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Abstract— The Intel® Xeon PhiTM CPU 7250 processor presents 

new opportunities for diagnosing the nodes based on this 

processor in the Cray® XCTM system. This processor supports a 

new high-bandwidth on-package MCDRAM memory and related 

interfaces.   It also provides the ability to support different Non-

Uniform Memory Access (NUMA) configurations.  The new 

Cray Processor Daughter Card (PDC) also supports an optional 

PCIe SSD card.   This processor requires new BIOS, 

administrative commands, power and thermal limits, as well as 

new diagnostics to validate functionality and performance.    This 

paper describes the diagnostic tool chain changes required to 

support this processor and PCIe SSD card.  It describes the 

functionality, performance, and lessons learned from diagnosing 

problems at scale.   It also provides detailed examples on how to 

diagnose node faults within the Cray® XC40TM system. 
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I.  INTRODUCTION  

The Cray® XC40TM system includes the new Cray 

Processor Daughter Card (PDC) which supports the new 
Intel® Xeon PhiTM CPU 7250 processor and an optional PCIe 
SSD card.   Previous work [1] [2] [3] has outlined Cray 
system diagnosability for the Cray® XCTM Series.   There are 
a number of enhancements required to support the new node 
processor and optional SSD card in the Cray® XC40TM 
system. 

The Cray Hardware Supervisory System (HSS) supports 
the new high-bandwidth on-package MCDRAM memory 
and interfaces.   It supports the On-Demand configuration of 
the MCDRAM and NUMA.    The MCDRAM and NUMA 
configurations, as well as SSD enable/disable, are 
configurable from both the command line on the System 
Management Workstation (SMW) and by a workload 
manager (WLM) running under the Cray Linux Environment 
(CLE) utilizing the Cray Advanced Platform Monitoring and 
Control (CAPMC) interface. 

The HSS commands, utilities, and diagnostics are used to 
diagnose a faulty node.   Initially BIOS is used to verify that 
the node has powered on correctly and that the node is 
initialized and all interface ports are trained successfully.   It 
also validates that any on-demand configuration settings are 
valid.  Any errors or warnings are reported to HSS. 

Once the node is successfully initialized by BIOS, the 
CLE is booted.   Cray Linux Environment (CLE) utilizes the 
Resiliency Communication Agent (RCA) interface to 
communicate between HSS and nodes.  The Hardware Error 
Log channel is used to send hardware errors to HSS. 

HSS monitors a number of power and thermal sensors 
within the Cray® XC40TM system at the blade and cabinet 
level.   These sensors and devices are managed via the out-
of-band paths on the blade by HSS. 

HSS also utilizes a number of Intel Reliability, 
Availability, and Service (RAS) features including Platform 
Environment Control Interface (PECI) and In-Target Probe 
(ITP).  

New Intel® Xeon PhiTM CPU 7250 processor on-line 
diagnostics have been written to validate the node and 
MCDRAM functionality and performance.   The diagnostics 
validate the node based on the MCDRAM and NUMA 
configurations.   The Workload Test Suite (WTS) has also 
been updated to detect and diagnose Intel® Xeon PhiTM CPU 
7250 processor problems under CLE. 

There are new utilities and diagnostics to support the 
PCIe SSD card.  There is a new diagnostic utility that 
executes in CLE on the Data Warp Node or the compute 
node to support the SSD.    This diagnostic utility is 
periodically scheduled to check the health of the SSD.   It 
reports the status to the SMW via RCA. The system 
administrator can query and display the current SSD health, 
as well as historical data.   The results of the SSD diagnostic 
utility can also be viewed on the SMW. 

This paper describes the tool chain changes required to 
support the new blade with the Intel® Xeon PhiTM CPU 7250 
processor and optional PCIe SSD cards.   It also provides 
detailed examples on how to diagnose Intel® Xeon PhiTM 
CPU 7250 processor faults within the Cray® XC40TM 
system.  Section II describes the on-demand configuration 
options for the node and the attached SSD cards.  BIOS 
initialization is covered in Section III.  The Resiliency 
Communication Agent (RCA) interface and monitoring are 
cover in Section IV and Section V respectively.  Section VI 
covers the HSS Out-Of-Band (OOB) debug, Section VII 
covers the online diagnostics, and Section VIII explains the 
Workload Test Suite (WTS). Section IX describes the PCIe 
SSD cards.  Related work is described in Section X.  Finally, 
Section XI provides a summary. 



II. ON-DEMAND CONFIGURATION 

The Intel® Xeon PhiTM CPU 7250 processor can be 
reconfigured on-demand using the Cray Advanced Platform 
Monitoring and Control (CAPMC) interface [11].  The new 
configuration is applied on the next cold boot of the node or 
nodes.  This processor supports five different NUMA modes 
including All-to-All, Sub NUMA Cluster 2, Sub NUMA 
Cluster 4, Hemisphere, and Quadrant. It also supports 5 
different MCDRAM modes including Cache, Flat, Hybrid 
Equal, and Hybrid Split. All the permutations and 
combinations of these NUMA modes and MCDRAM modes 
are supported.  Note that not all modes and combinations 
have proven effective, but this discussion is outside the scope 
of this paper. [21]   The PCIe SSD cards can be enabled or 
disabled via the CAPMC interface.   

CAPMC provides a published interface [12], shown in 
Table I, that allows the WLM to make reconfiguration 
requests to HSS as shown in the table below.  System 
administrators and operators can also use the CAPMC 
interface on the SMW.   The changed settings are stored in 
the power management database (PMDB).  The changes are 
applied on the next reboot.   Typically, the WLM requests 
the reboot via the CAPMC node_reinit command.   

TABLE I.  ÇRAY CAPMC CONFIGURATION REQUESTS 

Command Description 

get_ssd_enable Return list of enabled SSD cards 

set_ssd_enable Enable/disable SSD 

get_mcdram_cfg_capabilities Return supported MCDRAM configurations 

get_mcdram_cfg Return current MCDRAM configuration 

set_mcdram_cfg Set new MCDRAM configuration 

get_numa_cfg_capabilities Return supported NUMA configurations 

get_numa_cfg Return current NUMA configuration 

set_numa_cfg Set new NUMA configuration 

node_reinit Reinitialize node 

node_status Returns current node status 

 
Once HSS receives the CAPMC node_reinit request, the 

node is stepped through the standard states of ready, halt, on, 
standby, and returning to the ready state.  Any node that fails 
while in a state remains in that state.  For example, if a node 
fails to complete the CLE boot, the node persists in the 
standby state.  The WLM can check the current state of the 
node using the CAPMC node_status command. 

Failures that occur during a reboot initiated by CAPMC 
are logged in /var/opt/cray/log/xtremoted-YYYYMMDD.  
xtremoted logs the full xtbounce output when xtbounce 
returns non-zero.  xtremoted logs the full xtcli boot output 
regardless of return code. 

III. BIOS INITIALIZATION 

The Cray BIOS is used to initialize and configure the 
Intel® Xeon PhiTM CPU 7250 processor node as requested by 
CAMPC.   When HSS brings the node out of reset, BIOS is 
loaded and executed.   HSS passes the new configuration 
settings to BIOS, which uses them to configure the NUMA 
and MCDRAM modes as requested.  

BIOS is used to initialize the Intel® Xeon PhiTM CPU 
7250 processor, initialize and train the attached memory and 

MCDRAM, and initialize and train any attached PCIe 
devices including the Aries network interface (NIC).  

BIOS executes the Rank Margining Tool (RMT) as part 
of the normal BIOS process.  The RMT generates, 
calculates, and reports out the system memory interface cold 
boot signal timing and voltage reference (VREF) margins.  
This ensures that the DDR4 and MCDRAM interfaces can 
support expected memory performance.  If BIOS determines 
that RMT was successful on the previous cold boot, BIOS 
skips the RMT thereby enabling a cold fast boot.   RMT is 
run by default after each BIOS flash. 

The Cray BIOS reports any MCDRAM or DIMM 
failures during memory training including any Machine 
Check Architecture (MCA) errors that were detected.  
NUMA and MCDRAM configurations are verified and 
reported.  

BIOS detected errors or failures are logged to the BIOS 
logs.  All errors are logged to the BIOS log on the Blade 
Controller (BC). Controller log forwarding with the 
Lightweight Log Manager (LLM) can be configured to 
forward the BIOS logs to the SMW.    The Blade and 
Cabinet Controllers are diskless Linux systems, so log 
forwarding is enabled by default. 

 
 
CrayBdsHook.Entry(B9E00300) 
AddLpcFaultEntry: PostCode 0x68 
LPC_SCRATCH_FAULT_REPORT_ENTRY 
FaultNum:  1 
Type:      11 
Flags:     0x00 
CodeMajor: 0x68 
CodeMinor: 0x00 
ApicId:    0x00 
CpuNum:    0 
Timestamp: 04/05/2017  18:18:20 
LogData:   0x00000020 
FaultMsg:  BIST disabled via POC_RESET_STRAPS 
LPC_SCRATCH_FAULT_INFO_ENTRY 
LineNum:  1085 
FileName: z:\knl\CrayPkg\Dxe\CrayBdsHook\CrayBdsHook.c 
 

Figure 1.  BIOS Hardware Failure Detected 

In Figure 1. BIOS Hardware Failure Detected BIOS 
requested that the Intel® Xeon PhiTM CPU 7250 processor 
BIST execute and BIOS detected that it did not execute.  In 
Figure 2. Figure 2. BIOS MCDRAM Failure Detected BIOS 
detected multiple MCDRAM failures where the MCDRAM 
did not train successfully and it reported the errors. 
  



 
 

** EDC-0 Memory Init: cmdcrc_err = 1 
** EDC-4 Memory Init: cmdcrc_err = 1 
 
EDC Meminit Time Elapsed: 99ms 
EDC-0: memory Init Status 0x0003 

  
LPC_SCRATCH_FAULT_REPORT_ENTRY 

FaultNum:  1 
Type:      9 
Flags:     0x00 
CodeMajor: 0xA1 
CodeMinor: 0x06 
ApicId:    0x00 
CpuNum:    0 
Timestamp: 07/29/2015  22:29:22 
LogData:   0x0000FFFF 
FaultMsg:  CRAY_MCDRAM_WARNING 
  

A warning has been logged! Warning Code = 0xA1, Minor Warning Code = 
0x6, Data = 0xFFFF 
 
S0 Ch0 

  
EDC-3: memory Init Status 0x0001 
EDC-4: memory Init Status 0x0003 

  
LPC_SCRATCH_FAULT_REPORT_ENTRY 

FaultNum:  2 
Type:      9 
Flags:     0x00 
CodeMajor: 0xA1 
CodeMinor: 0x06 
ApicId:    0x00 
CpuNum:    0 
Timestamp: 07/29/2015  22:29:22 
LogData:   0x0004FFFF 
FaultMsg:  CRAY_MCDRAM_WARNING 
  

A warning has been logged! Warning Code = 0xA1, Minor Warning Code = 
0x6, Data = 0x4FFFF 

 

Figure 2.  BIOS MCDRAM Failure Detected 

Any errors are logged and reported to the SMW 
command, xtbounce, as part of the system boot sequence.   

The node is prevented from booting if any hardware 
failure is detected during BIOS execution.  The Cray BIOS 
logs are copied to the Cray SMW on any BIOS detected 
error or failure for further analysis.  This ensures that at the 
time of system boot all devices are properly discovered, 
initialized, and trained successfully or flagged as failed, 
without stopping the boot process. 

IV. RESILIANCY COMMUNICATION AGENT (RCA) 

The CLE kernel captures node hardware errors. It reads 
MCA errors (correctable and uncorrectable) and logs them in 
the node console log, which is saved on the SMW.  It also 
reports them via the Hardware Error Log Channel connected 
from the node to the BC, which forwards them to the SMW 
Hardware Error Logger Daemon (xthwerrlogd).  The SMW 
command, xthwerrlog, displays all hardware errors logged 
via the Hardware Error Channel including MCA errors as 
shown in Figure 3.   HSS provides the decoding for all Intel® 
Xeon PhiTM CPU 7250 processor machine check registers.  

This includes banks 7-14 where MCDRAM errors are 
reported. 

 
 
HWERR[c1-0c2s14n1]:0xfd0b: 

Uncorrectable:MFG[0]:CPUID[50671]:SOCKET[0]:APIC[0]: 
BANK[11]:STATUS[0xf60000800040009e]:MISC[0x0]: 
ADDR[0x153fffc300]:CTL2[0x0] 

HWERR[c1-0c1s6n0]:0xfd07: 
Uncorrectable:MFG[0]:CPUID[50671]:SOCKET[0]:APIC[0]: 
BANK[7]:STATUS[0xf60000800040009e]:MISC[0x0]: 
ADDR[0x176477c000]:CTL2[0x0] 

HWERR[c1-0c1s3n2]:0xfd09: 
Uncorrectable:MFG[0]:CPUID[50671]:SOCKET[0]:APIC[0]: 
BANK[9]:STATUS[0xf60001000040009e]:MISC[0x0]: 
ADDR[0x17647f8000]:CTL2[0x0] 

HWERR[c0-0c0s11n2]:0xfd0d: 
Uncorrectable:MFG[0]:CPUID[50671]:SOCKET[0]:APIC[0]: 
BANK[13]:STATUS[0xf60000400040009e]:MISC[0x0]: 
ADDR[0x17647a2000]:CTL2[0x0] 
 

Figure 3.  xthwerrlog  Output 

The SMW command, xtmcadecode, decodes and 
provides detailed explanation for Intel MCA errors as shown 
in Figure 4. 

 
 
xtmcadecode -t knl 16 84000040000800C0 

 
Bank 16: IMC1: Integrated Memory Controller 1:  
MCA Status = 0x84000040000800c0: 
 
MCACOD = 0x00c0, MSCOD = 0x0008 
Other Info = 0x00 
Corrected Error Count = 1 
Threshold-based Error Status = 0, No Tracking 

  
Common Status Info: 

VALID = 1 = Valid Error Detected 
OVER  = 0 = No overflow 
UC    = 0 = Error Corrected by HW 
EN    = 0 = 
MISCV = 0 = 
ADDRV = 1 = Error address in MCi_ADDR 
PCC   = 0 = 
S     = 0 = 
AR    = 0 = 
  

Model-specific error: Correctable Patrol Scrub 
Channel: 0 
MCA: Undefined Error 
 

Figure 4.  xtmcadecode  Output 

Advanced Error Reporting (AER) is enabled in the CLE 
kernel by default. With AER enabled the PCIe SSD card 
errors are reported to the SMW.   The Compute Node Linux 
(CNL) kernel reads these PCIe errors and logs them in the 
node console log, which is saved on the SMW.  It also 
reports them via the Hardware Error Log Channel connected 
from the node to the BC, which forwards them to the SMW 
Hardware Error Logger Daemon (xthwerrlogd).   The PCIe 
errors are viewable using the SMW command, xtpcimon. 



V. MONITORING 

The Cray Processor Daughter Card (PDC) has 26 sensors 
available for monitoring node power and memory power. 
[14] The sensors are connected to seven separate I2C buses. 
This topology allows the node power readings to be scanned 
both at a higher rate and in greater detail than was possible in 
previous designs. 

The HSS utility System Environment Data Collections 
(SEDC) [10] monitors the system health and records the 
environmental data coming from the system's hardware 
components.   The telemetry data is logged to the PMDB. 

To validate the HSS hardware and software, the SMW 
HSS debug utility, xtcheckhss, is used.   The SMW command 
validates the Cray® XC40TM system HSS infrastructure by 
checking each blade and each cabinet.  It can be used to get a 
quick validation that the HSS infrastructure is functioning 
normally and can also be used to troubleshoot a blade or a 
given cabinet.   On a blade, it validates the basic blade 
functionality.  It can also validate HSS voltages, Aries 
voltages and current, temperatures, PDC sensors, as well as 
the Intel processor and DIMM temperatures and voltages.  

The SMW command SEDC command, xtgetsedcvalues, 
returns the available SEDC values.  

To view the System Environment Data Collections 
(SEDC) temperature telemetry data collected for the node as 
stored in the PMDB, use the database query as follows: 

 
SELECT value FROM pmdb.bc_sedc_data WHERE 

bc_sedc_data.id where (sensor_id >= 1300 and sensor_id 
<= 1306) 

 
The results of the above query are shown in TABLE II.  

TABLE II.  NODE TEMPERATURE OUTPUT 

SEDC PMDB Temperature Data 

Node Sensor ID Sensor Name Value 

c1-0c0s10  1306 BC_T_NODE3_CPU0_TEMP 36 

c1-0c0s10 1304 BC_T_NODE2_CPU0_TEMP 34 

c1-0c0s10 1302 BC_T_NODE1_CPU0_TEMP 36 

c1-0c0s10 1300 BC_T_NODE0_CPU0_TEMP 38 

c1-0c0s14  1306 BC_T_NODE3_CPU0_TEMP 27 

c1-0c0s14 1304 BC_T_NODE2_CPU0_TEMP 25 

c1-0c0s14 1302 BC_T_NODE1_CPU0_TEMP 29 

c1-0c0s14 1300 BC_T_NODE0_CPU0_TEMP 27 

 
  To view the SEDC processor global power telemetry 

data collected for the node as stored in the PMDB, use the 
database query as follows: 

 
  SELECT value FROM pmdb.bc_sedc_data WHERE 

bc_sedc_data.id where (sensor_id >= 2776 and sensor_id 
<= 2779) 

 
The results of the above query are shown in TABLE III.  

Node Global Power Usage. 

TABLE III.  NODE GLOBAL POWER USAGE 

SEDC PMDB Temperature Data 

Node Sensor ID Sensor Name Value 

c1-0c0s10  2776 BC_P_NODE0_GLOBAL_PROC

_POWER 

23 

c1-0c0s10 2777 BC_P_NODE1_GLOBAL_PROC
_POWER 

22 

c1-0c0s10 2778 BC_P_NODE2_GLOBAL_PROC

_POWER 

23 

c1-0c0s10 2779 BC_P_NODE3_GLOBAL_PROC

_POWER 

23 

c1-0c0s14  2776 BC_P_NODE0_GLOBAL_PROC
_POWER 

25 

c1-0c0s14 2777 BC_P_NODE1_GLOBAL_PROC

_POWER 

25 

c1-0c0s14 2778 BC_P_NODE2_GLOBAL_PROC

_POWER 

25 

c1-0c0s14 2779 BC_P_NODE3_GLOBAL_PROC

_POWER 

27 

 
It is also possible to search for a specific window of time 

and for specific nodes.   This data is invaluable when 
troubleshooting hardware or software failures. 

VI. HSS OUT-OF-BAND (OOB) DEBUG 

The HSS system management platform performs 
monitoring and management out-of-band to the compute 
node and high-speed network.   HSS also implements 
interfaces to various vendors Out-Of-Band interfaces to 
enhance OOB debug of the Cray® XC40TM system.   These 
interfaces are as follows: 

• Intel Platform Environment Control Interface (PECI)  

• Intel In-Target Probe (ITP) 

A. Intel Platform Environment Control Interface (PECI) 

Debug 

Intel processors provide a single wire signal for their 
Platform Environment Control Interface (PECI).  During 
some early debug, Cray uses PECI to dump out various 
Intel® Xeon PhiTM CPU 7250 processor registers to aid in 
debugging when a node failed and no other dump 
mechanism is available. 

Intel uses the Intelligent Platform Management Interface 
(IPMI) Specification [1] as the protocol to connect to the 
Intel Management Engine (ME) within the Intel Wellsburg 
Platform Controller Hub (PCH). This interface is primarily 
used to collect power, thermal, and status information by the 
HSS utility SEDC, which monitors the system health and 
records the environmental data coming from the system's 
hardware components. And finally, the data can be viewed 
real-time using the HSS debug utility, xtcheckhss. 

To display the various HSS telemetry data for a select 
blade in the system use the xtcheckhss command line as 
follows: 

 
xtcheckhss --cclist=none --bclist=c0-0c2s0 --detail=f 
 
This command outputs the details of all the components 

that are part of the blade.   The partial output shown in 
Figure 5. xtcheckhss Blade Output focuses on the DIMM 



temperature, node power, and node temperature readings for 
two of the nodes on the blade. 
 
 

c0-0c2s0n0   kpdc1_n1_s0                 

       dimm0_temp                  n/a       n/a   n/a   30          degc      n/a   n/a 

c0-0c2s0n0   kpdc1_n1_s0                 
        dimm1_temp                  n/a       n/a   n/a   29          degc      n/a   n/a 

c0-0c2s0n0   kpdc1_n1_s0                 

       dimm2_temp                  n/a       n/a   n/a   29          degc      n/a   n/a 

c0-0c2s0n0   kpdc1_n1_s0                 

       dimm3_temp                  n/a       n/a   n/a   30          degc      n/a   n/a 
c0-0c2s0n0   kpdc1_n1_s0                 

       knl_power                   n/a       n/a   n/a   83252       w*1000    n/a   n/a 

c0-0c2s0n0   kpdc1_n1_s0                

       knl_temp                    n/a       n/a   n/a   38          n/a       n/a   n/a  
 
 

c0-0c2s0n1   kpdc0_n1_s0                 

       dimm0_temp                  n/a       n/a   n/a   25          degc      n/a   n/a 

c0-0c2s0n1   kpdc0_n1_s0                 

       dimm1_temp                  n/a       n/a   n/a   25          degc      n/a   n/a 
c0-0c2s0n1   kpdc0_n1_s0                 

       dimm2_temp                  n/a       n/a   n/a   25          degc      n/a   n/a 

c0-0c2s0n1   kpdc0_n1_s0                 

       dimm3_temp                  n/a       n/a   n/a   25          degc      n/a   n/a 

c0-0c2s0n1   kpdc0_n1_s0                 
       knl_power                   n/a       n/a   n/a   29000       w*1000    n/a   n/a 

c0-0c2s0n1   kpdc0_n1_s0                 

       knl_temp                    n/a       n/a   n/a   26          n/a       n/a   n/a 

 

Figure 5.  xtcheckhss Blade Output 

The detailed output definitions for xtcheckhss are 
described in TABLE IV.  

TABLE IV.  XTCHEXHSS DETAIL DESCRIPTIONS 

xtcheckhss Detail Column Descriptions 

Name Description 

Component  Cray component name (cname) 

Sensor Hardware sensor name 

FRSH Freshness Counter 

HLMIN Hardware Limit Minimum (cannot be modified) 

SLMIN  Software Limit Minimum (software configurable) 

DATA Data value 

UNIT Data units (i.e. Degrees Celsius, Watts, etc.) 

SLMAX Software Limit Maximum (software configurable) 

HLMAX Hardware Limit Maximum (cannot be modified) 

 
xtcheckhss reports the component, sensor, data, and unit 

for all detailed telemetry data.  There are a number of HSS 
devices where the additional fields become important.  In the 
case below where a Voltage Regulator Module (VRM) is 
reporting a low voltage reading, the VRM is below the 
SLMIN but higher than the HLMIN where a VRM fault 
would occur.   When any device reading is outside of these 
limits, a message is sent to the SMW.  xtcheckhss is used to 
verify that the device reading is out of the expected range as 
shown in Figure 6.  

 
 

 

 

c0-0c0s7n2   qpdc0_n0_s0_mem_vrm   vdd_vdr01_s0_c_i 
       1200   1350   1339         v*1000     

1650   1800 

 

Figure 6.  HSS Low Voltage Output 

B. Intel In-Target Probe (ITP) Debug 

The Intel In-Target Probe (ITP) [2] is a JTAG bus with 
some Intel-specific signals and protocol added. Typically, 
this is done with a physical Intel ITP interface connected to 
the processor via the eXtended Debug Port (XDP).  Cray has 
implemented an embedded ITP so that no external hardware 
needs to be connected to the Cray® XC40TM system.  The 
embedded ITP is used as a processor hardware debug tool by 
launching and executing scripts to debug the node. These 
scripts reside on the SMW and are executed via the SMW 
command xtitp.     

Many of the scripts provide useful hardware debug 
information about the PCIe configuration and status, 
processor information, MCA errors, and model specific 
register (MSR) data.   

To query for any machine check errors in Node 0 use the 
xtitp command as follows: 

 
xtitp -t c3-0c2s15 mca-error-check-all 0 
 
Sometimes a node can crash due to an MCDRAM error.   

In this case xtitp can be used to pull the MCDRAM error as 
shown in Figure 7.  
 

 
xtitp -t c0-0c0s13 mca-error-check-all 2 

 
Check for MCA errors - Node 2, Socket 0 

 MCA_ERR_SRC_LOG = 0x00000000 
 
MCA found in bank 14, socket 0, core 0 

    IA32_MC14_STATUS = 0xf40000400040009e 
    IA32_MC14_ADDR = 0x18be8bcbc0 
   

MCA found in bank 0, socket 0, core 46 
    IA32_MC0_STATUS = 0xf600000092000810 
    IA32_MC0_ADDR = 0x18be8bcd00 

 
MCA found in bank 0, socket 0, core 47 

    IA32_MC0_STATUS = 0xf600000092000810 
    IA32_MC0_ADDR = 0x18be8bcd00 
 

Figure 7.  xtitp MCDRAM Error Output 

The xtitp command can be used to read the CPUID as 
shown in Figure 8.  

 

 
xtitp -t c3-0c2s15 cpuid-brand-string 3 

 
CPUID Processor Brand String (Functions 0x80000002, 0x80000003, 
0x80000004) 
Intel(R) Xeon Phi(TM) CPU 7210 @ 1.30GHz 

 

Figure 8.  xtitp CPUID Error Output 



The xtitp command can also be used to read the PPIN as 
shown in Figure 9.  

 
 
xtitp -t c3-0c2s15 msr-read 0 0x4f 

 
>>> MSR  0x0000004f (Socket 0, Core 0, Thread 0) <<< 
0x5a8e4e432e06638e 
 

 

Figure 9.  xtitp PPIN Output 

Executing any script via the xtitp command on the SMW 
temporarily pauses the node, until the data is read from the 
processor and resumes the processor once the read is 
complete.   Therefore, running any script causes a temporary 
performance degradation and should be avoided under 
normal operations.  It is also important to note that if the 
processor is paused for greater than 30 seconds, HSS would 
lose the node heartbeat and consider the node down.    

VII. XEON PHI DIAGNOSTICS 

The Cray® XC40TM system provides four diagnostic tests 
available for the compute nodes that validate the nodes 
functionality and performance.   These diagnostic tests 
execute under CLE and are installed in /opt/cray/diag/bin. 

A. Xeon Phi Memory  

The Cray Xeon Phi memory test, xtphimemory, targets all 
external DDR memory and internal MCDRAM memory. 
xtphimemory is an effective user space memory test for 
stress-testing the memory subsystem. The maximum amount 
of memory that xtphimemory can test is less than the total 
amount of memory installed in the system; the kernel, 
libraries, and other system usage limits the memory available 
for testing. 

The xtphimemory diagnostic provides four primary test 
algorithms as follows: 

 

• DDR4 Memory Validation:  Tests access from each 
Core, L2 Cache, and Caching Agent (CHA) to 
DDR4 DIMM 

• MCDRAM Memory Validation:  Tests access from 
each Core, L2 Cache, and CHA to MCDRAM 
module 

• DDR4 Memory Stress:  Stresses all DDR4 memory 
channels. Optionally, the user can define a stride to 
use when performing memory accesses, to allow for 
flexibility in creating additional conflicts 

• MCDRAM Memory Stress:  Stresses all MCDRAM 
memory channels 

 
The parent process allocates the shared memory region to 

test, and one child thread is created per division of the shared 
memory region.  For example, a 68-core processor supports 
272 threads with the Intel® Hyper-Threading Technology 
enabled.   If the node is configured to support four NUMA 
nodes, then the test creates 68 threads per NUMA node.   If 
the user selected two divisions on the command line 

(ddr_num_slices = 2), then each division would support 34 
threads.  The divisions are a way to group threads within a 
NUMA node to allow for better failure isolation within the 
node and memory. 

It is extremely rare to have the xtphimemory test provide 
failure information.   If the hardware indicates a single bit 
error (SBE) has occurred, it is corrected and the diagnostic 
will not see the SBE as it is corrected.  If the diagnostic 
forces a double bit error (DBE), the diagnostic is terminated 
with an EC_NODE_FAILED status by the kernel.  
Therefore, it is important to review the SBE and DBE that 
are logged on the SMW.  The SMW command, xthwerrlog, 
can be used to display the output on the SMW for the time 
period when the diagnostic executes on the node under CLE. 

Single bit MCDRAM errors are silent on the node (no 
machine checks are generated).  Double bit MCDRAM 
errors cause a correctable MCA to be generated.  Any greater 
than two bit MCDRAM errors are uncorrectable.   The 
MCDRAM error are logged to the SMW and are viewable 
using the xthwerrlog command. 

The diagnostic reports a data miscompare in Figure 10.  
 

 
c0-0c2s9n3, nid00167,  

testName: testRandomValue,  
loopNum: 2,  
CpuId [88] compare regions test FAILURE:  
0x28000 != 0x50000 at offset 0xba62f0. 

 

Figure 10.  Memory Diagnostic Data Miscompare Output 

B. Xeon Phi Non-Uniform Memory Access (NUMA)  

The Cray NUMA test, xtphinuma, validates the NUMA 
capabilities of node for any given memory model that is 
configured with more than one NUMA node.  xtphinuma 
validates both local memory and remote memory.  It also 
provides an interleave test where memory is allocated across 
all the NUMA nodes.  The remote memory in the context of 
this test does not include memory connected to other nodes 
that may be accessible via the Aries network, but instead 
only refers to memory that is in a “remote” NUMA node 
within the physical node.  To perform the standard NUMA 
verification, execute the command as follows: 

  
xtphinuma -s 0x9f 
 
The diagnostic allocates buffers of memory and validates 

the ability of the Intel® Xeon PhiTM CPU 7250 processor to 
properly read and write the buffers. The libnuma API is used 
to control the NUMA allocations to local or remote NUMA 
nodes. The diagnostic uses threads pinned to logical cores to 
validate that each logical core can access memory allocated 
under the desired NUMA memory policy. 

 xtphinuma provides a bandwidth test that performs 
writes and reads for local and remote NUMA nodes for each 
core.    To perform the NUMA bandwidth verification 
execute the command as follows: 

 
xtphinuma -s 0x60 



xtphinuma also provides a stress test that exercises all 
cores simultaneously to stress the memory paths from each 
CPU to local and remote memory.  To perform the NUMA 
stress verification execute the command as follows: 

 
xtphinuma -s 0x100 
 
 The diagnostic reports all data miscompares that are 

detected Figure 11.  
 

 
c0-0c2s15n1, nid00189, Fail:  Data Failure for word: 1245416  

Exp Data: 1245416 Act Data: 0 
c0-0c2s15n1, nid00189, Fail:  Data Failure for word: 1245417  

Exp Data: 1245417 Act Data: 0 
c0-0c2s15n1, nid00189, Fail:  Data Failure for word: 1245418  

Exp Data: 1245418 Act Data: 0 
 

Figure 11.  NUMA Diagnostric Data Miscompare Output 

The diagnostic may also fail when allocating memory 
and will output an appropriate error message as follows: 

• allocateNumaMemoryInterleave failed 

• allocateNumaMemory failed 

• allocateNumaMemory failed for expected data 

• allocateNumaMemory failed for read buffer 

• allocateNumaMemoryInterleave failed for write 
buffer 

• allocateNumaMemory failed for write buffer 
 

C. Xeon Phi Processor Performance  

The Cray Xeon Phi performance test, xtphiperf, provides 
a computationally intensive processor test to validate the 
node.   This test outputs the performance and the power for 
the processor during each pass of the diagnostic test.   This 
test uses the standard CBLAS DGEMM.  It validates the 
results of the DGEMM matrix multiply.    The diagnostic 
supports a command line option to enable MPI.   When MPI 
is enabled, the diagnostic compares the results across the 
other nodes under test using the same input data. 

Three arrays are allocated to maximum memory usage as 
shown in Figure 12.  

 

 
A x B = C 

 
Array A:[k,m] B:[n,k] and C:[n,m] 

 

Figure 12.  DGEMM Maximum Memory Usage 

An extra matrix is used to store the initial C matrix data 
as shown in Figure 13.  

 

 
So {k x m} + {n x k} + {n x m} + {n x m} < max mem 

 
Where default values are: m = 8192, n = 8192, k = 8192 

 

Figure 13.  DGEMM Matrix Multiply 

xtphiperf can target the DDR4, MCDRAM, or both. This 
is controlled through the command line option -t. To 
effectively target both DDR4 and MCDRAM, the user must 
select a memory size of matrix size (m, n, k) greater than the 
available DDR4 memory or the -d option should be set to 
option 3, NUMA node. 

The xtphiperf diagnostic provides significant control over 
testing each processor core.   The diagnostic outputs the 
performance, power, and temperature for each iteration of 
the diagnostic as shown in Figure 14.     

 

 
c0-0c0s14n3, nid00059, Iteration, GFLOPS, Power(W), Temp(C) 

c0-0c0s14n3, nid00059,         0,    1964,      215,      38 
c0-0c0s14n3, nid00059,         1,    1968,      224,      40 

c0-0c0s14n3, nid00059,         2,    1968,      223,      42 

c0-0c0s14n3, nid00059,         3,    1978,      222,      44 

c0-0c0s14n3, nid00059,         4,    1978,      219,      44 
 

Figure 14.  Performance Diagnostic Standard Output 

When the xtphiperf diagnostic detects a residual error a 
non-zero return code is output and the diagnostic prints the 
actual and expected values as shown in Figure 15.  

 

 
13:52:20, c0-0c2s12n2, nid00178, 3, 2039.3, 197.806, 44 

13:52:21, c0-0c2s12n2, nid00178, Failed:  

CPU actual: 502.630097504761,  

CPU expected: 502.63009941210 

 

Figure 15.  Performance Diagnostic Residual Output 

When the xtphiperf diagnostic detects a performance 
issue, the diagnostic prints the actual GFLOPS and the 
expected GFLOPS as shown in Figure 16.  

 
 

13:55:22, c0-0c2s12n2, nid00178, 1, 1999.9, 197.906, 46 
13:55:22, c0-0c2s12n2, nid00178, Failed:  

actual: 1899.9 GFLOPS, expected greater than: 1900 GFLOPS 

 

Figure 16.  Performance Diagnostic Performance Failure Output 

The user expected performance target is defined in the 
xtphiperf.ini file.  It is important to note that xtphiperf 
assumes that the node is dedicated to performance testing.  
Any other jobs that are running on the node affect the 
performance of the node. 

D. Xeon Phi Processor Stress Test 

 The diagnostic, xtphinls, is both validation test and a 
stress test for the node.   This test is a collection of diagnostic 
tests that validate functionality of a specific node. The test 
supports concurrent execution of independent test programs 
exercising all or part of the node resources.  There are two 
diagnostic tests that are executed concurrently on different 
cores: xtphimemory and xtphiperf. These are the same 
diagnostics that were previously discussed.  However, in this 
case the diagnostics are run as a single threaded test with 



multiple copies of these tests executing in different threads 
on a core.  Currently the odd threads run the memory test and 
the even threads run the performance test.   In this way one 
core is executing a computationally intense test and the next 
core is executing a memory intensive test.  The combination 
of these two tests running on alternating cores stresses the 
node.  Each test is pinned to a thread which is pinned to a 
core so on failure the failing core is properly identified.  
Each thread also reports a heartbeat status to the parent 
thread to indicate the general thread health.  The thread 
manager within the diagnostic watches for the heartbeat and 
reports any stalled or failed threads. 

xtphinls only verifies the results.  So, when a test fails the 
validation check of the diagnostic, it outputs a failed message 
as shown in Figure 17.  

 
 

aprun -n 1 -N 1 -L 225 --cc=none ./xtphinls -v 1 

xtphinls -v 1 

c1-0c0s8n1, nid00225, Version 1.0 
c1-0c0s8n1, nid00225,  Test, ThreadID, Status 

c1-0c0s8n1, nid00225, xtphimemory,    17532,   Pass 

c1-0c0s8n1, nid00225, xtphimemory,    17534,   Failed 

         . 

         . 
c1-0c0s8n1, nid00225, xtphiperf,    17629,   Failed 

c1-0c0s8n1, nid00225, xtphiperf,    17757,   Pass 

c1-0c0s8n1, nid00225, Number of passing tests: 128 

c1-0c0s8n1, nid00225, Number of failing tests: 128 

c1-0c0s8n1, nid00225, Test Failed 

 

Figure 17.  Node Stress Diagnostic Failure Output 

E. Xeon Phi Processor Check 

The diagnostic utility, xtphicheck, provides a simple 

verification of the node within the system.  It uses MPI to 

gather basic information about each node and returns the 

data to stdout.  Any nodes that report values that are 

different from the root node (first node in the list), are 

reported with the cname, nid, and value.  Sample outout is 

shown in Figure 18.  

 
 

aprun -n 2 -N 1 -L 50-51 /opt/cray/diag/bin/knl/xtphicheck -v 3 

 
/opt/cray/diag/bin/knl/xtphicheck -v 3  

/opt/cray/diag/bin/knl/xtphicheck -v 3  

 

c0-0c0s12n2 nid00050 2 node(s) Sockets                  : 1 

c0-0c0s12n2 nid00050 2 node(s) Processor              : KnightsLanding 
c0-0c0s12n2 nid00050 2 node(s) Cores Per Socket  : 68 

c0-0c0s12n2 nid00050 2 node(s) CPU MHz             : 1401.000 

c0-0c0s12n2 nid00050 2 node(s) L1d cache             : 32K 

c0-0c0s12n2 nid00050 2 node(s) L1i cache              : 32K 

c0-0c0s12n2 nid00050 2 node(s) L2 cache               : 1024K 
c0-0c0s12n2 nid00050 2 node(s) L3 cache               : N/A 

c0-0c0s12n2 nid00050 2 node(s) Memory Total      : 98880724kB 

c0-0c0s12n2 nid00050 2 node(s) Memory cluster config: a2a 

c0-0c0s12n2 nid00050 2 node(s) Memory cache config: cache 
c0-0c0s12n2 nid00050 2 node(s) Mcdram Total     : 0x400000000 

c0-0c0s12n2 nid00050 2 node(s) Numa Nodes       : 1 

 

Figure 18.  Node Diagnostic Utility Output 

This diagnostic utility proved extremely useful during 

initial bring up and testing of nodes within the system.   It 

also provided a simple check to validate the nodes 

configuration is set as expected. 

VIII. WORKLOAD TEST SUITE (WTS) 

The Workload Test Suite (WTS) consists of a control 
script, xtsystest, and a number of benchmarks and 
diagnostics. The benchmarks and diagnostic tests are used to 
simulate a generic application workload to verify that the 
system is ready to execute user applications. In some cases, a 
customer may have one or two applications that are 
representative of the workload on-site. In other cases, 
standard benchmarks are used as follows: 

1. Intel MPI Benchmarks (IMB): Performs a set of 
MPI performance measurements for point-to-point 
and global communication operations for a range of 
message sizes [3]. 

2. High Performance Computing Challenge 
(HPCC): Consists of seven tests including HPL, 
DGEMM, STREAM, PTRANS, Random Access, 
FFT, and Communication bandwidth and latency 
[4]. 

3. High Performance Linpack (HPL): Cray uses 
HPL as two different tests: one to test out the 
processor running HPL (DGEMM) and the second 
to use as large a memory foot print as possible [5]. 

 
These benchmarks have been updated to support the 

Intel® Xeon PhiTM CPU 7250 processor.  The Workload Test 
Suite is comprised of a script, xtsystest.py, a default 
configuration file, xtsystest.ini, a set of standard component 
test modules located under the tests folder, and a set of 
utilities located under the util folder. When executed, the tool 
sequentially executes the defined set of benchmarks, 
diagnostics, and applications. The site can also define a 
custom configuration file.  Upon completion, the script 
outputs a summary of all the tests that have been executed. 

  By default, xtsystest.py continuously runs the set of tests 
defined in xtsystest.ini on the maximum number of compute 
nodes available until the <Ctrl-C> signal is sent. However, it 
is possible to limit the set of tests that are executed, the 
number of times each test is executed, and the set of 
resources under test, using the available command-line 
options. There is also a command line option to show the 
results of a given session upon completion.   Each test script 
has a corresponding check utility that provides additional 
information about a failure. 

 On larger systems, especially for systems with multiple 
rows, it is recommended that an instance of the workload 
script is targeted to each row within the system.  Each 
instance of the WTS script should also be initiated from a 
separate login node.   The xtsystest.py script launches a 
diagnostic or benchmark on each node within the system 
concurrently.   It also logs each instance individually.   
Therefore, a 10k node system will start 10k copies of xhpl 
and will generate 10k output files.  This has been shown to 
quickly consume the login node and WLM resources. 



The Workload Test Suite executes on CLE and supports 
ALPS and SLURM.  SLURM support is available as a patch 
for CLE 6.0 UP02, CLE 6.0 UP03, and CLE 6.0 UP04. 

IX. SSD DIAGNOSTIC UTILITES 

There are new utilities and diagnostics used to debug and 

verify the configured PCIe SSD cards within the Cray® 

XCTM Series.  There is a new diagnostic utility, xtcheckssd, 

that executes in CLE on the Data Warp node or the compute 

node to verify the SSD card. [13]   This diagnostic utility is 

periodically scheduled to check the health of the SSD cards 

on DataWarp nodes.   On compute nodes, the SSD utility is 

run manually as required by the site.   It reports the status to 

the SMW via RCA.   The system administrator can query 

and display the current SSD health, as well as the historical 

data.   They can also query and display the results of the 

SSD diagnostic utility on the SMW. 

There are two tools available under CLE are described in 

TABLE V.  

TABLE V.  CLE SSD DIAGNOSTIC TOOLS AND UTILITES 

SSD Diagnostic Tools and Utilities 

Name Description 

xtcheckssd  Report SSD health 

xtiossdflash Update the firmware on the SSD card 

 
xtcheckssd reports the health of the attached PCIe SSD 

cards. The diagnostic utility supports both the DataWarp 

SSD cards and the optional SSD cards attached to the node 

on the Cray PDC.   The xtcheckssd output is shown in 

Figure 19.  

 
 

PCIe slot#:1,Name:INTEL     SSDPECME040T4, 

SN:CVF8515300094P0DGN-1, Size: 4000GB, Remaining life:100%, 

Temperature:22(c) 
 

PCIe slot#:1,Name:INTEL SSDPECME040T4, 

SN:CVF8515300094P0DGN-2, Size: 4000GB, Remaining life:100%, 

Temperature:24(c) 

 
PCIe slot#:0,Name: INTEL SSDPECME040T4, 

SN:CVF85153001V4P0DGN-1, Size: 4000GB, Remaining life:100%, 

Temperature:22(c) 

 

PCIe slot#:0,Name: INTEL SSDPECME040T4, 
SN:CVF85153001V4P0DGN-2, Size: 4000GB, Remaining life:100%, 

Temperature:24(c) 

 

Figure 19.  xtcheckssd SSD Health Output 

The SSD utility, xtssdconfig, is available on the SMW, 

which is used to display the SSD configuration information. 

When a DataWarp SSD reaches 90% of its life 

expectancy, a message is written to the console log file. If 

enabled, the Simple Event Correlator (SEC) monitors 

system log files for significant events such as this and sends 

a notification (either by email, IRC, writing to a file, or 

some user-configurable combination of all three) that this 

has happened. [9] The xtcheckssd results are logged on the 

SMW in the xtdiag log. 

Additionally, xtcheckhss reports the PCIe attached SSD 

cards. xtcheckhss reports the targeted and trained PCIe 

speed and width as shown in Figure 20.  

 
 

============================================= 
=============  PCIe Card Info  ============== 

============================================= 

Node        Slot Name                                                    

Target Gen Trained Gen Target Width Trained Width 

 
c0-0c2s0n0   0   Samsung_SM951_M.2_SSD                                      

Gen2       Gen2          x4           x4 

c0-0c2s0n1   0   Samsung_SM951_M.2_SSD                                      

Gen2       Gen2          x4           x4 

c0-0c2s0n2   0   Samsung_SM951_M.2_SSD                                      
Gen2       Gen2          x4           x4 

c0-0c2s0n3   0   Samsung_SM951_M.2_SSD                                      

Gen2       Gen2          x4           x4 

 

Figure 20.  xtcheckhss SSD configuration 

This ensures that the state of the PCIe SSD card is known 

at time of boot. 

X. RELATED WORK 

As mentioned previously, an earlier paper has described 

in detail the Cray® XCTM system level diagnosability toolset 

[1].   That paper focused on the Aries high speed network 
(HSN), compute processors, co-processors, GPUs, and 

Cray® XCTM cabinet power and cooling.   The system 

diagnostics included boot, confidence, stress, performance, 

workload, and error and data reporting. 

A subsequent paper then described the Cray® XCTM 

system node level diagnosability [2] toolset in greater detail.  

Various troubleshooting examples were presented with 

detailed examples.    The Cray® XCTM system diagnosability 

roadmap [3] was also presented.  The roadmap covered 

Intel® node, Nvidia® GPU, and I/O diagnosability 

enhancements. It also covered the workload test suite 

(WTS), HSS diagnostic utilities, telemetry data, HSS 

controller monitoring, notification, and Cray® Data 

Virtualization Service (Cray DVS). 

D. Petesch and M. Swan [16] described mechanisms to 

properly instrument a user level application to quickly 

checkout the hardware and software components in a large 

external Lustre® file system [19].   That paper also provided 

insights into full scale performance issues and how IOR 

[18] can be used to troubleshoot them. 

M. Swan [17] described the mechanisms and tool sets 

required to tune and analyze Cray® Sonexion 1600 

performance issues in a Cray® XCTM system. 

J. Fullop and R. Sisneros [19] have created a framework 

for identifying causes for observed differences in job 

performance from one run to another.   Their approach is to 

analyze the various logs over a period of time looking for 

any noteworthy events.   This work was done at the 



University of Illinois at Urbana-Champaign on the Blue 

Waters system. 

Finally, A. DeConnick, et.al. [20] have described a 

scalable monitoring system for Trinity. The authors work 

with the Baler log file analysis tool to extract a greatly 

reduced set of patterns from the voluminous number of logs 

on a Cray® XCTM system is particularly important as the 

number of nodes and controllers increases and the 

requirement for additional automated analysis grows. 

XI. SUMMARY 

Cray has provided a number of diagnostics, commands, 
and utilities that enhance the diagnosability of the Cray® 
XC40TM system.   The focus of system diagnosability has 
been on ensuring that each component is functioning 
properly by ensuring that each component can be validated 
and that all data is captured at the time of failure.   

Each aspect of the tool chain has been enhanced on the 
Cray® XC40TM system to better ensure that the Cray® 
XC40TM system is performing as expected.  The changes to 
support the Intel® Xeon PhiTM CPU 7250 processor include 
BIOS, SMW commands, utilities, and diagnostics, as well as, 
power and thermal telemetry data, and event logs.  Future 
enhancements are planned to continue to improve system 
diagnosability of the Cray® XC40TM system. 
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