
T. Koskela*, J. Deslippe*, !
K. Raman**, B. Friesen*!
*NERSC!
** Intel!
tkoskela@lbl.gov

Fusion PIC Code
Performance
Analysis on the
Cori KNL System

-	1	-	

May	18,	2017	

Outline

•  Introduc3on	to	magne3c	fusion	plasma	simula3on	
and	XGC1	

•  Mo3va3on	for	the	electron	push	mini-app	Toypush	
•  Roofline	performance	analysis	
•  Op3miza3on	lessons	learned	
•  Summary	of	obtained	speedups	

-	2	-	

XGC1 is a Particle-In-Cell Simulation Code for
Tokamak Edge Plasmas

-	3	-	

PI:	CS	Chang	(PPPL)	|	ECP:	High-Fidelity	Whole	Device	Modeling	of	MagneCcally	Confined	Fusion	Plasma	
	

Basic PIC Code Flowchart

Collect	Fields	
from	Mesh	to	

ParCcles	

ParCcle	Push	

Collision	
Operator	

Deposit	Charge	
From	ParCcles	

to	Mesh	

Solve	Fields	on	
Mesh	

-	4	-	

Computa3on	
Mapping	

Unique Optimization Challenges in XGC1

•  Complicated	Toroidal	Geometry	
–  Unstructured	mesh	in	2D	(poloidal)	plane(s)	
–  Nontrivial	field-following	(toroidal)	mapping	between	meshes	
–  Typical	exascale	full-f	simulaCon	has	10	000	parCcles	per	cell,		
1	000	000	cells	per	domain,	64	toroidal	domains.	

•  Gyrokine3c	Equa3on	of	Mo3on	in	Cylindrical	
Coordinates	
–  +	6D	to	5D	problem	
–  +	O(100)	longer	Cme	steps	
–  --	Higher	(2nd)	order	field	derivaCves	in	EoM	
–  --	Gyro-averaging	scheme	in	field	gather	

•  Electron	Sub-Cycling	

-	5	-	

In XGC1 Electron Time Scale is Separated
From the Ions in a Sub-Cycling Loop

Gather	Fields	
from	Mesh	to	

Ions	

Ion	Push	

Collision	
Operator	

Deposit	Charge	
From	ParCcles	

to	Mesh	

Solve	Fields	on	
Mesh	

-	6	-	

Computa3on	
Mapping	

Electron Push
Sub-Cycling

push electrons without

updating fields or collisions
–only field gather and push

~50x	

Motivation: XGC1 CPU time is dominated by
electron push sub-cycle

-	7	-	

UnopCmized	XGC1	Timing	on	1024	Cori	KNL	nodes	in	quadrant	flat	mode.	

Motivation: Ideal Strong Scaling of Electron
Sub-Cycling On Cori

-	8	-	

Cori	KNL	quadrant	cache	nodes,	16	MPI	ranks	per	node/16	OpenMP	threads	per	rank	

Toypush Mini-App Algorithm 1: Single Mesh
Element

-	9	-	

1.   Interpolate	fields	from	
3	mesh	points	to	
par3cle	posi3on	

2.   Calculate	force	on	
par3cle	from	fields	

3.   Push	par3cle	for	3me	
step	dt	

Toypush Mini-App Algorithm 2: Multiple
Mesh Elements

-	10	-	

1.   Search	for	nearest	3	
mesh	nodes	to	the	
par3cle	posi3on	

2.   Interpolate	fields	from	
3	mesh	points	to	
par3cle	posi3on	

3.   Calculate	force	on	
par3cle	from	fields	

4.   Push	par3cle	for	3me	
step	dt	

How Good is the Performance on KNL?!
Roofline Analysis

-	11	-	

Data	collected	with	
the	Intel	Vector	
Advisor	tool,	
analyzed	with	
pyAdvisor	
	
Single	thread	
rooflines	on	Cori	KNL	

•  Force	CalculaCon	kernel	close	to	vector	peak	performanc	
•  Less	than	scalar	peak	performance	from	Interpolate	and	Search	kernels	

						Force	Calc	
						Interpolate	
						Search	

Marker	size	~=	CPU	Cme	

Optimization: L1 Blocking

•  Veclength	op3miza3ons	

–  Baseline:	2^(9)	

–  OpCmized:	2^(6)	

-	12	-	

Low	L1	Hit	Rate,	
L2	Hit	Bound	

High	L1	Hit	Rate	

	
~1.5x	improvement	(MCDRAM	Flat);	~2x	improvement	(DDR	Flat)	

	

Indirect Access to Grid Data

Field	data	is	stored	on	grid	
nodes,	par3cles	access	
nearest	3	grid	nodes	indirectly	
via	triangle	index.		
	
Interpola3on	loop	is	
vectorized	but	not	efficiently	
because	of	gather	loads	
	

Intel	Compiler	Vectoriza3on	
Report	
	
LOOP	BEGIN	at	interpolate_aos.F90(67,48)	
					reference	itri(iv)	has	unaligned	access		
					reference	y(iv,1)	has	unaligned	access	
					reference	y(iv,3)	has	unaligned	access		
					reference	evec(iv,icomp)	has	unaligned	access	
					reference	evec(iv,icomp)	has	unaligned	access	
…..	
irregularly	indexed	load	was	generated	for	the	
variable	<grid_mapping_(1,3,itri(iv))>,	64-bit	
indexed,	part	of	index	is	read	from	memory	
…..	
	
LOOP	WAS	VECTORIZED	
unmasked	unaligned	unit	stride	loads:	6	
unmasked	unaligned	unit	stride	stores:	3	
unmasked	indexed	(or	gather)	loads:	18	
…..	
	

-	13	-	

18	Gathers	per	loop	iteraCon		
(3	nodes	x	3	components	x	2)	

Optimization: Direct Access to Grid Data

Op3miza3on:	Group	par3cles	
that	access	the	same	triangle	
together,	access	grid	nodes	
directly	with	a	scalar	index.		
	
Single	element:	trivial	
	
Mul3ple	element:	Feasible	for	
number	of	par3cles	>>	
number	of	grid	nodes	
	
Align	arrays	during	compile	
3me.	
	

Intel	Compiler	Vectoriza3on	
Report	
	
LOOP	BEGIN	at	
interpolate_aos.F90(72,51)	
reference	y(iv,1)	has	aligned	access	
reference	y(iv,3)	has	aligned	access	
reference	evec(iv,	icomp)	has	aligned	
access	
…..	
SIMD	LOOP	WAS	VECTORIZED	
…..	
unmasked	aligned	unit	stride	loads:	5	
unmasked	aligned	unit	stride	stores:	3	
….	
	

-	14	-	

	
~1.6x	improvement	

	

Initialization of large arrays with memset

Ini3aliza3on	of	large	arrays	
with	avx512_memset	at	every	
3me	step	before	entering	
vector	loop	becomes	memory	
bandwidth	bound.	

-	15	-	

1.   Ini3alize	array	inside	the	vector	loop	(if	you	can)	
2.   Use	threads	for	ini3aliza3on	

Intel	Compiler	Vectoriza3on	Report	
	
	LOOP	BEGIN	at	interpolate_aos.F90(57,5)	

	memset	generated	
	loop	was	not	vectorized:		
	loop	was	transformed	to	memset	or	memcpy	

			LOOP	END	

	
~5%	improvement	

Higher	if	no.	of	parCcle	increases	
	

Interpolation Kernel Performance on Roofline

-	16	-	

Baseline	Case	(w/	
Indirect	access)	
	
Replace	Indirect	
Access	with	Scalar	
Access	
	
OpCmize	Vector	
Length	
	
Access	Grid	Data	in	
Scalar	Chunks	

OpCmizaCons	move	the	kernel	to	compute	bound	regime,	AI	increases	with	
conCguous	memory	access.	Peak	compute	performance	is	nearly	reached.	

Scalar	add	peak	

Vector	add	peak	

FMA	add	peak	

Search Routine!
Optimization: Remove cycle + OMP SIMD Private

-	17	-	

Intel	Compiler	Vectoriza3on	Report	
	
LOOP	BEGIN	at	search.F90(62,8)	
loop	was	not	vectorized:	loop	with	mulCple	exits	cannot	be	
vectorized	unless	it	meets	search	loop	idiom	criteria		

Intel	Compiler	Vectoriza3on	Report	
	
	LOOP	BEGIN	at	search.F90(66,8)	
					reference	y(iv,1)	has	aligned	access	
					reference	y(iv,3)	has	aligned	access		
					reference	id(iv)	has	aligned	access	
					reference	conCnue_search(iv)	has	aligned	access	
					data	layout	of	a	private	variable	bc_coords	was	
opCmized,	converted	to	SoA	
					OpenMP	SIMD	LOOP	WAS	VECTORIZED	
					unmasked	aligned	unit	stride	loads:	4	
					unmasked	aligned	unit	stride	stores:	1	
						

MulCple	exits	and	assumed	
read	aner	write	dependency	
prevent	vectorizaCon	

OpCmizaCon:	Replace	exit	
condiCon	with	a	logical	mask	
	
Vectorize	with	omp	simd	
direcCve,	declare	private	
arrays	simd	private	
	
	

	
1.5x	improvement	

	

Search Kernel Performance on Roofline

-	18	-	

Baseline	Case	
	
Force	Simd	
VectorizaCon	
	
Eliminate	MulCple	
Exits	

Forced	simd	vectorizaCon	doesn’t	work	because	of	mulCple	exits.	Once	exits	are	
eliminated	the	code	vectorizes.		

Scalar	add	peak	

Vector	add	peak	

FMA	add	peak	

Starting Point On The Roofline

-	19	-	

•  Good	vector	performance	from	the	Force	CalculaCon	kernel	
•  Poor	performance	from	Interpolate	and	Search	kernels	

						Force	Calc	
						Interpolate	
						Search	

Marker	size	~=	CPU	Cme	

Kernel Improvements on Roofline

-	20	-	

•  Good	vector	performance	from	the	Force	CalculaCon	kernel	
•  Interpolate	kernel	close	to	theoreCcal	peak,	Search	close	to	by	L2	bandwidth	

						Force	Calc	
						Interpolate	
						Search	

10x	Speedup	in	
Interpolate,		
3x	Speedup	in	Search	

Marker	size	~=	CPU	Cme	

Summary of Mini-app Speedups on Cori KNL

-	21	-	

4.1x	

Applying Optimizations Back to Electron
Push in XGC1 (Work in Progress)

-	22	-	

XGC1	Timing	on	1024	Cori	KNL	nodes	in	quadrant	flat	mode.	

3x	

Summary and Conclusions

•  XGC1	is	an	extreme	example	of	a	fusion	PIC	code	due	to	

unstructured	mesh,	real-space	coordinates,	and	large	number	of	
par3cles	per	cell.	

•  Electron	sub-cycling	is	used	to	speed	up	simula3ons	by	sacrificing	
informa3on	at	electron	3me-scale		
à	Most	CPU	3me	spent	in	electron	push	
–  Almost	no	communicaCon	à	On-node	performance	dominates	

•  We	op3mized	a	mini-app	to	ahain	peak	on-node	performance	in	
the	electron	push	algorithm	on	KNL.	
–  Main	boplenecks	are	search	and	interpolaCon	
–  We	were	successful	in	vectorizing	and	pushing	them	close	to	maximum	

apainable	performance	on	the	roofline	chart	
•  Por3ng	and	developing	op3miza3ons	to	XGC1	is	a	work	in	

progress,	3x	speedup	in	electron	push	has	been	achieved	
–  Electron	push	remains	the	most	expensive	kernel,	followed	by	Poisson	

solver	(PETSc	linear	algebra)	

-	23	-	

Roofline Performance Model

-	24	-	

A
tt

ai
na

b
le

 P
er

fo
rm

an
ce

 (G
flo

p
s/

s)

FMA+SIMD

FMA

Arithmetic Intensity (flops/byte)

Memory
Bandwidth

Bound

Compute
Bound

Scalar

Memory
Bandwidth/
Compute

Bound

Arithmetic
Intensity =	

Total Flops computed

Total Bytes transferred from DRAM

Roofline reflects an absolute performance bound (Gflops/s) of the system
as a function of Arithmetic Intensity (flops/byte) of the application.

