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Abstract

We study the attainable performance of Particle-In-Cell codes on the Cori KNL
system by analyzing a miniature particle push application based on the fusion PIC
code XGC1. We start from the most basic building blocks of a PIC code and build
up the complexity to identify the kernels that cost the most in performance and fo-
cus optimization efforts there. Particle push kernels operate at high AI and are not
likely to be memory bandwidth or even cache bandwidth bound on KNL. There-
fore, we see only minor benefits from the high bandwidth memory available on
KNL, and achieving good vectorization is shown to be the most beneficial opti-
mization path with theoretical yield of up to 8x speedup on KNL. In practice we
are able to obtain up to a 4x gain from vectorization due to limitations set by the
data layout and memory latency.

1 INTRODUCTION
Magnetic confinement devices are at present the most promising path towards con-
trolled nuclear fusion for sustainable energy production [1]. The most successful de-
sign is the tokamak, a toroidal device where a burning hydrogen plasma is confined by
a combination of magnetic field coils and an externally induced plasma current [2]. The
ITER project [3], currently in construction phase in southern France, aims at demon-
strating the feasibility of a tokamak fusion power plant in the 2030’s. To ensure the
success of ITER, and to pave the path towards commercial production of fusion en-
ergy, self-consistent simulations of the plasma behavior in the whole tokamak volume
at exascale are absolutely essential in understanding how to avoid the many pitfalls
presented by the complex plasma phenomena that are born from the interplay of elec-
tromagnetic fields and charged particles in a fusion reactor.

The Particle-In-Cell (PIC) method is commonly used for simulating plasma phe-
nomena in various environments [4, 5, 6], since directly computing the N2 number of
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particle-particle interactions is impractical. A PIC code solves the kinetics of the parti-
cle distribution and the evolution of electromagnetic fields self-consistently. Typically
PIC codes consist of four steps that are iterated in a time-stepping loop: (1) field solve,
(2) field gather, (3) particle push, and (4) charge deposition. In fusion applications
that deal with collisional plasmas, a collision step is normally added. Also, at scale,
a particle shift step is introduced that consists of communication between processes
due to the motion of particles between computational domains. Steps (1) and (3) are
computation intensive, involving linear algebra and time integration of the equations
of motion. Steps (2) and (4) are mapping steps that are dominated by memory access.

The vast majority of fusion PIC applications use the gyrokinetic theory [7] to re-
duce the dimensionality of the kinetic problem and, therefore, achieve large savings in
computation time. However, it requires calculating higher order derivatives in steps (2)
and (3) that set them apart from PIC codes in other fields. Typically the compute time
in gyrokinetic PIC codes is dominated by the electron push cycle. Electrons move at
a much higher speed than ions and therefore need to be advanced with a much shorter
time step. Many codes employ an electron sub-cycling loop where electron-scale field
fluctuations are neglected and the electrons are pushed for O(10) time steps between
field solves. The electron sub-cycling loop is a prime candidate for performance opti-
mization since it’s trivially parallelizable and has a high arithmetic intensity. The main
obstacle for high performance is random memory access due to the complex motion of
the electrons across the grid.

Cori is the first large-scale supercomputer that is leveraging the Intel Knights Land-
ing (KNL) architecture [8]. It is installed at the National Energy Research Scientific
Computing Center (NERSC) at Lawrence Berkeley Laboratory (LBL) in Berkeley, CA.
At present it has 9688 KNL nodes and 2004 Haswell nodes, making it the world’s 5th
fastest supercomputer on the top 500 list. However, getting good code performance on
KNL is not always trivial due to various features of the KNL architecture; large num-
ber of relatively slow processors, high-bandwidth memory and wide vector processing
units. In order to enable key scientific applications to run on Cori, NERSC started
the NERSC Exascale Science Applications Program (NESAP) in 2014 [9]. One of the
outcomes of NESAP is the development a new methodology for optimizing application
performance on KNL [10]. The XGC1 code [11] is the only fusion PIC application ac-
cepted to NESAP and serves as a test case for other fusion PIC codes that aspire to run
on Cori KNL and future Intel Xeon Phi systems. The unique feature of XGC1 is that
it uses real-space coordinates and an unstructured mesh for the field solution making it
capable of simulating the full tokamak volume simultaneously.

2 Description of the Toypush Mini-App
We have identified the electron push sub-cycle as the main hotspot of the gyrokinetic
XGC1 PIC code [12, 13]. In a typical XGC1 run, the electron push kernel contributes
70% - 80% of the total spent CPU time. Furthermore, the electron push kernel scales
almost ideally up to a million cores due to its very low communication overhead [14].
Therefore, it is sufficient to tune its performance on a single node, or even a single core,
to improve the performance of the XGC1 code at scale. To study the performance of the



particle push step we have developed a lightweight mini-application that we call Toy-
push. The source code is available at https://github.com/tkoskela/toypush.
The optimizations discussed in this paper are contained in separate git commits. See
Appendix A for a reference to the relevant commits in the repository. The mini-app
iterates through steps (2) and (3) of the PIC cycle, i.e. field gather and particle push,
but does not perform the field solve or charge deposition steps. The motivation for this
exercise is to start with a very simple code that ideally can run at close to peak perfor-
mance and gradually build up complexity and identify which features of the production
code limit the performance and study what can be done to optimize them. This way, we
avoid the complications of disentangling interconnected parts of the production code
for detailed analysis. The code has been written in Fortran 90, using a hybrid MPI and
OpenMP programming model for parallelization.

The particle push algorithm integrates the gyrokinetic equations of motion [11]
forward in time using a 4th order Runge-Kutta algorithm. At each time step, the electric
field ~E and the magnetic field ~B are interpolated from the mesh vertices to the particle
position. After each time step, a search is performed on the unstructured mesh to
find the nearest grid nodes to the new position of the particle. In this paper we focus
on interpolation from the unstructured mesh to the particle position, which is only
performed for ~E in the electrostatic version of XGC1 that is used for most production
runs.

Two types of data are kept in memory during the run, grid and particle data. All
loops of Toypush are vectorizable, so the data must be accessible contiguously on
cache lines for optimal performance. Seven double precision floating point numbers are
stored for each particle, three spatial coordinates, two velocity space coordinates, mass
and charge. For programming convenience, and to follow the convention of XGC1, the
seven particle fields are stored in a derived data type particle data that is passed
to the push subroutines. All variables are in 1-D arrays whose size is the total number
of particles, except for the spatial coordinates(R,φ ,z). All three coordinates are needed
whenever the position of the particle is calculated, and therefore they are stored in a
2-D array where they can be accessed with unit stride. The grid data is stored in global
arrays. At each grid node, 12 floating point numbers are stored, three electric field
components, three spatial coordinates, and a 2x3 mapping array that maps real space
coordinates to barycentric coordinates. In addition, each grid element is defined by
three integers that map to node indices.

We have profiled the code using Vtune software and will discuss the main hotspots
in more detail in the remainder of this section.

2.1 Triangle Mesh Interpolation
To simulate unstructured mesh field access, we first set up an “unstructured” mesh
that consists of a single mesh element and later expand it to multiple mesh elements.
Changing the number of elements does not introduce any new features from the com-
putational point of view, but merely adjusts the particles per element ratio.

The interpolation algorithm on the unstructured mesh is a linear interpolation in
barycentric coordinates of the triangular mesh element [18]. Three field components
and three coordinates are accessed for each of the three vertices of the triangle. Each



Code 1: A sample code of the field interpolation routine on the unstructured mesh.
The outer loop index iv is a loop over a block of particles. The index itri and the
coordinates y are unique to each particle and an input to this routine. The variables
mapping tri and efield are stored for each vertex at the beginning of the push step.
The output of the interpolation is stored in evec for each particle. In the inner double
loop index i runs over the three vertices of triangle tri and index j runs over the three
Cartesian components of the field efield.

1 evec = 0D0
2 do i v = 1 , v e c l e n
3 dx ( 1 ) = y ( iv , 1 ) − mapping ( 1 , 3 , i t r i ( i v ) )
4 dx ( 2 ) = y ( iv , 3 ) − mapping ( 2 , 3 , i t r i ( i v ) )
5 b c c o o r d s ( 1 : 2 ) = &
6 mapping ( 1 : 2 , 1 , i t r i ( i v ) ) ∗ dx ( 1 ) + &
7 mapping ( 1 : 2 , 2 , i t r i ( i v ) ) ∗ dx ( 2 )
8 b c c o o r d s ( 3 ) = 1 . 0 D0 − b c c o o r d s ( 1 ) − b c c o o r d s ( 2 )
9 do i = 1 ,3

10 do j = 1 ,3
11 evec ( iv , i ) = evec ( iv , i ) + &
12 e f i e l d ( j , t r i ( i , i t r i ( i v ) ) ) ∗ &
13 b c c o o r d s ( i )
14 end do
15 end do
16 end do

particle has a unique identifier itri that points to the triangle the particle is in that is
updated after every particle push. All data on the grid is accessed indirectly through
this identifier and its value is not known before a search function is called after the
push is complete. The search function is discussed in Section 2.3. An extract from the
interpolation code is shown in Code 1.

2.2 Equation of Motion
The gyrokinetic Equations of Motion (EoM) integrated in the mini-app are equivalent
to the one in XGC1,
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where u is the parallel speed of the particle in the direction of the local magnetic
field vector ~B, b̂ = ~B/B, µ is the magnetic moment and ~E is the gyroaveraged electric
field. The EoM is integrated with a standard RK4 algorithm. The calculation of the



Code 2: A sample code of the mesh search routine. The calculation of the barycentric
coordinates is similar to Code 1 but now the calculation is done for each mesh element.
The variable eps is set close to zero. When the search condition is fulfilled itri is stored
in the output array id and the search loop cycles to the next particle.

1 i d = −1
2 p a r t i c l e l o o p : do i v = 1 , v e c l e n
3 t r i a n g l e l o o p : do i t r i = 1 , n t r i
4 dx ( 1 ) = y ( iv , 1 ) − mapping ( 1 , 3 , i t r i )
5 dx ( 2 ) = y ( iv , 3 ) − mapping ( 2 , 3 , i t r i )
6 b c c o o r d s ( 1 : 2 ) = &
7 mapping ( 1 : 2 , 1 , i t r i ) ∗ dx ( 1 ) + &
8 mapping ( 1 : 2 , 2 , i t r i ) ∗ dx ( 2 )
9 b c c o o r d s ( 3 ) = 1 . 0 D0 − b c c o o r d s ( 1 ) − b c c o o r d s ( 2 )

10 i f ( minval ( b c c o o r d s ) . ge . −eps ) then
11 i d ( i v ) = i t r i
12 c y c l e v e c l o o p
13 end i f
14 end do t r i a n g l e l o o p
15 end do p a r t i c l e l o o p

terms in ~̇X , ~u and D has high Arithmetic Intensity (AI) due to multiple vector cross
products, and can benefit from good cache reuse. The inverses of terms that appear
in the denominator, such as B2 and R are precomputed to avoid unnecessary divide
instructions.

2.3 Mesh Search
The mesh search routine takes advantage of the fact that each of the barycentric coor-
dinates is greater than 0 inside a triangle. In order to search if a point p is inside a mesh
element, the algorithm computes the barycentric coordinates of p and compares the
lowest value of against 0. If the result of the comparison is true the search is successful
and exits, if the result is false the search continues to the next element. In the mini-app,
the whole grid is searched until a matching element is found1. The grid elements are
searched in the order in which they are stored in the global grid array2.

3 Measurement of Baseline Performance
We use the roofline methodology [15, 16] in our performance measurements to dis-
cuss performance on an absolute scale. The roofline model is a visual performance

1In XGC1 there is a precomputed filtering layer on top of the mesh in the search algorithm that limits the
search to a small number of elements, typically less than 20.

2In XGC1, the filter sorts the grid elements in order of decreasing probability to complete the search.



model that can be applied to both applications and computing architectures. It de-
scribes performance in terms of flops per second (FLOPS) as a function of Arithmetic
Intensity (AI), the ratio of the FLOPS executed vs the bytes read from some level of
the cache memory hierarchy. A computing architecture will set roofs of achievable
performance that are bound by the compute capability and the memory bandwidth.
Placing an application’s hot kernels on the roofline chart will give information on at-
tainable performance, current performance bounds, and most promising optimization
directions [10]. We used Intel Vector Advisor 2017 to measure the flops performed and
bytes transferred from memory by the application to construct the roofline chart.

We ran the code on a single Knights Landing node of the Cori Gerty testbed. The
Cori KNL system has a peak performance of about 29.1 PFLOPS/s and is comprised of
9,688 self-hosted KNL compute nodes. Each KNL processor includes 68 cores running
at 1.3GHz and capable of hosting 4 HyperThreads (272 HyperThreads per node). Each
out-of-order superscalar core has a private 32KiB L1 cache and two 512-bit wide vector
processing units (supporting the AVX-512 instruction set). Each pair of cores (called
“tile”) shares a 1MiB L2 cache and each node has 96GiB of DDR4 memory and 16GiB
of on-package high bandwidth (MCDRAM) memory. The MCDRAM memory can be
configured into different modes, here we only utilize the cache mode in which the
MCDRAM acts as a 16GiB L3 cache for DRAM. Additionally, MCDRAM can be
configured in flat mode in which the user can address the MCDRAM as a second
NUMA node. The on-chip directory can be configured into a number of modes, but
in this publication we only consider quad mode, i.e. in quad-cache mode where all
cores are in a single NUMA domain with MCDRAM acting as a cache for DDR, and
in quad-flat mode where MCDRAM acts as a separate, flat memory domain [17]. We
utilize the full node with 68 MPI ranks, but only attach Advisor to one of the ranks for
performance measurements. The performance roofs shown are single-thread roofs. We
did not use OpenMP threading in these experiments. The benchmark case was set up
to run in a few seconds for high optimization throughput. The mini-app was pushing
1 000 000 particles, spread among MPI ranks, for 1 000 time steps.

The baseline performance measurement result is shown in Figure 1 for each indi-
vidual loop of Toypush. One can immediately see that the EoM solver has high AI
and is compute bound. It is performing within 50% to the vector peak flop rate and
pushing performance higher would require tailoring the computations for good FMA
balance. However, the search and interpolate loops have lower AI and lie in a region
where memory bandwidth can be a limiting factor. We also note that neither of them
exceeds the scalar add peak flop rate, ie. they are not being vectorized by the compiler,
or the vector efficiency is very poor due to eg. unaligned or indirect memory access.

4 Applied Optimizations and Obtained Speedups
The primary aim of the optimizations was to improve the vectorization efficiency in
the interpolation and search loops. Analysis with Intel Vtune showed that, when the
data is ordered in an Structure of Arrays (SoA) format, the L2 cache miss rate is very
low, less than 1%. Therefore, we would expect the kernels to reach the L2 bandwidth
roof on the roofline chart if the compiler is able to generate vector instructions. To



Figure 1: The measured baseline performance on the roofline chart. The square corre-
sponds to the Equation of motion evaluation, the triangle corresponds to the interpola-
tion on the unstructured mesh and the cirlce corresponds to the search on the unstruc-
tured mesh. Marker size represents the self time of the loop.

push the performance even further, one has to improve the AI, ie. move to the right
on the roofline chart. In the cache-aware roofline model that we are using, changing
the AI generally requires fundamental changes to the algorithm. In vectorized code,
AI can also be improved by optimizing the data alignment to fully utilize vector load
instructions. We will touch on this later in this section. The optimizations we have
applied can be broadly divided into two categories: 1) improving the data alignment
and 2) enabling vectorization.

4.1 Data Alignment
The vector valued data, field and position, are stored in 2D arrays whose dimensions
are ”number of cartesian dimensions” (=3) and ”number of particles”. The aim of the
optimization is to place loops over particles as the innermost loop whenever possible
to vectorize over particles. Therefore, an SoA data layout results in unit stride access
whenever computations can be done one cartesian dimension at a time. We see a 20%
speedup with the SoA data layout when data is allocated in MCDRAM. However, when
all three or six components of the vector data are needed in a field gather, we find that
Array-of-Structures (AoS) data layout can be advantageous since all field components
can be loaded from memory on a single cache line.

For vector instructions, it can be beneficial to make sure that the data is aligned on



64 byte boundaries. The Intel Fortran compiler can align 1D arrays automatically with
the -align array64byte flag. However, on Cori with the Intel 17.0.1 compiler
no speedup was observed. Aligning multi-dimensional arrays is less straightforward
and for now has to be done by inserting !dir$ attribute align - directives
into the code when declaring the arrays. We do not implement alignment of 2D arrays
in Toypush within the scope of this paper.

Finally, we found up to 40% of total compute time was being spent in calls to
avx512 memset when running out of DRAM. The number dropped to 10% when
running out of MCDRAM, but still remained significant. While the compiler should
use avx512 memset instructions, such a large overhead is not expected. We tracked this
down to an array initialization at the beginning of the interpolation step, shown on the
first line of Code 1. The array evec is not large, roughly 1500 floating point values,
but it is being initialized at every step of every particle and doing it before executing the
loop was costly. By moving the initialization inside the loop and only initializing the
element operated by the current loop iteration, we were able to remove this overhead
completely, speed up the code by 20% and eliminate any difference in performance
between DRAM and MCDRAM. Equal behavior in DRAM and MCDRAM is expected
since the code is compute/latency bound, not memory bandwidth bound.

4.2 Vectorization
The key for vectorization is moving loops with long tripcounts to the innermost loops.
In a PIC code, loops over particles offer a good candidate for vectorization since the
particle arrays are typically much larger than the grid arrays, and concurrent iterations
of the particle loop are independent. We tried implementing this in a straightforward
manner into the interpolation loop, recall Code 1, by splitting the loop over particles
into two parts between lines 9 and 10 and in the latter part moving the short trip counts
loop over i and j to the outside of the particle loop. However, this resulted in poor
performance and did not resolve the real issue in the loop, which was indirect memory
accessing thourgh itri(iv). We obtained better performance by forcing vector-
ization of the outer loop by adding an !$omp simd directive before the loop and
declaring the temporary arrays inside the loop !$omp private.

To resolve the indirect access, a change had to be made to the algorithm. We
developed two variants of the algorithm

1. Purely scalar grid access. Before entering the loop over iv, check if all values
of itri(1:veclen) are equal. If they are, copy the value to a scalar variable
and use it inside the loop. If not, carry out the loop as before.

2. Scalar chunk grid access. We added a preprocessing loop before the main loop,
where we calculate the indices where the value of itri changes. Then the loop
over iv is divided into blocks where scalar itri is used.

Both algorithms require that the particles are sorted in the beginning of the cycle. Al-
gorithm 1 can only work when the number of particles per mesh element is very large.
However, we found that even when the number of mesh elements is set to 1, ie. the



scalar access algorithm can always be used, the overhead from using algorithm 2 in-
stead is only in the order of 10% of the total computation time. A short code snippet
demonstrating algorithm 2 is shown in Code 3. The results of the optimizations dis-
cussed here are shown on the roofline chart in Figure 2.

Code 3: A sample code of the optimized interpolation routine. The main differences to
Code 1 are the preprocessing loop on lines 1 to 10 and the blocking of the loop over iv
into num vec chunks blocks with direct access to efield and mapping via itri scalar in
each block.

1 num vec chunks = 1
2 i s t a r t ( 1 ) = 1
3 do i v = 1 , v e c l e n − 1
4 i f ( i t r i ( i v ) . ne . i t r i ( i v + 1 ) ) then
5 i e n d ( num vec chunks ) = i v
6 i s t a r t ( num vec chunks + 1) = i v + 1
7 num vec chunks = num vec chunks + 1
8 end i f
9 end do

10 i e n d ( num vec chunks ) = v e c l e n
11 do i v e c c h u n k s = 1 , num vec chunks
12 i t r i s c a l a r = i t r i ( i s t a r t ( i v e c c h u n k s ) )
13 ! d i r $ s imd
14 ! d i r $ v e c t o r a l i g n e d
15 do i v = i s t a r t ( i v e c c h u n k s ) , i e n d ( i v e c c h u n k s )
16 evec ( iv , : ) = 0D0
17 dx ( 1 ) = y ( iv , 1 ) − mapping ( 1 , 3 , i t r i s c a l a r )
18 dx ( 2 ) = y ( iv , 3 ) − mapping ( 2 , 3 , i t r i s c a l a r )
19 b c c o o r d s ( 1 : 2 ) = &
20 mapping ( 1 : 2 , 1 , i t r i s c a l a r ) ∗ dx ( 1 ) + &
21 mapping ( 1 : 2 , 2 , i t r i s c a l a r ) ∗ dx ( 2 )
22 b c c o o r d s ( 3 ) = 1 . 0 D0 − b c c o o r d s ( 1 ) − b c c o o r d s ( 2 )
23 do i n o d e = 1 ,3
24 do icomp = 1 ,3
25 evec ( iv , icomp ) = evec ( iv , icomp ) + &
26 e f i e l d ( icomp , t r i ( inode , i t r i s c a l a r ) ) ∗ &
27 b c c o o r d s ( i n o d e )
28 end do
29 end do
30 end do
31 end do

The total particle loop is blocked into blocks of size veclen and inner loops of
size veclen are vectorized. We scanned for an optimal value of veclen and found
that a value of 64 resulted in the best performance. It should be noted that this is 8
times larger than the vector register length of 8 double precision values on KNL, so the
performance is a result of L2 cache reuse optimization.



Figure 2: The evolution of the single element triangle mesh interpolation routine on the
roofline chart through the optimizations discussed in this paper. The order of optimiza-
tions is triangle - scalar grid access, circle - optimize vector length, star - grid access in
scalar chunks.

In the search routine we discovered two factors preventing vectorization. First, the
cycle of the loop over triangles results in an indefinite trip count of the inner loop. This
can be forced to vectorize with a simd directive, but on Cori we found the perfor-
mance to be very poor, worse than the scalar version of the code according to compiler
reports. We decided to mask out the iterations of the loop that are not required by the
search, which allows the vector lanes that are still searching to keep using a fraction
of the vector register. Simultaneously, we reversed the order of the loops in Code 2
to vectorize over the particle loop that has a longer trip count. Second, the compiler
could not determine that the local arrays dx and bc coords are private to each loop
iteration and chose not to vectorize to avoid data races. There are three ways to resolve
this issue. In the code snippet shown in Code 4, we chose the least intrusive way, us-
ing the !$omp simd private directive to instruct the compiler that the arrays are
private. The other two ways would be to either separate the array elements into scalar
variables that would be treated as private by the compiler or create an extra dimension
to the arrays with the size of the trip count of the loop so that loop iterations would
access a different element of the array. The effects of the search optimizations to the
multiple element version are shown on the roofline chart in Figure 3.

Code 4: A sample code of the vectorized search routine. The main differences to
Code 2 are the private declarations on line 2 the reversed order of the loops and the



Figure 3: The evolution of the search routine in the multiple element triangle mesh
interpolation algorithm on the roofline chart trough the optimizations discussed in this
paper. The order of optimizations is circle - simd vectorization, Star - replace cycle
with logical mask.

replacement of the cycle command with a logical mask.
1 do i t r i = 1 , g r i d n t r i
2 ! $omp simd p r i v a t e ( dx , b c c o o r d s )
3 ! d i r $ v e c t o r a l i g n e d
4 do i v = 1 , v e c l e n
5 i f ( c o n t i n u e s e a r c h ( i v ) ) then
6 dx ( 1 ) = y ( iv , 1 ) − mapping ( 1 , 3 , i t r i )
7 dx ( 2 ) = y ( iv , 3 ) − mapping ( 2 , 3 , i t r i )
8 b c c o o r d s ( 1 ) = mapping ( 1 , 1 , i t r i ) ∗ dx ( 1 ) + &
9 mapping ( 1 , 2 , i t r i ) ∗ dx ( 2 )

10 b c c o o r d s ( 2 ) = mapping ( 2 , 1 , i t r i ) ∗ dx ( 1 ) + &
11 mapping ( 2 , 2 , i t r i ) ∗ dx ( 2 )
12 b c c o o r d s ( 3 ) = 1 . 0 D0 − b c c o o r d s ( 1 ) − b c c o o r d s ( 2 )
13 i f ( a l l ( b c c o o r d s . ge . −eps ) ) then
14 i d ( i v ) = i t r i
15 c o n t i n u e s e a r c h ( i v ) = . f a l s e .
16 end i f
17 end i f
18 end do



19 end do

Figure 4: A summary of the obtained speedups on Cori KNL

4.3 Summary of Speedups
The speedups obtained in the Toypush mini-app are summarized in Figure 4. A roughly
4x speedup was obtained in both single-element and multi-element versions of the
code, compared to the baseline performance on KNL. This number should be taken
with a slight grain of salt, since a large part of the speedup came from allocating into
MCDRAM, which is essentially ”free” on KNL. However, the need to use MCDRAM
was not necessary after the optimization to array initializations which in a full PIC code
might free up MCDRAM for memory bandwidth bound kernels. The most beneficial
single optimizations were eliminating the gather/scatter instructions in the interpolation
routine, and privatizing temporary variables in the search routine. With the optimiza-
tions, the performance of the multiple element code is within 20% of the single element
code, provided that the number of particles per element is sufficiently large3.

The measured performance is compared to the baseline performance on the roofline
chart in figure 5. The most significant increase in performance is seen in the interpo-
lation routine, marked by triangles. The optimized performance is close to the peak
flop rate and the self time has shrunk by 5x. These measurements were made with
the Intel Advisor 17 Update 1 software. The baseline code was limited by the scalar

3In XGC1 production runs, the number of particles per element is typically between 103 and 104, more
than enough to fulfill this condition.



Figure 5: The measured optimized performance on the roofline chart. The square
corresponds to the Equation of motion evaluation, the triangle corresponds to the in-
terpolation on the unstructured mesh and the cirlce corresponds to the search on the
unstructured mesh. Marker size represents the self time of the loop. Blue markers
represent the baseline performance and green markers the optimized performance.

add roof, it was not vectorized due to the indirect memory access inside the loop. The
main optimization in both single and multi element codes is eliminating the indirect
memory accesses, which increases the FLOPS by a factor eight and also increases AI
substantially. The increase in FLOPS is clearly due to utilizing the vector registers, the
increase in AI is due to only having to load the grid data once per block of particles in-
stead of once per particle. The loop is now purely compute bound and it is performing
at very close to the theoretical peak of the machine. Therefore, further optimizations
are not likely to yield gains in performance.

5 Summary and Discussion
In this paper we have discussed recent efforts to optimize the particle push algorithm
commonly found in particle-in-cell codes for good performance on the NERSC Cori
Phase 2 system that utilizes the Knights Landing manycore architecture. The work has
been done on a mini-application that has been built on the basis of the XGC1 one code.
The code uses an electron sub-cycling loop to resolve the electron time scale, solves the
Poisson equation on an unstructured mesh, and does the particle pushing in real-space
cylindrical coordinates. The optimizations that have been discussed are available on



github (see Appendix A) and can be applied back to XGC1, which will be discussed in
a future paper.

The optimizations resulted in a 4x speedup of the mini-application due to enabling
vectorization and eliminating slow gathers into memory from the most time-consuming
loops. The largest gains were made in the electric field interpolation routine, which is
now performing at close to theoretical peak of the machine. The search algorithm, that
is required after each particle push step to find the correct element on the unstructured
mesh, was also vectorized, but is still limited by some inefficiency due to the unknown
number of loop iterations before the search is successful. We also saw vectorization
reduce the arithmetic intensity of the search routine due to unaligned data access. The
main computation loop in the equation of motion is performing at roughly 50% of peak,
we were not able to improve on it’s performance. Most likely a combination of better
FMA balance and register optimization would be required.

The Intel compiler offers some options to reduce the precision of divide operations,
that would speed up the computation of the equation of motion. We experimented with
removing the divides completely, and were able to reach most of the obtained speedup
by lowering the precision of divide operations. However, a more careful validation
study is required to understand the implications of reduced precision divides on the
scientific results before such optimization can be applied.
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A Git repository reference

Table 1: Reference from optimizations discussed in this paper to the commits in the git
repository https://github.com/tkoskela/toypush.

Optimization git commit SHA
Optimize veclen to 64 ed1c103c491ff087ffc865b039f852116e14757e
Split and reorder loops c463c05b7d1fa5fa03f3f10f2e946ff8da63793f

Access grid with scalar index d42cde2f0dd814cfc0d55b024a502850e5ce8518
Initialize evec inside the particle loop c42e42c34bb4cbc8c06ed367c257bd1c5212e11a

Access grid with chunks of scalar index df094efd0a6c93600ea5aee5c59ff8f1b79c6b8a
Declare temporary variables omp private f07e1154bc6170ebb48580bab6a99f902d6b8b52

Change order of loops in search and remove cycle 9347c131dc177edefa87df3509dac0cde6766b5a


