
Improving I/O Bandwidth With Cray DVS
Client-Side Caching

Bryce Hicks
Cray Inc.

Bloomington, MN USA
bryceh@cray.com

Abstract—Cray’s Data Virtualization Service, DVS, is an I/O
forwarder providing access to native parallel filesystems and to
Cray DataWarp application I/O accelerator at the largest system
scales while still maximizing data throughput. This paper intro-
duces DVS Client-Side Caching, a new option for DVS to improve
I/O bandwidth, reduce network latency costs, and decrease the
load on both DVS servers and backing parallel filesystems. Client-
side caching allows application writes to target local in-memory
cache on compute nodes. This provides low latency and high
throughput for write operations. It also allows aggregation of
data to be written back to the filesystem so fewer network and
parallel filesystem operations are required. Caching also enables
applications to reuse data previously read or written without
further network overhead. This paper will discuss motivations
for this work, detailed design and architecture, acceptable use
cases, benchmark testing results, and possibilities for future
improvement.

Index Terms—Filesystems & I/O, Performance, Caching;

I. INTRODUCTION

As the computational capabilities of large-scale HPC sys-
tems continue to improve, filesystem performance and I/O
bandwidth are increasingly becoming the bottleneck to ap-
plication performance. To address this imbalance between
compute and I/O performance new technologies are being
utilized. I/O forwarders in particular are becoming necessary
to bridge the gap between the potential scale of compute
resources and the scalability of available parallel filesystems.
However, I/O forwarders are subject to many of the same
performance concerns as distributed parallel filesystems.

Cray’s Data Virtualization Service[1], DVS, is a widely used
I/O forwarder on Cray systems. It is an in-kernel service,
providing transparent access from compute nodes to native
filesystems on service I/O nodes and to Cray DataWarp ap-
plication I/O accelerator storage via Cray system’s high-speed
network. DVS has been proven to scale to tens of thousands of
compute nodes while driving many I/O workloads at near the
maximum speeds permitted by the network. There is a subset
of application I/O patterns that have more difficulty reaching
these speeds though. These patterns include small random
reads/writes, repeating reads, and interleaved reads and writes.
The difficulty with these patterns is that every filesystem
operation from a compute node DVS client requires network
communication with a DVS server, introducing the overhead
of network latency to each operation. This is a general issue
shared across I/O forwarders as well as network filesystems.

In the case of small I/O transfers the latency costs associated
with the network communication are disproportionate to the
actual amount of data being moved. This decreases the overall
I/O bandwidth.

In order to mitigate potential bandwidth issues with such I/O
patterns, this paper introduces Cray DVS Client-Side Caching.
Client-side caching is a new option provided by DVS to
improve I/O bandwidth, reduce network latency costs, and
decrease the load on both DVS servers and backing parallel
filesystems and storage. It is implemented as a write-back
type of cache. This option allows application writes to target
local in-memory cache on compute nodes. This provides low
latency and high throughput for write operations. It also allows
aggregation of data to be written back to the filesystem.
Aggregation of write data allows the DVS client to wait
until a more optimal amount of data needs to be written
and to then write all the data via a single network operation
rather than a single operation for each write performed by an
application. This causes fewer network and parallel filesystem
operations to be required and allows for better utilization of
the network fabric. Caching also enables applications to reuse
data previously read or written that is available in the local
client cache without incurring further network overhead costs.

DVS write caching does not provide perfect cache co-
herency across disparate client nodes. Instead, it provides a
close-to-open consistency model (similar to NFS[2]) where
dirty file data in the cache is only guaranteed to be flushed to
the backing server when a file is closed, and cache revalidation
occurs when a file is opened. The combination of client-side
caching and the relaxed coherency between compute nodes
provides the greatest possible performance benefit, particularly
for the I/O patterns discussed above. However, the close-to-
open coherency model will not be acceptable for all applica-
tions or I/O patterns. For example, file-per-process applications
would be expected to always be safe. Applications requiring
immediate visibility of data written from other client nodes
may not be however. However, there are methods available
that applications can take advantage of in order to avoid any
potential coherency issues.

II. MOTIVATION

DVS is capable of driving I/O at native network band-
width and generally does a good job of maintaining this
high I/O throughput over the network. However, it can be

This paper has been submitted as an article in a special issue of Concurrency and Computation Practice and Experience on the Cray User Group 2017.

This CUG paper is a preprint of the final paper published in the CCPE Special Online Issue of CUG 2017 at 
http://onlinelibrary.wiley.com/doi/10.1002/cpe.v30.1/issuetoc



difficult to drive applications with I/O patterns making many
small random reads or writes consistently at these higher
bandwidth speeds. The reason these I/O patterns are more
difficult to drive at these higher speeds is that in a DVS client
filesystem mount every application filesystem access requires
network communication with a DVS server. This introduces
the overhead of network latency to the filesystem operation.
The cost of network latency can become more apparent with
small-sized I/O operations where only small amounts of data
are transferred in comparison to the cost of the network
access, hurting overall I/O bandwidth. This overhead can be
compounded by the fact that DVS had no ability to aggregate
separate application I/O operations on a writable DVS client
mount, forcing individual network requests for every filesys-
tem operation performed by an application. DVS also had no
means of reusing data that has been received on or originated
from a client which means that multiple network operations
may be required even when accessing data that has already
been previously read by or written from a client. Random file
accesses also prevent other performance optimizations such as
file read-ahead from providing any performance benefits. With
the advent of products such as Cray DataWarp[3] that leverage
low-latency flash technology in the HPC storage hierarchy,
the costs of this network latency are becoming the largest
contributor to overall filesystem operation latency.

Previously DVS only provided the ability to cache data
on read-only client mounts. Enabling that caching provided
the ability for clients to aggregate read requests into more
optimally sized requests and allowed the reuse of data cached
on client nodes without requiring the overhead of further net-
work communications. However, not having filesystem write
capabilities meant this option was not acceptable for many
client mount points on Cray systems. Enabling client caching
on writable mount points was not previously done due to the
potential for coherency failures across multiple compute node
clients accessing a shared file and the fact that the overhead
costs of managing that coherency would likely cancel out any
performance gains that would be seen from using caching.
Nonetheless, a means of improving the I/O bandwidth of small
random I/O operations and providing better use of previously
accessed filesystem data on clients was desired.

III. DESIGN RATIONALE AND ASSUMPTIONS

The use of a write-back method of caching combined with
the relaxed close-to-open coherency model allows applications
the best possible performance improvement for the targeted
I/O patterns. The write-back cache method provides better per-
formance than other cache write policies. For example, a write-
through type cache was prototyped but did not perform as well.
While a more straightforward model and simpler to implement,
a write-through cache requires every application write to still
be written through the local cache and immediately pushed
to backing server storage. This provided the ability to reuse
previously accessed file data from a local client cache, but
did nothing to improve on the network latency cost incurred
with sending every small application I/O request to the server,

which is one of the largest contributors to the overall filesystem
operation latencies. These other cache write policies would
actually perform worse than existing DVS today in certain
cases due to the overhead cost of cache management combined
with the lack of I/O bandwidth improvement.

The use of the client-side caching option does assume
that close-to-open coherency will be a generally acceptable
consistency model for applications performing the target I/O
types. Users are required to understand the potential limitations
of this model and take adequate measures to ensure that a given
application is acceptable for the coherency model, take steps
within the application itself to enable it to control coherency
on its own when necessary, or to not use the client-side cache
option with applications where it is not acceptable.

IV. DETAILED DESIGN

A. Linux VFS Address Space Interface

The new DVS client-side write-back cache feature is im-
plemented via the Linux kernel page cache and filesystem
address_space operations interface[4][5]. The kernel ad-
dress space objects and interfaces are well documented in the
kernel source documentation. DVS was required to implement
and set in their default address_space_operations
struct the following functions in order to allow data to be
written to the local page cache.

1) write begin: This is the initial function called by the
kernel’s generic page cache write code. It notifies the filesys-
tem to prepare for a write of a given size at a given offset.
The filesystem is expected to do any internal work necessary
to insure the write can complete. It also needs to lookup the
targeted page cache page and return it locked to the caller. The
page can be found via a call to an exported kernel function,
grab_cache_page_write_begin(). If the page cache
page is found to be new or otherwise not marked up to date
any existing filesystem data for that page will need to be read
in. This requires DVS to do a readpage operation for the
target page over the network. This is to allow the written page
to then be marked up to date to allow future reads of the page
and to allow correct write back of the entire page if only a
portion of it is written. It is possible to optimize away this read
in certain cases. For example, when the entire page is going to
be written such that none of the current data in the filesystem
will need to be maintained for write-back. Any portion of the
page that does not currently exist on the backing filesystem
may need to be zeroed to prevent previously written memory
from becoming visible via an access such as page mapping.

2) write end: Following a successful write_begin()
call and copy of user data into the given page, the kernel makes
a write_end call. This function is required to correctly
handle any writes that were shorter than originally requested
via write_begin, to unlock and release the page cache
page, and to update inode attributes as necessary.

DVS also uses this call to implement its own tracking of
currently cached pages. By tracking a queue of and number of
dirty pages DVS can aggregate contiguous dirty pages until an
optimal number to write-back to the server is reached. When



this optimal size has been reached that block of dirty pages
can be written back to the DVS server so that they can be
marked clean.

3) writepage: This operation is called by the kernel virtual
memory management system in order to write out a dirty cache
page to the backing filesystems real storage. Along with a
pointer to the target page to be written back, this operation is
also passed a writeback_control struct. The ’wbc’ struct
provides info on the type of write-back, data sync or flush, and
details on how it is to be handled such as if the write-back can
be allowed to fail or not. When called, this function may be
allowed to write out pages other than the target page as well.
Following write out this function is responsible for handling
the page flags, marking the page as no longer dirty and clearing
the write-back flag, as well as unlocking the cache page. DVS
can also utilize the cached page queue data at this point to
write back more than just the target page in order to make
more efficient use of the network write request.

4) writepages: This is another operation called by the
kernel virtual memory management system to write out
dirty pages. This version is supplied with a range of
pages to be written back. It is also supplied with a
writeback_control struct. The ’wbc’ again provides info
on how the write-back is to be handled such as if the provided
page write-back requests are required to complete as in the
case of data syncing or providing a number of pages that
should be attempted to be written if possible in the case of
flushing for memory reclamation. Again DVS will attempt to
use the available dirty page queue information to write back
as much data as possible to the server per network request.

B. Close-to-Open Coherency Model

The DVS write-back cache provides a close-to-open co-
herency model. This means that file read operations are only
guaranteed to see file data that was available on the server
at the time the file was opened and write data cached on the
client is not guaranteed to be written back to, and thus visible
on, the DVS server and backing filesystem storage until file
close time. This however does not imply that server data that
is newer than file open time can not be read by the client or
that some amount of client write data will not be written to
the server prior to file close. Instead, this can be guaranteed
only when the file is opened or closed. In order to maintain
the close-to-open consistency, any remaining dirty data for a
file will be written back to the DVS server at file close time
and any cached data on a client will be invalidated at file open
time. The standard Linux sync, flush, and invalidate operations
that DVS already previously used are used to trigger any
write-back and cache invalidation requests. The kernel VFS
virtual memory interface receives these requests and routes
the necessary requests for the target address space through the
new write-back interfaces. This is a similar coherency model
as is provided by NFS[6].

The kernel VFS interface provides caching on a kernel page
granularity. This is a 4Kb sized page in the case of the Cray
Linux Environment which is based off the SLES12 kernel.

This implies that 4Kb is the smallest amount of data that is
stored in cache, and that data is read from and written to the
server in a minimum of 4Kb blocks. This page granularity
affects coherency. Shared file access from different DVS
clients will only be coherent at page cache size boundaries.
If two DVS clients attempt to write within the boundary of
the same page coherency cannot be maintained, even if the
two clients are writing non-overlapping byte ranges within the
page. This is because both clients would attempt to cache and
write-back the entire page, unable to see the data from the
other client and ultimately conflicting with each other when
the clients write-back their cache pages. Cache access from
separate clients will be able to maintain proper coherency if
they maintain the cache page size boundaries. If the separate
clients each only write and cache distinct pages then there will
be no conflicts on the server when the pages are written back.

Beyond using file open and close requests to control co-
herency, DVS can provide more fine-grained control to user
applications that require it. The generic Linux file operations
sync, flush, and invalidate can be used by an application to
force write back of data or to clear existing data from the local
cache. Those operations used in conjunction with file locking
can allow applications on different client nodes to maintain
coherency. File locking on its own may not be enough to
maintain coherency. Application directed sync and invalidate
operations via operations such as madvise() or fadvise() would
also be required to maintain the cache correctly.

C. DVS inode Attribute Handling and Revalidation

With the addition of cached write data on DVS clients it is
now possible that inode attributes and corresponding cached
file data on the client-side could be more current than the
attributes and data the backing server has. This is a change
from normal DVS operation today where the DVS server
and backing filesystem are always expected to have the most
current state for any given file. Because of this, changes to
attribute handling were made to prevent inode revalidation on
DVS clients from overwriting updated attributes with stale
attribute info from the DVS server backing storage while
a client has cached data and inode attributes. The attribute
cache for write-caching mode is managed similarly to how
it is today. All metadata operations, such as stat() requests,
will still be pushed to the server first before also updating
the clients local attributes. This will prevent the client from
having to control pushing back all metadata operations done
throughout the lifetime of an open file when the file is closed
while still allowing the client attributes and cached data to
remain current and valid on the client. When operations using
attributes, such as a getattr request, are performed they will
use the locally cached version of the attributes preventing the
need for a network request to be sent every time attributes
are accessed. The major difference to managing attributes for
write-caching is that write operations will not be forwarded
to the DVS server. Writes will initially only target the client
page cache and any implicit file size changes caused by writes
will only be seen on the client and will not be immediately



Fig. 1. bandwidth without client-side caching

seen on the server. Those pages will eventually be pushed
to the server via the writepage() or writepages() write-back
mechanism and will trigger any implicit file size changes on
the server as the pages are written. This is a similar method
to how NFS maintains close-to-open consistency.

D. Interfaces

The new write-back cache option can be controlled via the
existing DVS ’cache’ mount option. With the addition of the
new functionality the cache option will be used to generally
enable file caching, including for both reads and writes. If
the existing functionality of only caching read data on a non-
writable filesystem is wanted, the read-only ’ro’ flag can be
used at mount time to force the DVS mount to be read-only
the same as it is currently when caching is enabled. The cache
option will not be enabled by default. Both write caching
and read only caching functionality will need to be explicitly
enabled. The write-back cache option can also be controlled
by applications through the existing DVS_CACHE environment
variable as well as the IOCTL control option. This can allow
an application to enable or disable the cache on a per-file or
per-process basis. However, allowing an application to bypass
cached data on the filesystem could lead to coherency issues
between the local cached file data and what is read from the
backing filesystem. This could lead to a process seeing stale
file or attribute data. It is important that the application not
misuse the option when caching write data.

V. EXPERIMENTAL EVALUATION

Benchmark testing runs have shown positive results, par-
ticularly for the small-sized I/O patterns the write-caching
feature was intended for. Previously DVS showed that with
smaller I/O transfer sizes a lower overall I/O bandwidth speed
was achieved. That bandwidth then would increase as the
transfer size was increased to more optimal sizes (see Figure
1). With client-side caching enabled, DVS was able to achieve
much higher bandwidth with small transfer sizes and those
bandwidth speeds stayed more consistent across transfer sizes
(figure 2).

I/O benchmarks intended to measure filesystem throughput
have shown bandwidth increases at small I/O transfer sizes.

Fig. 2. bandwidth with client-side caching

The IOR benchmark has shown a 10x increase in small transfer
size runs with client-side caching enabled. Crays internal
IOPERF benchmark has shown a 100x increase in similar
small transfer runs.

Customer benchmark runs have shown similar performance
improvements. ToPNet is one benchmark showing a speedup.
ToPNet is a single threaded application using netCDF with
HDF5. It does repeated small reads and writes to a few small
sized files making it a good candidate for client-side caching.
One ToPNet run showed an improvement from 664 seconds
without caching to only 114 seconds with write caching. A
longer running customer ToPNet benchmark job running on a
DVS exported GPFS filesystem improved from a 58.54 minute
completion time down to a 34.84 minute completion time
with client-side caching enabled. Another customer benchmark
running Nastran also showed improvement. When ran on a
DVS export of Crays DataWarp I/O accelerator the runtime
of Nastran decreased from 9 minutes 55 seconds on a typical
striped DataWarp filesystem to 6 minutes 51 seconds when
using DataWarp with client-side caching enabled on the DVS
mount point.

One potential downside of client-side caching that had
been anticipated at design time was also proven correct by
benchmark testing. It was theorized that the overhead costs of
managing the page cache on clients could actually decrease
the bandwidth of larger I/O transfer sizes that are already well
optimized on DVS. I/O benchmarks used to test write band-
width as transfer sizes increased showed an example of this.
That test, using IOR, showed that while bandwidth increased
for most transfer sizes, once the transfer size reached 512Kb
the total bandwidth decreased. Further performance tuning
is likely to be able to reduce or eliminate the performance
difference for these larger, already well optimized transfer
sizes.

VI. OPPORTUNITIES FOR IMPROVEMENTS

There are some possibilities for future work to improve on
the new client-side caching feature. The most advantageous
improvements would be changes related to the coherency
model. Changes to the coherency model in order to make



the caching feature compatible with more user applications
without requiring changes or special configurations would
be useful. That could prove difficult to implement however
because the overhead of providing perfect coherency across
large scales of compute nodes could potentially cancel out
the improvements seen from caching. Other possibilities for
coherency improvements could be automatically detecting
when applications arent using block aligned I/O in order
to disable caching automatically to maintain coherency or
providing a model similar to what NFS refers to as weak
cache consistency. That model enables clients to detect if they
have stale file info with only minimal coherency management
overhead. The existing DVS attrcache_timeout option
could also be connected to write caching in order to make
it configurable how long data should be cached and when
attributes should be revalidated. That could bring the client-
side caching coherency model much closer to what is provided
by DVS today.

Other improvements related to performance and tuning
could also be made. The most helpful would be improving
performance for larger transfer sizes. Changes to the write-
back heuristics in order to make the write-back transfers more
similar to those done for larger write requests is likely to help
performance. Another option may be to make some write-back
operations asynchronous to enable the application to continue
making forward progress while write-backs are performed in
the background. Recent changes in the Linux kernel to allow
page write-back to be performed without holding the page

lock could improve performance by allowing access to cached
pages even while under write-back.

VII. CONCLUSION

Usage of the new client side caching functionality, where
appropriate, helps to mitigate some of the possible downsides
of using a network I/O forwarder. It provides another tier
of data storage for written file data by allowing application
writes to be completed quickly to local high-speed memory.
Optimized write-back of aggregated data to backing storage
decreases filesystem access latency and overall network, DVS
server, and backing filesystem load. Benchmark testing with
client-side caching enabled has shown improvements for small
transfer size writes of up to 100x as well as similar improve-
ments for read speeds by enabling caching of read data even
on writeable filesystems.

REFERENCES

[1] S. Sugiyama and D. Wallace, “Cray DVS: Data Virtualization Service,”
in Cray User Group Conference (CUG), 2008.

[2] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, “Design
and Implementation or the Sun Network Filesystem,” 1985.

[3] D. Henseler, B. Landsteiner, D. Petesch, C. Wright, and N. J. Wright,
“Architecture and Design of Cray DataWarp,” in Cray User Group
Conference (CUG), 2016.

[4] R. Gooch, “Overview of the linux virtual file system.”
https://www.kernel.org/doc/Documentation/filesystems/vfs.txt.

[5] “locking rules for vfs-related methods.”
https://www.kernel.org/doc/Documentation/filesystems/Locking.

[6] “Linux nfs overview, faq and howto documents.”
http://nfs.sourceforge.net.


	Introduction
	Motivation
	Design Rationale and Assumptions
	Detailed Design
	Linux VFS Address Space Interface
	write_begin
	write_end
	writepage
	writepages

	Close-to-Open Coherency Model
	DVS inode Attribute Handling and Revalidation
	Interfaces

	Experimental Evaluation
	Opportunities for Improvements
	Conclusion
	References

