
Using DataWarp

Glen Overby
Cray Inc., Bloomington, MN

Email: overby@cray.com

Abstract— Cray DataWarp is a set of technologies that
accelerates application I/O in order to reduce job wall clock
time. It creates a near storage layer between main memory and
hard disk drives. DataWarp uses direct attached solid-state
disk (SSD) storage to provide more cost-effective bandwidth
than an external parallel file system (PFS), allowing DataWarp
to be provisioned for bandwidth and the PFS to be provisioned
for capacity and resiliency. Placing this storage between the
application and the PFS allows application I/O to be decoupled
from (and in some cases eliminating) PFS I/O.

Keywords- Filesystems & I/O, DataWarp

I. INTRODUCTION

Cray DataWarp™ is an infrastructure creating a near

storage layer between main memory and hard disk drives. It
uses direct attached solid-state disk (SSD) storage to provide
more bandwidth than an external parallel file system (PFS)
allowing DataWarp to be provisioned for bandwidth and the
PFS to be provisioned for capacity and resiliency. Placing
this storage between the application and the PFS allows
application I/O to be decoupled from (and in some cases
eliminating) PFS I/O.

DataWarp space is requested through the workload

manager with a request syntax that is unique to DataWarp,
but common across workload managers. The allocation
request will specify the type of request, the amount of space
to allocate, and other parameters related to its use. This paper
will provide examples showing how to use this syntax with
applications.

There are two major types: scratch and cache. The

scratch access type is a space allocation with its own
directory hierarchy; each instance is a filesystem separate
from the system’s parallel filesystem and all other DataWarp
instances. All files are contained on the SSD and any data to
be copied to/from a parallel filesystem by DataWarp must be
specified in the batch job or initiated by the application.
Cache access type is a buffering layer in front of a parallel
filesystem, much like a processor’s cache is a buffering layer
in front of main system memory. At the end of the batch job,
any modified file data will be automatically written back to
the PFS.

II. SCRATCH USAGE
A scratch filesystem is requested by specifying it and its

size in special directives in a batch job. An application
accesses the scratch filesystem through the environment

variable $DW_JOB_STRIPED. DataWarp, through the
batch scheduler, sets this environment variable to point to the
directory on the compute nodes where the DataWarp
filesystem can be accessed. An application or job script may
need to be modified to use this directory.

The examples in this paper will use the IOR benchmark

as an example application.

The first example uses two separate job steps each

running IOR to write a file and check the data. Access to the
filesystem that DataWarp presents on the compute nodes is
done through an environment variable. Each different access
mode uses a different environment variable. This request is
for a per-job striped space and uses the environment variable
$DW_JOB_STRIPED. This space is mounted only on the
compute nodes (not on the login or batch MOM nodes).

At the end of the job, the files remaining on the

filesystem are deleted when the SSD space is freed to the
DataWarp pool.

#!/bin/bash
#MSUB -l nodes=16:ppn=4
#MSUB -l walltime=1:00:00
#DW jobdw type=scratch access_mode=striped

capacity=2TiB

aprun -n 64 IOR -a POSIX -g -b 8G -t 1M -e

-o $DW_JOB_STRIPED/ior_example_1 -G
1234567890 –w -k

aprun -n 64 IOR -a POSIX -g -b 8G -t 1M -e

-o $DW_JOB_STRIPED/ior_example_1 -G
1234567890 -W

DataWarp has a mechanism called staging where it will

copy data to or from the PFS on behalf of the user. A batch
job can specify what data is copied into DataWarp prior to
the job being launched, and the copy out being done after the
job completes. An application can make calls to the
DataWarp library to request files be staged in while the
application runs, and to mark files to be staged out, either
while the application is running, or after the job completes.
The staging happens asynchronously to the application’s
execution and I/O.

The next example extends the first example by adding

staging out of the generated data file to a Lustre filesystem:

#!/bin/bash
#MSUB -l nodes=16:ppn=4
#MSUB -l walltime=1:00:00
#DW jobdw type=scratch access_mode=striped

capacity=2TiB
#DW stage_out type=file

destination=/lus/scratch/overby/example_1
source=$DW_JOB_STRIPED/ior_example_1

aprun -n 64 IOR -a POSIX -g -b 8G -t 1M -e

-o $DW_JOB_STRIPED/ior_example_1 -G
1234567890 –w -k

aprun -n 64 IOR -a POSIX -g -b 8G -t 1M -e

-o $DW_JOB_STRIPED/ior_example_1 -G
1234567890 –W -k

The source line must start with the DataWarp space to be

staged from. Even though the name looks like a shell
environment variable, on the #DW lines it really isn't. The
name can only be one of the variables for striped type
storage.

When this example job completes, the data file will be

copied out to the PFS by the DataWarp service nodes as
directed by the stage_out directive. If the job is sized to use
many DataWarp service nodes, all of them will participate in
copying the data.

A directory hierarchy can be copied by changing

type=file to type=directory.

The next example uses staging to copy a data file in, and

to copy a directory of results out.

Running IOR with the following options creates the input

data file:

IOR -o /lus/snx11108/overby/ex3_data -k -v

-b 64m -t 1m -E -C -w -G 1248

The batch job for this example is:

#!/bin/bash
#SBATCH --ntasks=16
#SBATCH --ntasks-per-node=8
#SBATCH --cpus-per-task=1
#SBATCH --job-name=example3
#DW jobdw type=scratch access_mode=striped

capacity=128GiB
#DW stage_in type=file

source=/lus/snx11108/overby/ex3_data
destination=$DW_JOB_STRIPED/input

#DW stage_out type=directory
destination=/lus/snx11108/overby/results3
source=$DW_JOB_STRIPED/output

echo DW_JOB_STRIPED $DW_JOB_STRIPED

srun -n 16 IOR -o $DW_JOB_STRIPED/input -k

-v -b 64m -t 1m -E -C -W -r -G 1248

srun -n 1 mkdir $DW_JOB_STRIPED/output

srun -n 16 IOR -o
$DW_JOB_STRIPED/output/res -k -v -b 64m -t 1m
-E -C -w -G 163264 -F

A goal of using DataWarp this way is to reduce the

amount of time that a batch job requires on a system's
compute nodes by staging in data prior to the job start, where
it can be read from the faster SSDs, and writing the job
output to SSD and staging it out to the PFS after the job has
ended.

Applications can initiate or schedule staging directly,

using an API. The API calls are found in libdatawarp and
can be linked against by doing ‘module load datawarp’ or
calling pkg-config cray-datawarp:

Use dw_stage_file_in function to move a file from PFS

to DataWarp
int r = dw_stage_file_in(dw_file,

pfs_file);

Use dw_stage_file_out function to move a file from

DataWarp to PFS
int r = dw_stage_file_out(dw_file,

pfs_file, DW_STAGE_IMMEDIATE);

Stage out can be immediate, or deferred to the end of the

job.

One use case is for staging checkpoint files out of

DataWarp. After a checkpoint file is written, the files can be
marked for a deferred stage out, and the previous checkpoint
files have their stage out cancelled (or the files deleted).
This way if the application aborts, its latest checkpoint will
be copied out to the PFS for later use in restarting (this can
be extended to multiple checkpoints).

A. Persistent instances

DataWarp also provides storage that can be used across

jobs, including jobs run by different users. The storage is
requested outside of a batch job, and remains until it is
deleted, or optionally its lifetime expires. Any user can
request a persistent instance subject to the workload manager
configuration, but standard POSIX file permissions still
apply to the files.

However, failure of one SSD will result in losing the data

on it. Keep a backup copy of any critical data on a parallel
filesystem! Staging can be used to make a backup copy.

Each workload manager has a different way of creating

persistent instances.

When using the SLURM workload manager, a persistent
instance is requested by submitting a job with the following
request:

#BB create_persistent name=overby123

capacity=1GiB access=striped type=scratch
The following example requests access to two persistent

instances. The persistent instance is named on a #DW line,
and the environment variable set by DataWarp is
$DW_PERSISTENT_STRIPED_name where the name is
the name of the persistent instance.

#!/bin/bash
#MSUB -l nodes=16:ppn=4
#MSUB -l walltime=1:00:00
#DW persistentdw name=overby123
#DW persistentdw name=overby987

echo DW_PERSISTENT_STRIPED_overby123

$DW_PERSISTENT_STRIPED_overby123
echo DW_PERSISTENT_STRIPED_overby987

$DW_PERSISTENT_STRIPED_overby987

aprun -n 64 IOR -a POSIX -g -b 8G -t 1M -e

-o $DW_PERSISTENT_STRIPED_overby123/input1 -G
1234567890 -w -W -r

aprun -n 64 IOR -a POSIX -g -b 8G -t 1M -e

-o $DW_PERSISTENT_STRIPED_overby987/input2 -G
1248163264 -w -W -r

Staging can be used to copy data into or out of a

persistent instance by specifying the persistent instance's
reference variable in the source or destination:

#!/bin/bash
#MSUB -l walltime=1:00:00
#MSUB -l nodes=1
#DW persistentdw name=overby123
#DW persistentdw name=overby987
#DW stage_in type=file

source=/lus/dal/overby/example_1_in
destination=$DW_PERSISTENT_STRIPED_overby123/
example_1B_on_dw

#DW stage_in type=file
source=/lus/dal/overby/example_1_in
destination=$DW_PERSISTENT_STRIPED_overby987/
example_1_on_dw

#DW stage_out type=file
destination=/lus/dal/overby/example_1_out
source=$DW_PERSISTENT_STRIPED_overby123/examp
le_1_on_dw

B. Private Access Mode

An alternative to stripe access mode is private. A private

type instance has a directory hierarchy for each compute
node, but the SSD space is shared. A use case for this is an
application that uses temporary files, but requires more
temporary space than /tmp, a ram disk on the compute node,
provides. With a private access type the application on each
node can use the filesystem without concern for having
filename collisions.

Data can be restricted to one DataWarp service node, or

striped across all service nodes.
Each namespace has its own metadata server (MDS), and

the MDS are spread across the service nodes that are used for
the filesystem. This is the primary difference between
striped and private.

#!/bin/bash
#MSUB -l nodes=16:ppn=4
#MSUB -l walltime=1:00:00
#DW jobdw type=scratch access_mode=private

capacity=100GiB

echo DW_JOB_PRIVATE $DW_JOB_PRIVATE

aprun -n 1 df -h $DW_JOB_PRIVATE

Example that combines private and striped:

#!/bin/bash
#MSUB -l nodes=16:ppn=4
#MSUB -l walltime=1:00:00
#DW jobdw type=scratch

access_mode=striped,private capacity=100GiB

echo DW_JOB_STRIPED $DW_JOB_STRIPED
echo DW_JOB_PRIVATE $DW_JOB_PRIVATE

aprun -n 1 df -h $DW_JOB_STRIPED

$DW_JOB_PRIVATE

III. CACHE USAGE

A cache filesystem is requested by specifying its size and
a backing PFS directory in the DataWarp job directives.

When using the cache access type, a directory on a

parallel filesystem must be specified in the pfs parameter.
The directory listed in the pfs parameter must be a directory
that is in a white list of permitted directories. This is
typically the mount points of Lustre filesystems. The white
list is needed to prevent circumventing directory
permissions.

Before submitting the job, create a data file with a job
that runs this command:

aprun -n 16 IOR -o /lus/snxs1/overby/example_3_input -
k -v -b 64m -t 1m -E -C -w -G 163264

#!/bin/bash
#MSUB -l nodes=4:ppn=4
#MSUB -l walltime=1:00:00
#DW jobdw type=cache access_mode=striped

capacity=4GiB pfs=/lus/snxs1

echo DW_JOB_STRIPED_CACHE
$DW_JOB_STRIPED_CACHE

aprun -n 1 ls -al

$DW_JOB_STRIPED_CACHE/overby/example_3_input

Read a file on the PFS through cache
aprun -n 16 IOR -o

$DW_JOB_STRIPED_CACHE/overby/example_3_input
-k -v -b 64m -t 1m -E -C -W -G 163264

Write a file to cache and read it back
aprun -n 16 IOR -o

$DW_JOB_STRIPED_CACHE/overby/example_3_cache
-k -v -b 64m -t 1m -E -C -w -G 163264 -W

A. Load Balance

Cache can alternatively be used in a load-balanced

configuration, where each service nodes cache data
independently of each other, providing multiple cache points
across the system. Each service node serves a subset of the
compute nodes in the job. This configuration is read-only.

This mode is useful for things like executables, libraries,
and shared data.

#!/bin/bash
#MSUB -l nodes=32:ppn=4
#MSUB -l walltime=1:00:00
#DW jobdw type=cache access_mode=ldbalance

capacity=2GiB pfs=/lus/scratch

echo DW_JOB_LDBAL_CACHE

$DW_JOB_LDBAL_CACHE

aprun -n 1 ls -al $DW_JOB_LDBAL_CACHE
aprun -n 1 df -h $DW_JOB_LDBAL_CACHE

REFERENCES

[1] Dave Henseler, Benjamin Landsteiner, Doug Petesch, Cornell
Wright, and Nicholas J. Wright, “Architecture and Design of Cray
DataWarp,” Proc. Cray Users’ Group Technical Conference (CUG),
2016

[2] (2015) Cray DataWarp User’s Manual, Cray Inc. [Online] Available:
http://docs.cray.com/books/S-2558-5204

[3] (2015, November) Slurm Burst Buffer Guide. SchedMD LLC.
[Online]. Available: http://slurm.schedmd.com/burst buffer.html

Example #1: Using DataWarp between job steps

#!/bin/bash
#MSUB -l nodes=16:ppn=4
#MSUB -l walltime=1:00:00
#DW jobdw type=scratch access_mode=striped capacity=2TiB

aprun -n 64 IOR -a POSIX -g -b 8G -t 1M -e -o $DW_JOB_STRIPED/ior_example_1 -G 1234567890 –w -k

aprun -n 64 IOR -a POSIX -g -b 8G -t 1M -e -o $DW_JOB_STRIPED/ior_example_1 -G 1234567890 –W

Example #2: Stage out of results
#!/bin/bash
#MSUB -l nodes=16:ppn=4
#MSUB -l walltime=1:00:00
#DW jobdw type=scratch access_mode=striped capacity=2TiB
#DW stage_out type=file destination=/lus/scratch/overby/example_1 source=$DW_JOB_STRIPED/ior_example_1

aprun -n 64 IOR -a POSIX -g -b 8G -t 1M -e -o $DW_JOB_STRIPED/example_1 -G 1234567890 –w -k

aprun -n 64 IOR -a POSIX -g -b 8G -t 1M -e -o $DW_JOB_STRIPED/example_1 -G 1234567890 –W -k

Example #3
#!/bin/bash
#SBATCH --ntasks=16
#SBATCH --ntasks-per-node=8
#SBATCH --cpus-per-task=1
#SBATCH --job-name=example3
#DW jobdw type=scratch access_mode=striped capacity=128GiB

#DW stage_in type=file source=/lus/snx11108/overby/ex3_data destination=$DW_JOB_STRIPED/input
#DW stage_out type=directory destination=/lus/snx11108/overby/results3 source=$DW_JOB_STRIPED/output

echo DW_JOB_STRIPED $DW_JOB_STRIPED

srun -n 16 IOR -o $DW_JOB_STRIPED/input -k -v -b 64m -t 1m -E -C -W -r -G 1248

srun -n 1 mkdir $DW_JOB_STRIPED/output
srun -n 16 IOR -o $DW_JOB_STRIPED/output/res -k -v -b 64m -t 1m -E -C -w -G 163264 –F

Example 4

#!/bin/bash
#MSUB -l nodes=16:ppn=4
#MSUB -l walltime=1:00:00
#DW persistentdw name=overby123
#DW persistentdw name=overby987

echo DW_PERSISTENT_STRIPED_overby123 $DW_PERSISTENT_STRIPED_overby123
echo DW_PERSISTENT_STRIPED_overby987 $DW_PERSISTENT_STRIPED_overby987

aprun -n 64 IOR -a POSIX -g -b 8G -t 1M -e -o $DW_PERSISTENT_STRIPED_overby123/input1 -G 1234567890 -w -W

-r

aprun -n 64 IOR -a POSIX -g -b 8G -t 1M -e -o $DW_PERSISTENT_STRIPED_overby987/input2 -G 1248163264 -w -W

-r

Example 5
#!/bin/bash
#MSUB -l walltime=1:00:00
#MSUB -l nodes=1
#DW persistentdw name=overby123
#DW persistentdw name=overby987
#DW stage_in type=file source=/lus/dal/overby/example_1_in

destination=$DW_PERSISTENT_STRIPED_overby123/example_1B_on_dw
#DW stage_in type=file source=/lus/dal/overby/example_1_in

destination=$DW_PERSISTENT_STRIPED_overby987/example_1_on_dw
#DW stage_out type=file destination=/lus/dal/overby/example_1_out

source=$DW_PERSISTENT_STRIPED_overby123/example_1_on_dw

Example 6
#!/bin/bash
#MSUB -l nodes=16:ppn=4
#MSUB -l walltime=1:00:00
#DW jobdw type=scratch access_mode=private capacity=100GiB

echo DW_JOB_PRIVATE $DW_JOB_PRIVATE

aprun -n 1 df -h $DW_JOB_PRIVATE

Example 7: combine private and scratch:

#!/bin/bash
#MSUB -l nodes=16:ppn=4
#MSUB -l walltime=1:00:00
#DW jobdw type=scratch access_mode=striped,private capacity=100GiB

echo DW_JOB_STRIPED $DW_JOB_STRIPED
echo DW_JOB_PRIVATE $DW_JOB_PRIVATE

aprun -n 1 df -h $DW_JOB_STRIPED $DW_JOB_PRIVATE

Example 8
#!/bin/bash
#MSUB -l nodes=4:ppn=4
#MSUB -l walltime=1:00:00
#DW jobdw type=cache access_mode=striped capacity=4GiB pfs=/lus/snxs1

echo DW_JOB_STRIPED_CACHE $DW_JOB_STRIPED_CACHE

aprun -n 1 ls -al $DW_JOB_STRIPED_CACHE/overby/example_3_input

Read a file on the PFS through cache
aprun -n 16 IOR -o $DW_JOB_STRIPED_CACHE/overby/example_3_input -k -v -b 64m -t 1m -E -C -W -G 163264

Write a file to cache and read it back
aprun -n 16 IOR -o $DW_JOB_STRIPED_CACHE/overby/example_3_cache -k -v -b 64m -t 1m -E -C -w -G 163264 -W

Example 9

#!/bin/bash
#MSUB -l nodes=32:ppn=4
#MSUB -l walltime=1:00:00
#DW jobdw type=cache access_mode=ldbalance capacity=2GiB pfs=/lus/scratch

echo DW_JOB_LDBAL_CACHE $DW_JOB_LDBAL_CACHE

aprun -n 1 ls -al $DW_JOB_LDBAL_CACHE
aprun -n 1 df -h $DW_JOB_LDBAL_CACHE

