs.cray.com/PDF/XC_Series_Power_Management_Administration_Guide_CLE60UP03_S-0043.pdf
http://docs.cray.com/PDF/CAPMC_API_Documentation_1.2.pdf
http://docs.cray.com/PDF/XC_Series_DataWarp_Installation_and_Administration_Guide_CLE60UP03_S-2564.pdf
http://docs.cray.com/PDF/XC_Series_DataWarp_Installation_and_Administration_Guide_CLE60UP03_S-2564.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/tut103.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/tut103.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap119.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap119.pdf
https://cug.org/proceedings/cug2013_proceedings/includes/files/pap152.pdf
https://cug.org/proceedings/cug2013_proceedings/includes/files/pap152.pdf
https://github.com/LLNL/ior
http://lustre.org/
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap161.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap161.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap126.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap126.pdf

	I. Introduction
	II. On-Demand Configuration
	III. BIOS Initialization
	IV. Resiliancy Communication Agent (RCA)
	V. Monitoring
	VI. HSS Out-Of-Band (OOB) Debug
	A. Intel Platform Environment Control Interface (PECI) Debug
	B. Intel In-Target Probe (ITP) Debug

	VII. Xeon Phi Diagnostics
	A. Xeon Phi Memory
	B. Xeon Phi Non-Uniform Memory Access (NUMA)
	C. Xeon Phi Processor Performance
	D. Xeon Phi Processor Stress Test
	E. Xeon Phi Processor Check

	VIII. Workload Test Suite (WTS)
	IX. SSD Diagnostic Utilites
	X. Related Work
	XI. Summary
	References

