
How to write a plugin to export job, power, energy, and system environmental data

from your Cray R© XC
TM

system

Steven J. Martin, David Rush, Matthew Kappel

Cray Inc.

{stevem,rushd,mkappel}@cray.com

Cary Whitney

LBNL/NERSC

clwhitney@lbl.gov

Abstract—In this paper we take a deep dive into writing a
plugin to export power, energy, and other system environmental

data from a Cray R© XC
TM

system. With the release of the
System Management Workstation (SMW) 8.0 software, Cray
has enabled customers to create site-specific plugins to export
all of the data that can flow into the Cray Power Management
Database (PMDB) into site-specific infrastructure. In this paper
we give practical information on what data is available using
the plugin, and how to write, test, and deploy a plugin. We
also share and explain example plugin code, detail design
considerations when architecting a plugin, and look at some
practical use cases supported by exporting telemetry data

off a Cray R© XC
TM

system. This paper is targeted at plugin
developers, system administrators, data scientists, and site
planners.

The plugin feature was developed by Cray in response to
discussions with and requirements from select members of the
CUG XTreme SIG. This paper demonstrates lessons learned

developing prototype plugins that export data off Cray R© XC
TM

systems using Kafka, Redis Pub/Sub, and RabbitMQ. This
plugin capability is in-use internally at Cray, used in production
at NERSC, and is under consideration for deployment on
systems at LANL and Sandia.

Keywords-Power monitoring; energy efficiency; power mea-
surement; Cray XC40

I. INTRODUCTION

The plugin capability described in this paper is sup-

ported on Cray R© XC
TM

systems running the Cray SMW

8.0 UP01 release and newer. The “xtpmd” daemon runs

on the Cray SMW and handles System Environment Data

Collection (SEDC) [1] and high-speed power telemetry data.

The xtpmd supports plugins with the help of xtpmd plugd.

Shared memory is used to communicate between xtpmd and

xtpmd plugd, and xtpmd plugd interacts with the plugin

using a defined C API.

The plugin capability is the result of requests from Cray

customers, and driven by interactions with the Cray XTreme

Systems SIG, starting with a special “System Monitoring

Collaboration” meeting in San Jose, CA, on Jan 28, 2016.

XTreme members at the January meeting requested access

to SEDC and Cray high-speed power and energy data as a

stream before it is injected into the Cray PMDB [2]. Cray

followed up at CUG 2016 with slides [3] giving a preview of

this feature. A prototype plugin was then developed using

Redis Pub/Sub [4] transport and coded using Hiredis. [5]

This proof of concept was demonstrated as part of the Trinity

phase-2 factory trial. That demonstration highlighted the

ability to stream data out of the Cray management plane

and into site specific infrastructure. Code for the factory trial

plugin was shared with ACES and NERSC. The NERSC

team has now integrated xtpmd plugins as a new source of

data for their “Center-wide Data Collect” [6].

In previous work [7] [8] [9] the Cray advanced power

management development team members have outlined

Cray R© XC
TM

system power management capabilities and

CAPMC workload manager interfaces. The latest publication

on Cray R© XC
TM

system power management is available

online [10].

This paper is organized as follows: In Section II, we take a

detailed walk through example code shipping with the SMW

software release and cover the basics of a minimal plugin

that writes data in csv format to local files. In Section III we

cover the types of data available via the plugin infrastructure.

Section IV covers the plugin system configuration file.

Section V dives into methods and considerations for testing

and deploying a customized site-specific plugin. In Section

VI we look at a set of design considerations for plugin

development. Section VII gives an overview of the plugin

development, design, lessons learned, as well as a few screen

shots from work at NERSC.

II. PLUGIN CODE BASICS

This section details basic concepts used in the ex-

ample plugin code supplied on the SMW 8.0 soft-

ware releases. In brief, the example plugin writes the

data from each of the five sources to CSV formatted

output files. The example code can be found in the

smw:/opt/cray/hss/default/pm/xtpmd api directory. The

two files that make up the example are xtpmd plugin.h

and xtpmd plugin csv.c. A Makefile is not included in the

example directory, so we share one in Listing 1.

Listing 1. Example Makefile
M a k e f i l e t o b u i l d :
/ o p t / c r a y / h s s / d e f a u l t / pm / x tpmd api / x t p m d p l u g i n c s v . c

OBJ = x t p m d p l u g i n c s v . o
LIB = x t p m d p l u g i n c s v . so

This paper has been submitted as an article in a special issue of Concurrency and Computation Practice and Experience on the Cray User Group 2017.

This CUG paper is a preprint of the final paper published in the CCPE Special Online Issue of CUG 2017 at
http://onlinelibrary.wiley.com/doi/10.1002/cpe.v30.1/issuetoc

CFLAGS += −O2 −fPIC −I / o p t / c r a y / h s s / d e f a u l t / pm / x tpmd api /
CFLAGS += $ (s h e l l pkg−c o n f i g −−c f l a g s g l i b −2.0)
LDFLAGS += $ (s h e l l pkg−c o n f i g −−l i b s g l i b −2.0)

$ (LIB) : $ (OBJ)
$ (CC) −s h a r e d −o $ (LIB) $ (OBJ) $ (LDFLAGS)

The header file xtpmd plugin.h defines required data

structures, helper functions, and prototypes for functions

required when implementing a plugin. The first two function

prototypes are defined as shown in Listing 2.

Listing 2. Instance Parameter Access
char ∗ p l u g i n g e t i n s t a n c e v a r (char ∗name) ;
void p l u g i n f r e e i n s t a n c e v a r (char ∗v a l u e) ;

These helper functions are provided by the plugin in-

frastructure. The first is intended for reading key=value

instance parameters from the plugin’s configuration file.

The second is provided to free memory allocated by

the first. The default configuration file for xtpmd plugins

is: smw:/opt/cray/hss/default/etc/xtpmd plugins.ini and it

supports the example plugin code. We will discuss instance

parameters (or instance variables) and the configuration file

in more detail in Section IV.
Next, the header file defines the pmd data opts t data

structure shown in Listing 3, which is used by the plugin

initialization functions to register callback functions for pro-

cess streaming telemetry data from any of the four supported

data sources. The user data pointer will be passed to the

functions when they are called, allowing callbacks to manage

plugin-specific state. Comments in the header file should be

read by plugin code developers looking for more details.

Listing 3. typedef struct pmd data opts t
t y p e d e f s t r u c t {

void (∗ r e c v u i n t 6 4) (void ∗ u s e r d a t a , u i n t 6 4 t t s , i n t

sou rce , i n t id , u i n t 6 4 t v a l u e) ;
void (∗ r e c v d o u b l e) (void ∗ u s e r d a t a , u i n t 6 4 t t s , i n t

sou rce , i n t id , double v a l u e) ;
void (∗ f l u s h) (void ∗ u s e r d a t a) ;
void (∗ c l o s e) (void ∗ u s e r d a t a) ;
void ∗ u s e r d a t a ;

} p m d d a t a o p t s t ;

The enum shown in Listing 4 defines application and job

related event codes that can be expected for plugins that

register to receive application and job information.

Listing 4. Event Enumeration
enum {

APP CMD TYPE START = 1 ,
APP CMD TYPE END = 2 ,
APP CMD TYPE SYNC = 3 ,
APP CMD TYPE SUSPEND = 4 ,
APP CMD TYPE RESUME = 5 ,
JOB CMD TYPE START = 6 ,
JOB CMD TYPE END = 7 ,
JOB CMD TYPE SUSPEND = 8 ,
JOB CMD TYPE RESUME = 9

} ;

The pmd job opts t structure shown in Listing 5 is

used to initialize handling of application and job related

information. It is much the same as the pmd data opts t

structure previously defined other than the prototype for the

recv apevent callback function.

Listing 5. typedef struct pmd job opts t
t y p e d e f s t r u c t {

void (∗ r e c v a p e v e n t) (void ∗u s e r d a t a , u i n t 6 4 t t s ,
u i n t 3 2 t even t , u i n t 3 2 t u s e r i d , char ∗ j o b i d ,
u i n t 6 4 t ap id , u i n t 3 2 t ∗n ids , u i n t 3 2 t n i d s l e n) ;

void (∗ c l o s e) (void ∗ u s e r d a t a) ;
void ∗ u s e r d a t a ;

} p m d j o b o p t s t ;

The comments at the end of the xtpmd plugin.h file

are important. They show the interface for the initialization

functions needed to implement a working plugin (see Listing

6). A valid plugin will implement one or more of these

initialization functions, but need not define all five.

Listing 6. Initialization Functions
i n t i n i t s e d c b c c t x (i n t v e r s i o n , pmd da ta op t s∗ o p t s) ;
i n t i n i t s e d c c c c t x (i n t v e r s i o n , pmd da ta op t s∗ o p t s) ;
i n t i n i t p m d b b c c t x (i n t v e r s i o n , pmd da ta op t s∗ o p t s) ;
i n t i n i t p m d b c c c t x (i n t v e r s i o n , pmd da ta op t s∗ o p t s) ;
i n t i n i t j o b s c t x (i n t v e r s i o n , pmd job opts∗ o p t s) ;

When the plugin is loaded, each of the functions that the

implementation has defined will be called. This performs

one-time initialization which registers the callback function

with its associated data pointers.

The example xtpmd plugin csv.c begins by defining

prototypes for the five callback functions that it will

register. The prototypes match parameters defined in the

pmd data opts t and pmd job opts t data structures dis-

cussed earlier in this section.

The implementation-specific csv ctx t structure is de-

fined as shown in Listing 7. Member elements in this

structure are used to track state for the output file specific to

each data stream being collected by the plugin. Pointers to

these data structures are returned in the user data elements

of the pmd data opts t and pmd job opts t structures

by the plugins initialization functions. More complicated

plugins are expected to replace csv ctx t with their own

data structures optimized for whatever state is needed. For

example, the NERSC plugins we describe in Section VII

track RabbitMQ [11] connections.

Listing 7. Implementation Specific State
t y p e d e f s t r u c t {

FILE ∗ l f ;
char ∗ l f d i r ;
char ∗ l f name ;
char ∗ l f p r e f i x ;
i n t t c h e c k ;
i n t p e r i o d ;
GTimer ∗ t i m e r ;

} c s v c t x t ;

The function static csv ctx t *init ctx(int version, char

*prefix) is called for each plugin data source and performs

all needed initialization work. That work includes:

• Determining if the data source (prefix) is enabled,

• Allocation of the csv ctx t tracking data structure,

• Reading in parameters from the configuration file,

• Opening the source-specific output file, and

• Adding the initialized csv ctx t structure to ctx lst list.

III. DATA SOURCES

The xtpmd plugin infrastructure enables access to data

streams falling into these five categories:

• Blade-level SEDC data

• Cabinet-level SEDC data

• Blade-level power and energy (PMDB) data

• Cabinet-level power and energy (PMDB) data

• Application- and job-level information

All data available directly via the plugin interface is also

published into the Cray PMDB. Other data present in the

Cray PMDB can be useful to plugin developers, consumers

of the data provided by the plugin(s), or both. See section

VI for more information.

A. Blade-Level SEDC Data (BC SEDC)

Blade level SEDC data available for different blade types

varies. All Cray R© XC
TM

blades have sensors that support

temperature, voltage, current, and power, as well as a few

miscellaneous status sensors. For example, a system in

the Cray Chippewa Falls data center containing a mixture

of supported blade types has over 562 unique blade-level

sensor IDs. For brevity, we only show a subset of them in

detail in this paper. Table I lists sensors in these categories

with Nodes 1-3, and socket 1 edited out. The command

xtgetsedcvalues -l -t bc can be used to query these data

on an SMW running the latest Cray software.

B. Cabinet-Level SEDC Data (CC SEDC)

Cabinet level SEDC data is also available for a large

numbers of sensors falling into the same basic categories

as seen for the blade-level SEDC sensors in III-A, with 191

unique sensors on the same system sampled in III-A. The

command xtgetsedcvalues -l -t cc can be used to query this

type data on an SMW running the latest Cray software.

C. Cabinet- and Blade-Level Power and Energy Data (CC

and BC PMDB)

The PMDB data is more normalized. Table II shows the

default enabled sensors supported on Cray R© XC
TM

systems.

As noted in [12] the CPU and Memory sensors listed in

Table II are supported in the newest Cray R© XC
TM

blades.

D. Application- and Job-Level Information

The application- and job-level data available via the plugin

is a bit different than the previous four sources that support

streaming sensor data. While the application- and job-level

data stream out of this interface, the application and job

data is event-driven. The supported events are enumerated

in the xtpmd plugin.h header file, as shown in Listing 4

of Section II. The nine defined events are all handled by

the same user registered handler. Listing 8 shows output

from the example plugin running on a system at the Cray

Chippewa Falls data center. Some of the defined events may

Table I
BC SEDC DATA

ID Sensor Description Unit
1257 BC T ARIES TEMP degC
1300 BC T NODE0 CPU0 TEMP degC
1301 BC T NODE0 CPU1 TEMP degC
1308 BC T NODE0 CPU0 CH0 DIMM0 degC
1312 BC T NODE0 CPU0 CH1 DIMM0 degC
1636 BC T NODE0 S0 VRM CTEMP degC
1637 BC T NODE0 S0 VRM MTEMP degC
1796 BC T NODE0 PCH THERMAL degC
1200 BC V VDD 0 9V V
1201 BC V VDD 1 0V V
1202 BC V VDD 1 0V OR 1 3V V
1203 BC V VDD 1 2V GTP V
1204 BC V VDD 1 2V HSS V
1206 BC V VDD 1 8V HSS V
1207 BC V VDD 2 5V HSS V
1208 BC V VDD 3 3V PDC V
1210 BC V VDD 3 3V HSS V
1211 BC V VDD 3 3V MICROA V
1213 BC V VDD 5 0V V
1216 BC V VDD 13 0V STDBY V
1258 BC V ARIES VDD VCORE V
1259 BC V ARIES VDD 1V0 V
1260 BC V ARIES VDD 1V8 V
1261 BC V ARIES VDD 3V3 V
1262 BC V ARIES VDD 13V0 V
1293 BC V BB VERT IVOC0 ECB SOURCE VOLT V
1654 BC V NODE0 S0 VCC OUT mV
1708 BC V NODE0 S0 MVIN mV
1710 BC V NODE0 S0 VDR01 OUT mV
1712 BC V NODE0 S0 VDR23 OUT mV
1263 BC I ARIES VCORE CURRENT centiA
1264 BC I ARIES 1V0 CURRENT centiA
1265 BC I ARIES 1V8 CURRENT A
1287 BC I BB VERT IVOC0 ECB VDD CURRENT A
1288 BC I BB VERT IVOC1 ECB VDD CURRENT A
1676 BC I NODE0 S0 VCC IN mA
1680 BC I NODE0 S0 VCC OUT mA
1732 BC I NODE0 S0 VDR01 IN mA
1734 BC I NODE0 S0 VDR23 IN mA
1736 BC I NODE0 S0 VDR01 OUT mA
1738 BC I NODE0 S0 VDR23 OUT mA
1468 BC P NODE0 CPU0 CH0 DRAM ACC J
1469 BC P NODE0 CPU0 CH1 DRAM ACC J
1470 BC P NODE0 CPU0 CH2 DRAM ACC J
1471 BC P NODE0 CPU0 CH3 DRAM ACC J
1500 BC P NODE0 CPU0 VCC ACC J
1516 BC P NODE0 CPU0 PCKG ACC J
2776 BC P NODE0 GLOBAL PROC POWER W
1266 BC H ARIES VRM FLT status
1267 BC H ARIES VRM FLT BITS status
1268 BC H ARIES VRM HOT status
1273 BC H NODE0 IVOC ECB FAULT status
1295 BC H BB VERT IVOC0 ECB FAULT status
1296 BC H BB VERT IVOC1 ECB FAULT status
1844 BC L NODE0 CPU0 MEM THROTTLE %
1845 BC L NODE0 CPU1 MEM THROTTLE %
1872 BC L NODE0 CPU0 CPU THROTTLE N
1873 BC L NODE0 CPU1 CPU THROTTLE N

Table II
CC AND BC PMDB DATA

ID Sensor Description Unit
0 Cabinet Power W
1 Cabinet Energy J
2 Cabinet Voltage mV
3 Cabinet Current A
8 Cabinet Blower Power W
16 HSS Power W
17 HSS Energy J
32 Node 0 Power W
33 Node 0 Energy J
36 Node 0 CPU Power W
37 Node 0 CPU Energy J
40 Node 1 Power W
41 Node 1 Energy J
44 Node 1 CPU Power W
45 Node 1 CPU Energy J
48 Node 2 Power W
49 Node 2 Energy J
52 Node 2 CPU Power W
53 Node 2 CPU Energy J
56 Node 3 Power W
57 Node 3 Energy J
60 Node 3 CPU Power W
61 Node 3 CPU Energy J
68 Node 0 Memory Power W
69 Node 0 Memory Energy J
76 Node 1 Memory Power W
77 Node 1 Memory Energy J
84 Node 2 Memory Power W
85 Node 2 Memory Energy J
92 Node 3 Memory Power W
93 Node 3 Memory Energy J

not be seen by a plugin depending on the workload manager

used at the customer site.

The example in Listing 8 shows two sequences of

job start, app start, app end, job end. Both jobs are run

by the same user, reserve and use only one node (nid 2),

and run a single application. Note that lines are wrapped to

fit the formatting of this paper.

Listing 8. Example Application Output Data
t s =1490734709583873 , e v e n t =6 , u s e r i d =1205 , j o b i d =3880. sdb ,

a p i d =0 , n i d s = ’ ,2 ’
t s =1490734713023993 , e v e n t =1 , u s e r i d =1205 , j o b i d =3880. sdb ,

a p i d =706691 , n i d s = ’ ,2 ’
t s =1490734718511193 , e v e n t =2 , u s e r i d =1205 , j o b i d =3880. sdb ,

a p i d =706691
t s =1490734719788394 , e v e n t =7 , u s e r i d =1205 , j o b i d =3880. sdb ,

a p i d =0
t s =1490734786322464 , e v e n t =6 , u s e r i d =1205 , j o b i d =3881. sdb ,

a p i d =0 , n i d s = ’ ,2 ’
t s =1490734789715572 , e v e n t =1 , u s e r i d =1205 , j o b i d =3881. sdb ,

a p i d =706717 , n i d s = ’ ,2 ’
t s =1490734795285564 , e v e n t =2 , u s e r i d =1205 , j o b i d =3881. sdb ,

a p i d =706717
t s =1490734796573906 , e v e n t =7 , u s e r i d =1205 , j o b i d =3881. sdb ,

a p i d =0

IV. CONFIGURATION FILE OVERVIEW

The default configuration file for xtpmd plugin support

is located on the Cray SMW or Cray external PMDB

node at /opt/cray/hss/default/etc/xtpmd plugins.ini. This

file supports the example plugin code.

The default file that ships with the SMW release is filled

with useful comments. For a more in depth description of

the file format refer to [13].

Listing 9. Configuration File
C o p y r i g h t 2015 Cray I n c . A l l R i g h t s Rese rved .
#

Thi s i s t h e c o n f i g u r a t i o n group t h a t t e l l s xtpmd where
t o f i n d p l u g i n s and more s p e c i f i c a l l y what p l u g i n s i t
s h o u l d l o a d .
[p l u g i n s]
xtpmd communica tes d a t a t o i t s p l u g i n s v i a a s h a r e d
memory r e g i o n . I t can be t u n e d anywhere between 4−16MB
i n s i z e . The d e f a u l t s i z e i s 4MB.
shms ize =4194304
##
Xtpmd can , i f f i l e s y s t e m p e r m i s s i o n s a l l o w f o r i t ,
w r i t e i t s s h a r e d memory ID t o a f i l e when i t s t a r t s
up . Th i s i s p r o v i d e d f o r f u t u r e use c a s e s . As o f now
i t i s unused .
shmid pa th = / v a r / run / xtpmd / xtpmd . shmid
##
Xtpmd l o a d s p l u g i n s wi th t h e h e l p o f a sandbox p r o c e s s .
The b i n a r y by d e f a u l t i s c a l l e d ” xtpmd plugd ” . I f t h e
b i n a r y i s i n s t a l l e d i n a non−s t a n d a r d l o c a t i o n xtpmd
may be n o t i f i e d by e d i t i n g t h i s p a r a m e t e r
p l u g d p a t h = / o p t / c r a y / h s s / d e f a u l t / b i n / x tpmd plugd
##
P l u g i n i n s t a n c e s a r e e n a b l e d by a dd ing them t o t h i s
s t r i n g l i s t . E lemen t s a r e d e l i m i t e d wi th a s e m i c o l o n .
To d i s a b l e a p l u g i n , remove i t from t h e l i s t . To run no
p l u g i n s , comment o u t t h e l i s t .
##
I n s t a n c e l i s t examples i n c l u d e :
##
i n s t a n c e s = csv ; o t h e r
i n s t a n c e s = csv
P l u g i n i n s t a n c e s a r e c o n f i g u r e d u s i n g a d e d i c a t e d i n i
f i l e s e c t i o n named ” p l u g i n <i n s t a n c e>” where i n s t a n c e
i s t h e name l i s t e d i n t h e l i s t above . I t i s p e r m i s s i b l e
t o have m u l t i p l e i n s t a n c e s o f a s i n g l e p l u g i n as w e l l .
[p l u g i n c s v]
The on ly r e q u i r e d c o n f i g u r a t i o n p a r a m e t e r i s t h e p a t h
t o t h e s h a r e d o b j e c t . Th i s p a r a m e t e r i s used by t h e
p l u g i n i n s t a n c e l o a d e r .
o b j e c t = / o p t / c r a y / h s s / d e f a u l t / l i b 6 4 / x t p m d p l u g i n c s v . so
A l l o t h e r p a r a m e t e r s a r e a r b i t r a r y . They a r e s p e c i f i c
t o t h i s p l u g i n i n s t a n c e . The CSV w r i t e r p l u g i n has a
few . They a r e :
The ba se d i r e c t o r y f o r CSV f i l e s . Th i s p a r a m e t e r s h o u l d
p r o b a b l y be changed t o a l o c a t i o n wi th l o t s o f s t o r a g e
s p a c e .
l o g d i r = / tmp
Should t h e CSV w r i t e r l o g CC l e v e l PMDB d a t a ? I f so a
new CSV f i l e w i l l be c r e a t e d e v e r y <p e r i o d> s e c o n d s .
In t h i s c ase a new one w i l l be c r e a t e d e v e r y hour
pmdb cc enabled = yes
pmdb cc per iod =3600
Blade & Node l e v e l PMDB d a t a .
R o t a t e a new f i l e e v e r y 10 m i n u t e s
pmdb bc enabled= yes
pmdb bc per iod =600
C a b i n e t l e v e l SEDC d a t a .
R o t a t e a new f i l e once an hour
s e d c c c e n a b l e d = yes
s e d c c c p e r i o d =3600
Blade & Node l e v e l SEDC d a t a .
R o t a t e a new f i l e e v e r y 10 m i n u t e s .
s e d c b c e n a b l e d = yes
s e d c b c p e r i o d =600
Alps a p p l i c a t i o n / b a t c h d a t a .
R o t a t e a new f i l e e v e r y day .
a p p l i c a t i o n e n a b l e d = yes
a p p l i c a t i o n p e r i o d =86400
Where t i m e s t a m p s a r e i n v o l v e d , t h e CSV p l u g i n w r i t e s
them o u t i n number o f m i c r o s e c o n d s s i n c e t h e UNIX Epoch .

Listing 9 shows a version of the default configuration file

where text was modified to remove blank lines, and wrap

lines to fit the required format of this paper.

One line that will likely need to be edited when testing or

deploying a plugin in supervised mode is the instances=csv

(key-value pair). It is commented out in the file, and to run

the plugin csv plugin, that line would need to be uncom-

mented. As the comment line instances=csv;other suggests

multiple plugins can be started and run concurrently.

The object=path to valid lib.so must point at a plugin

file runnable by the crayadm user.

The xtpmd plugd support code reads in all of the

key-value pairs for the plugin at load time, and

makes them available to the plugin via the char *plu-

gin get instance var() helper function. With the exception

of the object=path to valid lib.so, it is the responsibility

of the plugin to define and implement handling of plugin-

specific key-value pairs.

V. PLUGIN TESTING

This section describes how to test an xtpmd plugin.

Compiling and running the provided “csv” example plugin

helps verify the environment is working.

To test a plugin, one can run it by hand or in what we call

unsupervised mode. As shown in Figure 1, the command

ipcs can be run to find shmid and shmsize parameters

needed to call xtpmd plugd from the command line. The

third parameter is the plugin name which in this case is

plugin csv. The fourth parameter is the configuration file

to use.

my−smw˜:> / tmp / x tpmd plugin> i p c s | gr e p −v p o s t g r e s
−−−−−− Shared Memory Segments −−−−−−−−
key shmid owner perms b y t e s n a t t c h s t a t u s
0 x00000000 1441793 crayadm 600 4194304 1 d e s t
0 x00000000 2031623 crayadm 600 524288 2 d e s t
0 x7a060813 1900553 crayadm 600 4194304 2

my−smw˜:> xtpmd plugd 0 x7a060813 4194304 p l u g i n c s v . /
x t p m d p l u g i n s . i n i

Figure 1: Unsupervised Mode Testing

There are two easy ways to kill an unsupervised plugin.

The first is to enter Ctrl-D in the terminal window where

it is running. The second is to issue a kill -9 pid of plugin

from another window.

Note if you are having problems starting your plugin, that

you need to run it as crayadm and all the files must have

correct permissions for crayadm. A good source if debug

information is the power management-YYYYMMDD log

file found in the smw:/var/opt/cray/log directory. This is

the file that captures stderr and stdout when a plugin is

running in supervised mode.

Listing 10 shows the important parts extracted from a

configuration file on a testing and benchmarking system in

the Cray Chippewa Falls data center where we are running

a Kafka [14] plugin. The key-value pairs are used to pass

configuration information into the plugin. This offers a great

deal of flexibility without need to recompile the plugin or

implement an ad hoc configuration file. The output was

modified to obscure some IP address and internal system

name information.

To test a new version of this plugin without shutting down

the running copy:

• Copy the configuration file into a sandbox directory

where crayadm has read permissions so that it can

be edited without a chance of modifying the running

running plugin if or when it gets restarted

• Edit the line “object=” to point at the new plugin.so

• Optionally edit:

– The “kafka broker ip=” line to use a test broker

– The “* topic= lines”

– The “* enabled= lines”

• Start the modified plugin as shown in Figure 1.

Listing 10. Kafka Example xtpmd plugins.ini
[p l u g i n s]
i n s t a n c e s = k a f k a
[p l u g i n k a f k a]
o b j e c t = / home / crayadm / k a f k a / kafka−p l u g i n . so
k a f k a b r o k e r i p =XXX.XXX.XX.XX: 3 1 0 9 2 ,XXX.XXX.XX.XX:31092
pmdb cc enabled = yes
pmdb cc top ic =xtpmd−XX−pmdb−cc
pmdb bc enabled= yes
pmdb bc topic =xtpmd−XX−pmdb−bc
s e d c c c e n a b l e d = yes
s e d c c c t o p i c =xtpmd−XX−sedc−cc
s e d c b c e n a b l e d = yes
s e d c b c t o p i c =xtpmd−XX−sedc−bc
a p p l i c a t i o n e n a b l e d = yes
a p p l i c a t i o n t o p i c =xtpmd−XX−a p p l i c a t i o n
pmdb nodes enabled = yes
pmdb nodes top ic =xtpmd−XX−pmdb−nodes−key−v a l u e
s e d c s e n s o r i n f o e n a b l e d = yes
s e d c s e n s o r i n f o t o p i c =xtpmd−XX−sedc−s e n s o r−i n f o−key−v a l u e
p m d b s e n s o r i n f o e n a b l e d = yes
p m d b s e n s o r i n f o t o p i c =xtpmd−XX−pmdb−s e n s o r−i n f o−key−v a l u e
sm expand enabled = yes
sm expand top ic =xtpmd−XX−sou rce−key−v a l u e

Testing Checklist:

• Talk to the system administrator before starting!

– Testing new processes on the SMW could impact

system stability, or the ability of the SMW to

respond to RAS events.

– Appropriate planning and agreement with system

stakeholders is required.

• Test for memory leaks.

• Test whether your plugin causes a high load on the

SMW.

– /usr/bin/top is your friend

• Make sure required libraries are in the path for crayadm

at boot time, or your plugin may run in unsupervised

mode but fail in production.

• If your plugin writes to local files, make sure something

prevents them from filling up the file system.

VI. PLUGIN DESIGN CONSIDERATIONS

Design considerations covered in this section fall into the

following categories:

• Limiting The Plugin’s Impact

• Library Usage

• Time Stamp Formatting

• Translating Binary Fields

• Getting Data Off Node

• Other Formatting Considerations

A. Limiting The Plugin’s Impact

Now that we have a plugin environment to stream the

data from the SMW, we have to be conscious of what

resource this streaming capability will use. Since the SMW

is the main management system for the Cray R© XC
TM

system,

additional processes and/or functions should be evaluated

and reviewed by the administration team. Considerations

would include but are not limited to: memory usage of the

plugins, network usages in both number of connections and

bandwidth, processes activity such as forking or threading

and disk usage. If the desired plugin may use or consume

too many of these resources, using an external PMDB server

is an option to consider. The two primary designs detailed

in this paper both stream the data off of the SMW using

minor amounts of memory and network connection. In these

designs, if a bandwidth issue were to arise on the SMW, the

use text-based messages would likely be the main concern.

B. Library Usage

There are two primary ways to deal with any additional

libraries that the plugin may require to run. The least

intrusive method for the SMW may be to compile the plugin

with static libraries. This may require additional care in

the plugin creation. The other primary method would be

to load or compile the different libraries the plugin may

require on the SMW itself. Building and storing shared

libraries on the SMW may be accomplished by placing them

in /usr/local/lib which will be loaded from /etc/ld.so.conf

file. This is the method that NERSC has used, and this

configuration has survived an SMW software upgrade.

C. Timestamp Formatting

The callbacks for all five plugin data sources return an

unsigned 64-bit ‘ts’ parameter that represents the number of

microseconds since January 1, 1970 UTC. There are routines

available to convert this data into several different string

formats including time zones that match a site’s location.

It could be argued that not translating into a string is the

correct choice for plugins where a computer is the primary

consumer, as conversion can be done at any time if needed.

The code in Listing 11 is used in several internal plugins

to convert 64-bit ‘ts’ into a standards based string. The

choice to use Coordinated Universal Time (UTC) was made

to remain site-independent, and avoid disruptive events such

as Daylight Saving Time.

Listing 11. Generate RFC 3339 encoded Time String
/∗∗
∗ g e n t i m e s t r i n g − Genera te RFC 3339 encoded s t r i n g ,

∗ r e l a t i v e t o t h e C o o r d i n a t e d U n i v e r s a l

∗ Time (UTC) from g i v e n t s m i c r o s e c o n d s .

∗
∗ @param t s [i n] Microseconds s i n c e January 1 , 1970 UTC

∗ @return RFC 3339 encoded s t r i n g

∗ /

s t a t i c char ∗ g e n t i m e s t r i n g (u i n t 6 4 t t s)
{

GTimeVal t v ;

i f (t s == 0)
t s = g g e t r e a l t i m e () ;

t v . t v s e c = t s / 1000000;
t v . t v u s e c = t s % 1000000;
re turn g t i m e v a l t o i s o 8 6 0 1 (& t v) ;

}

D. Translating Binary Fields

There are multiple fields provided to the five callback

functions that at some point need to be translated from

their native binary representation into something another

computer program or a human can understand. Timestamps

were covered in VI-C. This section describes nid-to-cname,

source-to-cname, and scan ID translations.

The code sequence in Listing 12 loads a hash table

with ‘nid’ to ‘cname’ translations. These translations can

be useful for plugins implementing recv apevent handlers.

For clarification, a ‘nid’ is Cray shorthand for a Cray Node

ID. Cray uses the term ‘cname’ for strings that represent

physical locations in the system. All compute nodes in

Cray R© XC
TM

systems have both a ‘nid’ and a ‘cname’.

Translating back and forth can be necessary for tasks such

as calculating total power consumption of a set of nodes

assigned to a job or application.

Listing 12. Load nid2cname Hash Table From PMDB
s t r = g s t r d u p (”SELECT comp id , nid num FROM pmdb . nodes ”) ;
r e s = PQexec (conn , s t r) ;
i f (P Q r e s u l t S t a t u s (r e s) == PGRES TUPLES OK) {

i n t row , c o u n t = PQntup le s (r e s) ;
f o r (row = 0 ; row < c o u n t ; row ++) {

g h a s h t a b l e i n s e r t (pmdb hash−>nid2cname ,
GUINT TO POINTER (s t r t o u l l (PQge tva lue (r e s , row , 1)
, NULL, 0)) , g s t r d u p (PQge tva lue (r e s , row , 0))) ;

}
} e l s e {

p r i n t f (” F a i l e d : >>> %s <<< !\n ” , s t r) ;
P Q f i n i s h (conn) ;
re turn −1;

}
g f r e e (s t r) ;

Cray ‘cnames’ are used to name physical locations of

cabinets, blades, nodes, and other components. The next

code block (Listing 13), shows code that loads cabinet-level

source to ‘cname’ translations into the source2cname hash

table. These translations are needed for cabinet-level SEDC

and PMDB sensor data.

Listing 13. Cabinet ‘cnames’ into source2cname Hash Table
s t r = g s t r d u p (”SELECT cname2source (name) as sou rce , name

FROM sm . expand (’ r t l 1 ’ , ’ s0 ’) ”) ;
r e s = PQexec (conn , s t r) ;
i f (P Q r e s u l t S t a t u s (r e s) == PGRES TUPLES OK) {

i n t row , c o u n t = PQntup le s (r e s) ;
f o r (row = 0 ; row < c o u n t ; row ++) {

g h a s h t a b l e i n s e r t (pmdb hash−>source2cname ,
GUINT TO POINTER (s t r t o u l l (PQge tva lue (r e s , row , 0)
, NULL, 0)) , g s t r d u p (PQge tva lue (r e s , row , 1))) ;

}
} e l s e {

p r i n t f (” F a i l e d : >>> %s <<< !\n ” , s t r) ;
P Q f i n i s h (conn) ;
re turn −1;

}
g f r e e (s t r) ;
PQc lea r (r e s) ;

Listings 14 and 15 are near clones of the above, with only

the “SELECT” string that reads data from PMDB changing

to read out blade- and node-level translations, respectively.

Listing 14. Blade ‘cnames’ into source2cname Hash Table
s t r = g s t r d u p (”SELECT cname2source (name) as sou rce , name

FROM sm . expand (’ r t l 0 ’ , ’ s0 ’) ”) ;
r e s = PQexec (conn , s t r) ;
i f (P Q r e s u l t S t a t u s (r e s) == PGRES TUPLES OK) {

i n t row , c o u n t = PQntup le s (r e s) ;
f o r (row = 0 ; row < c o u n t ; row ++) {

g h a s h t a b l e i n s e r t (pmdb hash−>source2cname ,
GUINT TO POINTER (s t r t o u l l (PQge tva lue (r e s , row , 0)
, NULL, 0)) , g s t r d u p (PQge tva lue (r e s , row , 1))) ;

}
} e l s e {

p r i n t f (” F a i l e d : >>> %s <<< !\n ” , s t r) ;
P Q f i n i s h (conn) ;
re turn −1;

}
g f r e e (s t r) ;
PQc lea r (r e s) ;

Listing 15. Node ‘cnames’ into source2cname Hash Table
s t r = g s t r d u p (”SELECT cname2source (name) as sou rce , name

FROM sm . expand (’ r t n o d e ’ , ’ s0 ’) ”) ;
r e s = PQexec (conn , s t r) ;
i f (P Q r e s u l t S t a t u s (r e s) == PGRES TUPLES OK) {

i n t row , c o u n t = PQntup le s (r e s) ;
f o r (row = 0 ; row < c o u n t ; row ++) {

g h a s h t a b l e i n s e r t (pmdb hash−>source2cname ,
GUINT TO POINTER (s t r t o u l l (PQge tva lue (r e s , row , 0)
, NULL, 0)) , g s t r d u p (PQge tva lue (r e s , row , 1))) ;

}
} e l s e {

p r i n t f (” F a i l e d : >>> %s <<< !\n ” , s t r) ;
P Q f i n i s h (conn) ;
re turn −1;

}
g f r e e (s t r) ;
PQc lea r (r e s) ;

In Listing 16, we load SEDC scan ID descriptions into

the sedc ids hash table. The descriptive strings describe the

sensor with a human-readable name, as well as its unit of

measure. The data shown in III-A and III-B were generated

from the same PMDB table that this code is accessing.

Listing 16. SEDC Scan ID into sedc ids Hash Table
s t r = g s t r d u p (”SELECT s e n s o r i d , sensor name , t r i m (bo th

from s e n s o r u n i t s) FROM pmdb . s e d c s c a n i d i n f o ”) ;
r e s = PQexec (conn , s t r) ;
i f (P Q r e s u l t S t a t u s (r e s) == PGRES TUPLES OK) {

i n t row , c o u n t = PQntup le s (r e s) ;
f o r (row = 0 ; row < c o u n t ; row ++) {

g h a s h t a b l e i n s e r t (pmdb hash−>s e d c i d s ,
GUINT TO POINTER (s t r t o u l l (PQge tva lue (r e s , row , 0)
, NULL, 0)) , g s t r d u p p r i n t f (”%s ,% s ” , PQge tva lue (
r e s , row , 1) , PQge tva lue (r e s , row , 2))) ;

}
} e l s e {

p r i n t f (” F a i l e d : >>> %s <<< !\n ” , s t r) ;
P Q f i n i s h (conn) ;
re turn −1;

}
g f r e e (s t r) ;
PQc lea r (r e s) ;

In listing 17 we load PMDB scan ID descriptions into

the pmdb ids hash table. The descriptive strings describe

the sensor with a human-readable name, as well as its unit

of measure. The data shown in III-C was generated from the

same PMDB table that this code is accessing.

Listing 17. SEDC Scan ID into pmdb ids Hash Table
s t r = g s t r d u p (”SELECT s e n s o r i d , sensor name , t r i m (bo th

from s e n s o r u n i t s) FROM pmdb . s e n s o r i n f o ”) ;
r e s = PQexec (conn , s t r) ;
i f (P Q r e s u l t S t a t u s (r e s) == PGRES TUPLES OK) {

i n t row , c o u n t = PQntup le s (r e s) ;
f o r (row = 0 ; row < c o u n t ; row ++) {

g h a s h t a b l e i n s e r t (pmdb hash−>pmdb ids ,
GUINT TO POINTER (s t r t o u l l (PQge tva lue (r e s , row , 0)
, NULL, 0)) , g s t r d u p p r i n t f (”%s ,% s ” , PQge tva lue (
r e s , row , 1) , PQge tva lue (r e s , row , 2))) ;

}
} e l s e {

p r i n t f (” F a i l e d : >>> %s <<< !\n ” , s t r) ;
P Q f i n i s h (conn) ;
re turn −1;

}
g f r e e (s t r) ;
PQc lea r (r e s) ;

Slight variations of code shown in Listings 12 through

17, have been used in several Cray internal plugins as well

as the plugins running in production on the NERSC Cori

system. Discussion of Cori in more detail is provided in

Section VII.

E. Getting Data Off-Node

In addition to the Kafka method listed above, one could

use RabbitMQ to send data from the SMW. Listing 18 shows

a concentrated listing of the code to create a connection

to RabbitMQ. The connection is built by first creating a

new amqp connection and then setting the SSL options. The

secure path is then used to connect to the RabbitMQ server.

A defined account and password are needed to authenticate

the connection. The connection handle is placed in the rcon

structure of the plugin to be used when sending the data.

Most of the error checking has been removed to conserve

space.

Listing 18. NERSC RabbitMQ Connection Code Example
. . .
rcon−>conn = amqp new connect ion () ;
s o c k e t = amqp ss l socke t new (rcon−>conn) ;
a m q p s s l s o c k e t s e t v e r i f y p e e r (s o c k e t , 0) ;
a m q p s s l s o c k e t s e t v e r i f y h o s t n a m e (s o c k e t , 0) ;
s t a t u s = amqp socket open (s o c k e t , rcon−>hostname , rcon−>

p o r t) ;
r = amqp login (rcon−>conn , ” / ” , 0 , 131072 , 0 ,

AMQP SASL METHOD PLAIN, rcon−>l o g i n , rcon−>password)
;

i f (r . r e p l y t y p e != AMQP RESPONSE NORMAL) {
f p r i n t f (s t d e r r , ” rabbitMQ l o g i n f a i l u r e \n ”) ;
s l e e p (3 6 0 0) ;
e x i t (1) ;

}
amqp channel open (rcon−>conn , 1) ;
r = a m q p g e t r p c r e p l y (rcon−>conn) ;
. . .

Code shown in Listing 19 publishes the data to the

RabbitMQ server.

Listing 19. NERSC RabbitMQ Publish Code Example
. . .
p r o p s . f l a g s = AMQP BASIC CONTENT TYPE FLAG |

AMQP BASIC DELIVERY MODE FLAG ;
p r o p s . c o n t e n t t y p e = a m q p c s t r i n g b y t e s (” t e x t / p l a i n ”) ;
p r o p s . d e l i v e r y m o d e = 2 ; /∗ p e r s i s t e n t d e l i v e r y mode ∗ /

s t a t u s = a m q p b a s i c p u b l i s h (c tx−>conn , 1 ,
a m q p c s t r i n g b y t e s (c tx−>exchange) ,
a m q p c s t r i n g b y t e s (c tx−>r o u t i n g k e y) , 0 , 0 , &props ,
a m q p c s t r i n g b y t e s (message)) ;

. . .

F. Other Formatting Considerations

Formatting the data before transmission will obviously

slow down the processing speed of the plugin. However,

one reason for processing in the plugin is to speed up the

ingest on the receiver side. We formatted the data into JSON

syntax and added a bit of enrichment, which can only be

gathered on the Cray SMW (or Cray external PMDB node).

This provided a nice trade off. No official timing was done,

but in general when JSON is fed to Logstash to feed Elastic

[15], Logstash was able to process almost 2 times more data.
The example in Listing 20 shows a handler for PMDB

streaming data that generates JSON formatted strings that

are then passed to a plugin specific xjson output() function.

The xjson uint64 function calls gen time string() and uses

the source2cname and pmdb ids hash tables shown in List-

ings 13, 14, 15 and 17 above. The xjson uint64() function

can handle both ‘BC PMDB’ data and ‘CC PMDB’ data.

A nearly identical xjson double() (not shown) can handle

‘BC SEDC’ data and ‘CC SEDC’ data, it uses the sedc ids

hash table.

Listing 20. Example PMDB Data Callback
s t a t i c vo id x j s o n u i n t 6 4 (void ∗u s e r d a t a , u i n t 6 4 t t s , i n t

sou rce , i n t id , u i n t 6 4 t v a l u e)
{

x j c t x t ∗ c t x = (x j c t x t ∗) u s e r d a t a ;
g c h a r∗ s o u r c e s t r = g h a s h t a b l e l o o k u p (c tx−>pmdb hash

−>source2cname , GUINT TO POINTER (s o u r c e)) ;
g c h a r∗ i d s t r = g h a s h t a b l e l o o k u p (c tx−>pmdb hash−>

pmdb ids , GUINT TO POINTER (i d)) ;
char ∗ t v s = g e n t i m e s t r i n g (t s) ;

x j s o n c h e c k f o r r o t a t i o n (c t x) ;
s n p r i n t f (c tx−>ou t buf , (SD MAX LEN) , ”{\” t s \”:\”% s \” ,\”

cname\”:\”% s \” ,\” i d \”:%d ,\” i d s t r i n g \”:\”% s \” ,\”
v a l u e \”:% l l u }\n ” , t v s , s o u r c e s t r , id , i d s t r , (
long long unsigned i n t) v a l u e) ;

g f r e e (t v s) ;
x j s o n o u t p u t (c tx , c tx−>o u t b u f) ;

}

Listing 21 shows formatted JSON generated by the xj-

son uint64() function described above. The actual string

generated is all on one line without extra spaces.

Listing 21. Example Job/Application JSON Output
{

” t s ” : ”2017−03−22T02 : 3 3 : 2 7 . 1 6 5 3 8 0 Z” ,
” cname ” : ” c5−0c0s2n3 ” ,
” i d ” : 56 ,
” i d s t r i n g ” : ” Node 3 Power ,W” ,
” v a l u e ” : 51

}

The code examples in the section are from a plugin that

writes its output to local files in plain text, or using Lib

Z compression. The json output function shown in Listing

22 checks if compression is requested and calls ether the

gzputs() or the standard lib fputs() function. Unfortunately,

error handling is slightly different for the two functions.

Listing 22. Example File Output Function
void x j s o n o u t p u t (x j c t x t ∗c tx , c o n s t char ∗ o u t p u t s t r i n g

)
{

i n t l e n = −1, r c = 0 ;

i f (c tx−>u s e g z i p == TRUE) {
l e n = g z p u t s (c tx−>use . l f g z , o u t p u t s t r i n g) ;
i f (l e n <= 0) {

g z e r r o r (c tx−>use . l f g z , &r c) ;
f p r i n t f (s t d e r r , ”%s : F a i l e d g z p u t s () t o f i l e %s ,

errnum : %d .\ n ” , func , c tx−>l f name , r c) ;
re turn ;

}
} e l s e { / / Uncompressed o u t p u t

i f (f p u t s (o u t p u t s t r i n g , c tx−>use . l f) < 0) {
r c = e r r n o ;
f p r i n t f (s t d e r r , ”%s : F a i l e d f p u t s () t o f i l e %s ,

e r r n o : %d .\ n ” , func , c tx−>l f name , r c) ;
re turn ;

}
l e n = s t r l e n (o u t p u t s t r i n g) ;

}
c tx−>t f s z += l e n ;
re turn ;

}

The long example in Listing 23 shows an implementation

of an application and job information callback that formats

its output as a string with JSON semantics. This example

also uses hash tables to do the binary-to-string conversions

that were built up in the code examples shown in VI-D.

Listing 23. Example Job / Application Callback
x j s o n a p e v e n t (void ∗ u s e r d a t a , u i n t 6 4 t t s , u i n t 3 2 t even t

, u i n t 3 2 t u s e r i d , char ∗ j o b i d , u i n t 6 4 t ap id ,
u i n t 3 2 t ∗n ids , u i n t 3 2 t n i d s l e n)

{
s t a t i c char a p o u t b u f [SD MAX LEN+AP MAX LEN] ;
s t a t i c char n i d l i s t [AP MAX LEN] ;
x j c t x t ∗ c t x = (x j c t x t ∗) u s e r d a t a ;
char ∗ t v s = g e n t i m e s t r i n g (t s) ;
x j s o n c h e c k f o r r o t a t i o n (c t x) ;

/ / Handle e v e n t we do n o t have a t r a n s l a t i o n f o r

i f (e v e n t > s i z e o f (c t e s t r i n g s)) {
f p r i n t f (s t d e r r , ”%s : i n v a l i d e v e n t %d\n ” , func ,

e v e n t) ;
e v e n t = 0 ;

}

i f (n i d s == NULL) {
s n p r i n t f (ap ou t buf , (AP MAX LEN) , ”{\” t s \”:\”% s \” ,\”

e v e n t \”:\”% s \” ,\” u s e r i d \”:%u ,\” j o b i d \”:\”% s \” ,\”
a p i d \”:% l l u }\n ” , t v s , c t e s t r i n g s [e v e n t] , u s e r i d ,

j o b i d , (long long unsigned i n t) a p i d) ;
} e l s e {

i n t i , l e n =0;

l e n += s n p r i n t f (n i d l i s t , (AP MAX LEN) , ”{\” n i d \”:%u
,\” cname\”:\”% s\”}” , n i d s [0] , g h a s h t a b l e l o o k u p
(c tx−>pmdb hash−>nid2cname , GUINT TO POINTER ((
g u i n t 6 4) n i d s [0]))) ;

f o r (i = 1 ; i < n i d s l e n ; i ++) {
l e n += s n p r i n t f (& n i d l i s t [l e n] , (AP MAX LEN − l e n) ,

” ,{\” n i d \”:%u ,\” cname\”:\”% s\”}” , n i d s [i] ,
g h a s h t a b l e l o o k u p (c tx−>pmdb hash−>nid2cname ,
GUINT TO POINTER ((g u i n t 6 4) n i d s [i]))) ;

}

s n p r i n t f (ap ou t buf , (SD MAX LEN+AP MAX LEN) , ”{\” t s
\”:\”% s \” ,\” e v e n t \”:\”% s \” ,\” u s e r i d \”:%u ,\” j o b i d
\”:\”% s \” ,\” a p i d \”:% l l u ,\” n i d c o u n t \”:%d ,\”
n i d c n a m e a r r a y \”:[% s]}\n ” , t v s , c t e s t r i n g s [
e v e n t] , u s e r i d , j o b i d , (long long unsigned i n t)
ap id , n i d s l e n , n i d l i s t) ;

}
g f r e e (t v s) ;\ t e x t b f {
x j s o n o u t p u t (c tx , a p o u t b u f) ;

}

Listing 24 shows formatted JSON generated by the xj-

son apevent() function shown above. The actual string

generated is all on one line without extra spaces.

Listing 24. Example JSON Formatted Output
{

” t s ” : ”2017−03−23T16 : 0 4 : 2 8 . 3 6 6 7 3 8 Z” ,
” e v e n t ” : ”APP START” , ” u s e r i d ” : 27216 ,
” j o b i d ” : ” 1723832 . sdb ” , ” a p i d ” : 3801382 ,
” n i d c o u n t ” : 2 , ” n i d c n a m e a r r a y ” : [
{” n i d ” : 56 , ” cname ” : ” c0−0c0s14n0 ”} ,
{” n i d ” : 57 , ” cname ” : ” c0−0c0s14n1 ”}

]
}

VII. NERSC PLUGIN DEPLOYMENT

At NERSC we have implemented the xtpmd plugin archi-

tecture based strongly on the work provided by Cray. Our

extension added the ability to stream the data directly to

RabbitMQ thus allowing it to flow directly into our NERSC

data collect.

The NERSC design created a plugin for each of the five

data sources described in Section III. This was a simple

first step in parallelizing the data collection. This provided

five different streams quickly. The next step was for data

enrichment. Since the power and environmental data all

contain the data’s cname, while the job data contains the nid

number, we had to enrich the job stream with some extra

information, the corresponding cnames. This information is

loaded into memory from the PostgreSQL database running

on the SMW VI-D. We also loaded in the text strings of the

different sensor IDs and conversions for the location IDs.

Loading from the SMW database at startup guarantees that

we have the most updated and correct data when inserting

into the database. Also with Elastic [15], we do not have

to worry if sensors change names or new ones get added

when we do software upgrades, the new data is indexed as

it arrives.

One other key task the job plugin does is break the node

list of a running job into its individual nids and cnames

creating two arrays. These arrays and all other information

is placed on a single text JSON line and fed into RabbitMQ,

at which point it moves into Elastic with minimal additional

processing. All plugins for Cori basically feed the “NERSC

Center-wide Data Collect” [6] at about 19K inserts a second

or about 1.5 billion documents in about 66GB of storage a

day.

A. Some key points learned during this project.

• Although restarting xtpmd should be non-intrusive, if

HA is enabled on the SMW, this will cause the HSN to

pause. HA seems to be configured to restart the whole

subsystem if xtpmd has an issue. For this reason, it is

recommended that SMW HA be set into maintenance

mode for a xtpmd daemon restart.

• In the xtpmd plugin.ini file, the default method to call

the plugin prepends the value: ‘plugin ’ to the plugin

name, see below in the example.

• Rebooting the SMW may cause a custom

xtpmd plugin.ini file to be overwritten with the

default file. (This is fixed in SMW 8.0 UP03.)

• To restart a plugin without restarting xtpmd is easy. Just

kill the plugin process. The xtpmd process will notice

that the plugin has gone away and will restart it. This

is also a good way to change configuration parameter.

• Make sure the libraries are in a location that the

‘crayadm’ user can read.

NERSC plugin to-do list:

• RabbitMQ is not a threaded library; the plugin must

open multiple connections. Develop a way to round-

robin plugin data flow to multiple RabbitMQ sockets.

• Devise graceful fallback and recovery if RabbitMQ

goes away.

• Add monitoring for plugin communication failures.

• Develop a more graceful method to restart a plugin.

B. About the code and configuration:

The code itself is based on Cray’s example from

CUG2016 [3], extended to add the RabbitMQ library and

some string processing to create a JSON output line which

gets written to RabbitMQ. In Listing 25 you can see the

configuration information that is in the Cori production

xtpmd plugin.ini file.

First, the plugin definitions (Listing 25 lines 1 and 2).

These are the five defined NERSC plugins expected.

Listing 25. Plugin Definitions
1[p l u g i n s]
2i n s t a n c e s =bp ; bc ; cp ; cc ; j o b
3[p l u g i n b p]
4o b j e c t = / o p t / d a t a c o l l e c t / pmd / b l a d e p o w e r b p p l u g i n . so
5power bp enab led = yes
6hostname = r a b b i t . n e r s c . gov
7p o r t =5671
8exchange =ha−m e t r i c
9r o u t i n g k e y = c o r i . corismw . se dc . power bp
10sys tem = c o r i
11t y p e = se dc
12l o g i n=<accoun t>
13password=<passwd>

The ‘instances’ are the plugin names. That name is used in

the next part of the configuration file. This block starts with

the plugin name, which get the string ‘plugin ’ prepended

to it.

Listing 25 line 3 starts the plugin-specific parameters for

the plugin bp plugin. Line 4 defines the full path to the

shared library bp plugin.so for this plugin. Next, on line 5

is an enable flag in case we would like to disable this plugin

the next time xtpmd is restarted. The hostname and port

(lines 6 and 7) are where the RabbitMQ service is located.

Line 8 specifies the RabbitMQ exchange to be used; from

that exchange telemetry gets routed based on the routingkey

(in line 9) to Logstash which uses parts of the routingkey

to place the data into the correct Elastic index. The system

and type fields (lines 10 and 11) are used by Logstash to

help manage the data flow. Finally, the last two lines are the

account login and password information to initially connect

to the RabbitMQ. At this point, we can make changes to the

NERSC Center-wide Data Collect without having to change

the plugin binaries.

We should have a word about data loss. Although the

connections are all TCP and we have have not noticed any

substantial data losses, the xtpmd infrastructure (by design)

will drop data instead of backing up the stream in memory.

If the plugin cannot keep up, xtpmd will drop what the

plugin can not process. This would almost be like a UDP

stream. We have not devised any method to save data either

in memory or to disk if we have a RabbitMQ issue. If we

have an Elastic issue, the RabbitMQ servers will do the

spooling. Lastly, the ‘kill -9’ restart will also lose data both

in the shutdown and restart at which time no data would be

flowing to the NERSC infrastructure. With these reasons,

we have tried to keep the plugins simple and fast; most

enhancements and monitoring happening after it leaves the

SMW and arrives at the NERSC infrastructure.

C. NERSC Cori Telemetry Visualization

This section show a few views created using the data being

collected on Cori. The page layout is in Cori cabinet and row

order, thus also giving a physical view to the data.

Figure 2 shows a detailed view of the power in each

cabinet. Each graph is displaying the four nodes in that slot.

Figure 3 shows cabinet air temperatures. Note that blower

cabinets are associated with the cabinet cname of the cabinet

to its right. The exception is the end blower which has the

cname of the cabinet to its left.

Figure 4 shows the detailed power of a slot. Each column

lists the data for one of the four nodes in that slot. The top

two graphs show the summary for the slot.

Figure 5 is the CPU temperature view. This is showing

the maximum temperature of any of the CPUs during that

time period. We do this to summarize all 192 CPUs in each

cabinet. Drill-down graphs are implemented to view more

detailed information.

Figure 2: Cori Cabinet Power

Figure 3: Cori Cabinet Temperature

Figure 4: Cori Node Power

Figure 5: Cori CPU Temperature

Figure 6: c4-2c0s11n1 Node Temp

Figure 7: c4-2c0s11 Power Profile

Figure 8: c4-2 Blowers

D. NERSC Cori Problem Gathering

NERSC recently had a temperature throttling event and

the NERSC Center-wide Data Collect was used to examine

the data visually. The summary that follows is for one node.

First we searched for any throttling events in the

log data, and found: 2017-03-23T01:39:08.965711-07:00

c4-2c0s11n1 xtconsole 2173 p0-20170322t150819 [con-

sole@34] CPU22: Package temperature above threshold,

Figure 9: c4-2 Water Profile

Figure 10: c4-2 Air Profile

cpu clock throttled

With the event time, 3/23 at 01:39 and location c4-

2c0s11n1, we used the Grafana [16] dashboards to gather

insight into what had happened on the system. Figure 6

shows the temperature of all four nodes in Slot 11, with

Node 1 reaching 80C at about 1:39 and that it is the only

processor to do so. In Figure 7 we show a graph of the

affected slots power data at the time of the throttling event.

The power profiles of all the nodes look very much alike,

none showing any significant differences.

After viewing the CPU temperature, we now turned our

gaze to the cabinet water data. Figure 9 is the water ingress

and egress temperatures, the water pressure, and the value

position. The steep part of the valve graph was taking place

at the same time as the reported thermal throttling event.

Next we viewed the cabinet blower screens. In Figure

10, first column shows rising temperatures in each chassis

and a large step in fan speeds. By Cray design, all blower

cabinet fans in a row must run at the same speed. The fan

speed is changed in response to the hottest socket in the row

of cabinets. The valve position (controlling water flowing

through each cabinet) is modulated as needed to control the

cabinet outlet air temp to a configurable set-point [17], [18].

In Figure 10, the third column shows air velocity and as

expected with an increase in fan speed we see an increase

in airflow. Figure 10, the second column shows the cabinet

outlet air temperature. These air temps sensors are positioned

in the airflow after the water coil has removed most (if not

all) heat generated by the blades in the cabinet. There was

a 1C rise about 3 seconds before the event, that would have

triggered the change in water valve position noted above and

seen in Figure 9. We should point out that the rise in outlet

air temperature above the system set-point was temporary,

and shows the short lag in thermal response to the change

the inlet water valve position.

Lastly, Figure 8 shows the general environment of the

blower cabinets. Note the outside weather as shown in the

upper right corner of the figure was a steady 47.5F.

VIII. CONCLUSION

With CUG 2016 providing the groundwork for Cray R©

XC
TM

system xtpmd plugin development, this work dived

more deeply into details needed to develop a plugin. This

paper shows the process, starting with the base plugin

calls, followed by plugin enhancements and data enrichment.

Finally, the NERSC dashboard’s data visualization demon-

strates how the data was used to solve a problem facing

the center. There is more work to do – this is only the

beginning of the uses for the data, be they monitoring or

machine learning.

This has been a collaborative effort between Cray, the user

community, and customers to design and test the streaming

telemetry plugin capability. This new monitoring capability

allows customers to collect power, energy, thermal, and

application data and to make that data available to system

administrators, application developers, and the HPC research

community as appropriate given site-level infrastructure and

policy.

REFERENCES

[1] “Cray System Environment Data Collection (SEDC),”
(Accessed 27.March.17). [Online]. Available: https://pubs.
cray.com/#/00446663-DC/FA00237186

[2] “Cray Power Management Database (PMDB),” (Accessed
27.March.17). [Online]. Available: https://pubs.cray.com/#/
00446663-DC/FA00223922

[3] S. Martin, “CUG 2016 Cray XC Power Monitoring and
Management Tutorial,” Proceedings of the Cray User
Group (CUG), 2016, (Accessed 22.March.17). [Online].
Available: https://cug.org/proceedings/cug2016 proceedings/
includes/files/tut103.pdf

[4] “Redis,” (Accessed 27.March.17). [Online]. Available: https://
redis.io/

[5] “Hiredis,” (Accessed 27.March.17). [Online]. Available:
https://github.com/redis/hiredis

[6] C. Whitney, T. Davis, and E. Bautista, “CUG 2016 NERSC
Center-wide Data Collect,” Proceedings of the Cray User
Group (CUG), 2016, (Accessed 22.March.17). [Online].
Available: https://cug.org/proceedings/cug2016 proceedings/
includes/files/pap101.pdf

[7] S. Martin and M. Kappel, “Cray XC30 Power Monitoring
and Management,” Proceedings of the Cray User
Group (CUG), 2014, (Accessed 28.March.16). [Online].
Available: https://cug.org/proceedings/cug2014 proceedings/
includes/files/pap130.pdf

[8] S. Martin, D. Rush, and M. Kappel, “Cray Advanced Platform
Monitoring and Control (CAPMC),” Proceedings of the Cray
User Group (CUG), 2015, (Accessed 28.March.16). [Online].
Available: https://cug.org/proceedings/cug2015 proceedings/
includes/files/pap132.pdf

[9] “CAPMC API Documentation,” (Accessed 1.April.16).
[Online]. Available: http://docs.cray.com/PDF/CAPMC API
Documentation 1.2.pdf

[10] “XC Series Power Management Administration Guide (CLE
6.0.UP03) S-0043,” (Accessed 27.March.17). [Online].
Available: http://docs.cray.com/PDF/XC Series Power
Management Administration Guide CLE60UP03 S-0043.
pdf

[11] “Rabbitmq,” (Accessed 25.March.17). [Online]. Available:
https://www.rabbitmq.com/

[12] S. Martin, D. Rush, M. Kappel, M. Sandstedt, and
J. Williams, “Cray XC40 Power Monitoring and Control
for Knights Landing,” Proceedings of the Cray User
Group (CUG), 2016, (Accessed 22.March.17). [Online].
Available: https://cug.org/proceedings/cug2016 proceedings/
includes/files/pap112.pdf

[13] “Desktop entry specification,” (Accessed 31.March.17). [On-
line]. Available: https://freedesktop.org/wiki/Specifications/
desktop-entry-spec/

[14] “Kafka,” (Accessed 25.March.17). [Online]. Available:
https://kafka.apache.org/

[15] “Elastic,” (Accessed 27.March.17). [Online]. Available:
https://www.elastic.co/

[16] “Grafana,” (Accessed 27.March.17). [Online]. Available:
https://grafana.com/

[17] G. Pautsch, D. Roweth, and S. Schroeder, “The Cray R© XC c©
Supercomputer Series: Energy-Efficient Computing,” 2013,
(Accessed 22.March.17). [Online]. Available: http://www.
cray.com/sites/default/files/WP-XC30-EnergyEfficiency.pdf

[18] B. Draney, J. Broughton, T. Declerck, and J. Hutchings,
“Saving Energy with Free Cooling and the Cray XC30,”
Proceedings of the Cray User Group (CUG), 2013,
(Accessed 22.March.17). [Online]. Available: https://cug.org/

https://pubs.cray.com/#/00446663-DC/FA00237186
https://pubs.cray.com/#/00446663-DC/FA00237186
https://pubs.cray.com/#/00446663-DC/FA00223922
https://pubs.cray.com/#/00446663-DC/FA00223922
https://cug.org/proceedings/cug2016_proceedings/includes/files/tut103.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/tut103.pdf
https://redis.io/
https://redis.io/
https://github.com/redis/hiredis
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap101.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap101.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap130.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap130.pdf
https://cug.org/proceedings/cug2015_proceedings/includes/files/pap132.pdf
https://cug.org/proceedings/cug2015_proceedings/includes/files/pap132.pdf
http://docs.cray.com/PDF/CAPMC_API_Documentation_1.2.pdf
http://docs.cray.com/PDF/CAPMC_API_Documentation_1.2.pdf
http://docs.cray.com/PDF/XC_Series_Power_Management_Administration_Guide_CLE60UP03_S-0043.pdf
http://docs.cray.com/PDF/XC_Series_Power_Management_Administration_Guide_CLE60UP03_S-0043.pdf
http://docs.cray.com/PDF/XC_Series_Power_Management_Administration_Guide_CLE60UP03_S-0043.pdf
https://www.rabbitmq.com/
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap112.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap112.pdf
https://freedesktop.org/wiki/Specifications/desktop-entry-spec/
https://freedesktop.org/wiki/Specifications/desktop-entry-spec/
https://kafka.apache.org/
https://www.elastic.co/
https://grafana.com/
http://www.cray.com/sites/default/files/WP-XC30-EnergyEfficiency.pdf
http://www.cray.com/sites/default/files/WP-XC30-EnergyEfficiency.pdf
https://cug.org/proceedings/cug2013_proceedings/includes/files/pap165.pdf

	Introduction
	Plugin Code Basics
	Data Sources
	Blade-Level SEDC Data (BC SEDC)
	Cabinet-Level SEDC Data (CC SEDC)
	Cabinet- and Blade-Level Power and Energy Data (CC and BC PMDB)
	Application- and Job-Level Information

	Configuration File Overview
	Plugin Testing
	Plugin Design Considerations
	Limiting The Plugin's Impact
	Library Usage
	Timestamp Formatting
	Translating Binary Fields
	Getting Data Off-Node
	Other Formatting Considerations

	NERSC Plugin Deployment
	Some key points learned during this project.
	About the code and configuration:
	NERSC Cori Telemetry Visualization
	NERSC Cori Problem Gathering

	Conclusion
	References

