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Abstract—HPC software is becoming increasingly complex.
A single application may have over one hundred dependency
libraries, and HPC centers deploy even more libraries for users.
Users demand many different builds of packages with different
compilers and options, but building them can be tedious and
error-prone. Support teams cannot keep up with user demand
without better tools. Spack is an open-source package manager
created at Lawrence Livermore National Laboratory (LLNL).
Packages in Spack are templates for many combinatorial build
configurations. They provide fine-grained control over a build’s
directed acyclic graph (DAG). Spack is used by HPC centers,
developers, and users to quickly deploy software. This paper
describes our integration of Spack with the Cray Programming
Environment (CrayPE). We describe changes we made to Spack’s
support for environment modules and machine architectures, as
well as preliminary results of the rollout of Spack on NERSC’s
Cray XC40 system (Cori).

Index Terms—software stack management, package manager

I. INTRODUCTION

CRAY supercomputers provide cutting-edge compute
power to users in many scientific fields. It is important

for HPC support teams to provide these users with optimized
software. Providing such software can be difficult and time
consuming due to the complexity of advanced architectures
and of scientific software. For example, the quantum chemistry
package CP2K[1] requires 26 dependencies and multiple con-
figuration variants that make it difficult to build from source.
However, source distributions are the de facto packaging
medium for supercompter software, so consultants spend hours
and days fighting build and compilation issues rather than
supporting for scientific application development directly.

NERSC maintains two Cray supercomputers, Edison and
Cori, each of which has a large multi-versioned software stack.
On Edison, NERSC supports 250 packages including its own
developed software, vendor-provided tools, and third-party
packages. These systems support several different compilers
and programming environments: Intel, GNU, Cray, and PGI.
As of 2016, there are nearly 7,000 users on NERSC systems
with more than 800 projects [2], [3]. With these needs in mind,
NERSC investigated various package management tools.

We discovered Spack [4], [5], the Supercomputing PACK-
age manager, a tool developed at Lawrence Livermore Na-
tional Laboratory. It draws inspiration from the popular ma-
cOS package manager Homebrew[6], and Nix, a so-called
“functional” package manager [7], [8]. Spack packages are
templates that describe how to build packages. Using package

files, users of Spack can control the combinatorial configu-
ration space of a package and its dependencies. Package files
also also provide a way to distribute software across platforms.
Users can interface with the command line and provide a
specification of their build using a specialized spec syntax.

To run on Cray machines, Spack must integrate with the
Cray Programming Environment (CrayPE). This required sev-
eral modifications to Spack to support CrayPE modules, com-
piler wrappers, and environment variables. Previous versions
of Spack had run mostly on Linux clusters and macOS laptops.
With a growing need for Spack on Cray machines, NERSC
and LLNL collaborated to port Spack to the Cray environment.
With our modifications, compiler usage on Cray machines is
simple, and it mirrors the way Spack is used on other systems.
To enable this, we added additional features to handle the
complex environment and architecture.

In this paper we describe the functionality of Spack, the
challenges we faced while compiling in the Cray environment,
and the adaptations NERSC and LLNL made to Spack for our
Cray machines. In addition, we review other package managers
and common problems between these tools, as well as our
future plans for enabling such tools. Our goal is to allow users
to install optimized packages as easily on supercomputers as
they do on their laptops.

II. THE SUPERCOMPUTING PACKAGE MANAGER

Spack is a flexible and powerful tool that automates the in-
stallation of complex scientific software. Originally developed
for use at Lawrence Livermore National Laboratory, Spack
has seen an increase in usage among development teams across
many sites. At the core of Spack are package templates, which
describe the ways a package can be built, and a specialized
spec syntax, which allows users to query and designate specific
builds from the combinatorial space of configurations. Its
dependency model also supports versioned, ABI-incompatible
interfaces like MPI through virtual dependencies. Together
with Spack specs, these features provide a simple way to
manipulate package builds, and they hide build complexity
from the user by providing a unified interface to many different
build systems. In the following sections, we provide more
details on Spack’s functionality. For still more details, see the
online Spack documentation [9].
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Spec type Spec Symbol Example
package name N/A python
version @ python @2.7.13
compiler % python @2.7.13 %gcc
architecture arch= python @2.7.13 %gcc arch=cray-cnl6-haswell
variant + / - python @2.7.13 %gcc +tk arch=cray-cnl6-haswell
compiler flags [ld|cpp|c|cxx|f] flags= python @2.7.13 %gcc +tk arch=cray-cnl6-haswell cflags=-02

TABLE I
MEANING AND EXAMPLE SYNTAX FOR PACKAGE SPEC CONSTRAINTS.

from spack import *

class Libelf(AutotoolsPackage):
"""libelf lets you read, modify or create ELF object files"""

homepage = "http://www.mr511.de/software/english.html"
url = "http://www.mr511.de/software/libelf-0.8.13.tar.gz"

version('0.8.13', '4136d7b4c04df68b686570afa26988ac')
version('0.8.12', 'e21f8273d9f5f6d43a59878dc274fec7')

provides('elf')

def configure_args(self):
return ["--enable-shared",

"--disable-dependency-tracking",
"--disable-debug"]

def install(self, spec, prefix):
make('install', parallel=False)

Fig. 1. Simple example of a package.py file. This package subclasses
AutotoolsPackage, Spack’s built-in support for autotools builds. install()
can be left out, but is overridden here to force a sequential build. The package
uses the provides directive to specify that it is provides the virtual package
elf. i.e., It can be used with packages that depend on elf.

A. Spack Packages

A Spack package repository consists of a number of
package.py files in per-package directories. Each package.py
file is a template that describes the combinatorial space of the
package, as well as the commands needed to build the package.
Package files are similar to Homebrew “formulae”; both allow
for specification of all potential variants, dependencies, and
configuration options that can be used. Each package.py
file contains its own subclass of Spack’s Package class,
which controls the fetching, extracting and installation of a
package. To allow for better control over the different build
phases, Spack can autodetect the build system of package
(i.e. Makefiles, Autotools, Python, R) from a sample release
tarball (or other archive). It uses this to create a boilerplate
package.py file. Figure 1 shows an example.

B. Templated, Combinatorial Packages

Traditional package managers and port systems do not
handle combinatorial versioning well. Typically, they manage
a single package ecosystem, with one version of each package
in a software stack. Large, multi-user HPC sites, however,
require multiple different versions of the same software, often
with different configurations and dependencies. Spack’s ability
to parameterize packages allows for fine-grained control over
a software stack through specs and packages. The spec syntax
allows package template authors developers to easily query the

requested build configuration and to conditionally add depen-
dencies and configuration options. Package authors are passed
a spec object, which describes the directed acyclic graph
(DAG) of a package’s dependencies and their configurations.

1) Package Directed Acyclic Graph: To understand how
Spack parameterizes build configurations, requires knowledge
of Spack’s core data structure, the spec DAG. Consider the
libelf package. Metadata in the Libelf class describe the
package’s dependencies, versions, and variants. This tells
Spack how packages are related to each other, and what
dependencies are needed in which configuration. Using this
information, Spack recursively inspects the class definitions
for dependencies, and it constructs a DAG of these dependen-
cies. Spack iteratively solves for a configuration that satisfies
version requirements and conditional dependencies. It uses
heuristics to try to generate ABI compatible packages, but if
the user specifies something that is not ABI compatible it will
comply with that request. Spack supports installation of mul-
tiple packages with arbitrarily many different configurations,
and it uses its own hashing scheme to identify unique DAGs.
Within a DAG, there can be only one instance of a particular
package (i.e., two configurations of the same package cannot
be linked together in a single build).

2) Spec Syntax: Users can manipulate and constrain a
package DAG by using a simple spec syntax on the command
line. This syntax is expressive enough to allow users to
configure and customize their software stack to their liking,
but concise enough that users don’t have to know the entire
structure of the DAG. Here is a simple example:

spack install mpileaks

This tells Spack to install the mpileaks package, without
regard for its configuration. We call mpileaks an abstract
spec, i.e., it is only a partial description of a build. Table I
shows increasingly complex examples of specs. In each case,
a new constraint is added and the requested build becomes
more specific. Spack uses a concretization algorithm to fill
in unknown configuration details with sensible defaults. It
converts an abstract spec to one that is concrete. This allows
the user to specify only the constraints that matter to them,
rather than an entire, detailed build specification.

The architecture spec in Table I has been recently de-
veloped by NERSC and LLNL. Briefly, it consists of a
platform-os-target triple. Cray machines are considered
to be a single platform, but different nodes in the system
may have different operating systems and target hardware.
For example, the login node on a Cray machines may run
SuSE Linux, while the compute nodes run a different OS and
may have different types of processors. Spack automatically
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detects the architecture spec for the machine it runs on, but it
allows users to build for other OS’s and targets (assuming it is
possible to do so). A user can choose a target on the command
line using an architecture spec, and the architecture descriptor
is part of a spec, so packages can discover what architecture
they are built for. We discuss the architecture spec in detail in
section IV-B.

The combination of package template files and specs allows
teams fine-grained manipulation of a software stack. Because
of this, the HPC teams at NERSC are no longer stuck with just
a single stack with a single package version; they can support
many configurations, versions, and optimizations. We believe
that the freedom Spack affords developers, to optimize and
build new configurations easily, is very important in the HPC
environment. HPC users need to be able to experiment with
potentially many different builds of their packages to achieve
the best performance.

C. Automation of Package Builds

After concretization, the spec DAG is concrete, and Spack
can build the DAG recursively, starting from the leaves.
For each package in the DAG, Spack fetches the source,
creates a build stage in the filesystem, and calls the package’s
install() method. As shown in Figure 1, install() takes
a spec argument. Because all specs passed to install()
are concrete, package authors need not perform complex
searches or queries of the underlying system in order to
build. Concretization handles the work of assembling a build
configuration and packagers simply translate a concrete DAG
into build commands.

During the install phase, Spack injects its own compiler
wrappers into the build system. These wrappers are used for
adding include (-I), library (-L), and RPATH (-Wl,-rpath)
flags for dependencies. They also add compiler flags specified
through the command line or through a package file. The
wrappers ensure that packages can automatically find their
dependencies. On Cray, we modified Spack to also load
the appropriate modules for the CrayPE within the build
environment. Spack will set the CC, CXX, F77, FC environment
variables to point to its wrappers, and it sets SPACK CC,
SPACK CXX, SPACK F77, SPACK F77 the location of the
real compiler executables. The compiler wrappers use these
variables to call the wrapped compilers.

D. Modules

After a successful installation, Spack auto-generates envi-
ronment module files in several formats. Current support for
modules includes TCL, Lmod, and Dotkit. If shell support has
been activated, Spack can manage the loading and unloading
of module files using the spec syntax, as well as dependency
modules. However, current management of modules is slow
and it is often better to use the –shell flag to spack module
to generate faster shell code. Modules can also be configured
as we described in the following section.

E. Configuration
Spack has a collection of yaml files with parameters for

customizing modules, compilers, external packages, and vari-
ous other aspects of Spack. Most of these configurations are
not necessary for basic functioning; one goal of the Spack
team is for the tool to work immediately “out of the box.”
Spack’s configuration system supports nested scopes that allow
customization at the global, site-specific, or user level. There
is also support for platform-specific settings for HPC teams
that support multiple platforms. Here we will briefly describe
some configuration files and settings possible under Spack.

1) External Package Support: Often, Spack users want to
build with packages that are already present on the system,
rather than compile a new one. To allow for this, users can
register a package in Spack’s packages.yaml configuration file.
Each entry in this file maps a spec to a path to the prefix
of an external package installation. Spack can then treat that
package as any other Spack built package and automate linking
and dependency handling. Spack trusts the user to provide
valid spec metadata – typically at least a package and a
version are required, but it is recommended to add compiler,
architecture, and variants to packages.yaml specs. Spack does
its best to work specs in packages.yaml into the build during
concretization.

In addition to externals, the packages.yaml configuration
file also allows users to specify concretization preferences
for packages that Spack builds. Packages can default to a
specific compiler and compiler version, package version, and
variant. One thing to note is that once a package is declared
an external, it does not mean that Spack can only use that
external package. If a more recent version of a package is
made available, Spack will begin compiling and using that
package. However, if a package version is considered stable
and preferred over a more recent experimental version, that
version can be pinned in the configuration file. This allows
support teams some flexibility in how they configure their
software stack.

2) Modules Configuration: The modules.yaml configura-
tion file allows users to customize how Spack generates mod-
ule files. Module systems like Lmod, dotkit, and TCL modules
can be activated or deactivated. This is useful if an HPC
site does not support one or more of the supported module
systems. Since different HPC sites have different naming
schemes for their modules, Spack allows users to configure
the naming schemes of modulefiles to model their own by
using a special spec format [10]. Users can also prevent the
generation of modulefiles on a per package basis. Spack can
generate module files that mimic those in the CrayPE, but
there is currently no way to make Spack’s modules support
the module swap functionality that Cray’s modules ship with.
This is because the swapping logic requires that all modules
be known at generation time, and we would need to update
Cray’s modules to fully support swapping with Spack’s. We
settle for working load/unload functionality.

3) Compiler Configuration: Spack stores any data about
compilers into a compilers.yaml file. By default, this file is
auto-generated by inspecting the user’s $PATH environment
variable and environment modules. This file can be further
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Fig. 2. Contribution of packages has increased. 75% of packages are
contributed by outside sources.

customized with additional compilers and with default com-
piler flags, as well as with specific module dependencies for
each compiler. For example, Intel compilers require gcc header
files, so Intel depends on the gcc module. Paths specified in
compilers.yaml are activated during installation as described
in Section II-C

4) RPATH linking: Spack’s configuration options allow its
users to maintain multiple software stacks using package
templates and the spec syntax. Each package configuration
is installed in its own prefix, and users can access these
packages using modules. However, Spack installations do not
rely on the LD LIBRARY PATH set by modules to find their
dependencies. Rather, packages are able to peacefully coexist
without environmental dependencies due to Spack’s use of
RPATH for linking. An RPATH is a library search path stored by
the compiler (in this case by Spack’s compiler wrappers) in
the generated binary. Using RPATH, a package will always find
its link dependencies, regardless of the user’s environment.

F. The Spack Open Source Community

Perhaps the most notable aspect of Spack is its growing user
community. Spack’s package repository supported only 300
packages when it was first presented at the Supercomputing
conference in November of 2015 [4], but it has grown to over
1,300 packages the 18 months since. Figure 2 shows the rate
of increase. We can see that in November of 2015, nearly all
Spack packages were developed by LLNL. One year later,
over 75% of the lines of code in packages is contributed
by outside organizations. Spack now has over 130 unique
contributors, and 30-50 pull requests are merged into the git
repository each week. It is used at many of the largest DOE
laboratory computing centers in the US, and it has become
a booming community for HPC application developers and
facility support staff.

III. THE CRAY PROGRAMMING ENVIRONMENT

Cray architectures differ significantly from commodity
Linux clusters. Recently, NERSC has acquired the Cori Cray-
XC40 machine. Cori is ranked the 5th most powerful computer
in the world as of November 2016, according to the Top 500
list [11]. It includes 2,004 Intel Xeon Haswell and 9,300 Intel
Xeon Phi “Knight’s Landing” (KNL) nodes. NERSC also

maintains the older Edison XC30 machine. Building software
for machines like this is complex as it requires support for het-
erogeneous architectures. On both machines, the login (front-
end) and compute (back-end) nodes use different chipsets.
We must therefore compile differently for at least these two
machines. On Cori, the situation is even more complex: we
must also consider the dual architectures (Haswell and KNL)
of the compute nodes, Over 250 unique software packages
are maintained by NERSC staff on these systems, and support
staff frequently need to build them with multiple compilers.
On a commodity cluster, we typically only expect a single
architecture and compiler, and we typically build and run on
exactly the same type of node.

As mentioned, Cray machines come with the Cray Pro-
gramming Environment (CrayPE), a collection of modules
and libraries that simplifies, to some extent, the process of
buliding for multiple architectures. However, the CrayPE is
not a package manager and it does not automate builds. It is
designed with a human in mind. Its interface is environment
modules. Without a programmatic API, automating tasks in
this environment is difficult. This section provides a brief
overview of the Cray Programming Environment (CPE) and
the mechanisms it uses to control builds.

A. TCL Environment Modules

Most Cray systems come with TCL modules to control
the environment. Modules allow system administrators or
vendors to specify sets of environment changes in module
files. Users can simply type module load <name> or module
unload <name> to enable or disable a particular module. This
eliminates the need for users to set any environment variables
explicitly, e.g. adding executable directories to $PATH or
library directories to $LD LIBRARY PATH. Cray provides
users with a default set of site-specific modules as shown in
Figure 3. Cray’s modules are pre-compiled and optimized for
the machine. Some are libraries or tools, such as the udreg
and atp modules. We focus here on the PrgEnv and target
modules.

1) Programming Environment Modules: Loading a pro-
gramming environment, or PrgEnv, module will add a set of
tools, math libraries, and communication libraries to the user’s
environment. This includes cray-mpich, cray-fftw, and cray-
libsci, to name a few. PrgEnv modules also affect the loaded
compiler and associated build toolchain. Cray ensures that
libraries in the PrgEnv modules are consistent, compatible, and
optimized. Examples of programming environment modules
are:

• Intel Programming Environment
• GNU Programming Environment
• Craype Programming Environment

B. Cray Compiler Wrappers

Aside from modules, the main interface to the CrayPE is
Cray’s compiler wrappers. Cray provides (cc, CC, ftn) for
C, C++, and FORTRAN languages. Cray’s environment modules
affect the behavior of the compiler wrappers, including the
libraries they link to and the flags passed to the compilers
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Currently Loaded Modulefiles:
1) modules/3.2.10.5 12) xpmem/2.1.1_gf9c9084-2.38
2) nsg/1.2.0 13) job/2.1.1_gc1ad964-2.175
3) intel/17.0.2.174 14) gni-headers/5.0.11-2.2
4) craype-network-aries 15) alps/6.3.4-2.21
5) craype/2.5.7 16) rca/2.1.6_g2c60fbf-2.265
6) cray-libsci/16.09.1 17) atp/2.0.3
7) udreg/2.3.2-7.54 18) PrgEnv-intel/6.0.3
8) ugni/6.0.15-2.2 19) craype-haswell
9) pmi/5.0.10-1.0000.11050.0.0.ari 20) cray-shmem/7.4.4
10) dmapp/7.1.1-39.37 21) cray-mpich/7.4.4
11) dvs/2.7_2.1.67_geb949b6-1.0000.eb949b6.2.32

Fig. 3. The default modules available on Cori (Cray-XC40). Loading and
unloading of these modules modifies the Cray Programming Environment.

to optimize for specific back-end architectures. The link state-
ments are long and complicated but hidden from the user. One
can see how long these statements are by passing the -craype-
verbose flag to the compiler wrapper. Cray recommends com-
pilation of code through their compiler wrappers, and invoking
the underlying Intel, GNU, or CrayPE compiler directly will
result in incorrect linkage on Cray systems, and code that can
only be executed on the login node [12].

1) Compiler Modules: Loading a PrgEnv module is the
primary way that users swap compilers on Cray machines,
but this will load a default version of each compiler. Most
HPC sites contain a number of different versions of the same
compiler. To fine-tune the compiler version, Cray also offers
separate compiler modules to load specific versions. This is
important for Spack, as Spack allows users to specify very
specific compiler versions using specs. In the CrayPE, the
compiler module is the interface between the user and the
compiler. We must be conscious of both the PrgEnv module
and the compiler modules, as only the compiler modules
corresponding to the loaded PrgEnv can affect the behavior of
Cray’s compiler wrappers. For example, one can load a GNU
compiler module under the Intel programming environment,
but it does not affect compilation with Cray’s wrappers. We
must first load the GNU PrgEnv module, then the correct
compiler module.

2) Target Modules: Cray machines use a heterogeneous
architecture that separates nodes into front-end and back-end
nodes. The front-end nodes run a Linux operating system and
are used to compile code and manage data, while the back-
end nodes run a specialized version of the Linux kernel and
are used for HPC workloads. It is necessary to cross compile
all code for the back-end nodes using the Cray compiler
wrappers on the front-end nodes. Cray provides target modules
that specify the back-end architecture to optimize for. As
mentioned, Cori has two types of backend nodes: Haswell and
KNL. By swapping target modules on the front-end nodes,
users can generate optimized code for either processor.

C. Cray and Third-Party Software

On every system, Cray provides optimized software li-
braries. This software includes custom-built versions of MPI
(cray-mpich), I/O libraries such as NetCDF (cray-netcdf)
and HDF5 (cray-hdf5), and advanced math libraries such as
PETSc (cray-petsc) and Trilinos (cray-trilinos). In addi-
tion, Cray provides a collection of numerical routines called

the Cray Scientific Library (cray-libsci), which provides
libraries for BLAS, LAPACK, and SCALAPACK. Cray LibSci
is loaded by default under the GNU and Cray Programming
Environments, and the Intel programming environment uses
Intel’s own optimized Math Kernel Library (mkl).

IV. SPACK ON CRAY

Spack is designed to be a portable build interface and to
allow packages to be built on many different platforms using
the same commands. Spack’s configuration typically comes
from files or from the command line, while on Cray machines
the configuration is heavily based on environment settings.
Before Spack would work as expected on Cray systems, a
number of modifications were required. Spack needed better
support for modules, better support for heterogeneous hard-
ware, better support for additional compiler wrappers (beyond
its own), and better support for static linking. We describe
these modifications in this section. As of Spack v0.10, these
features are available to all Cray users.

A. Module Support

CrayPE is fundamentally a module-based system, and this
is the interface that Cray supports for its developers. Modules
are required to set the compiler, MPI implementation, and
math libraries, and target for each build. As such, to build on
Cray, Spack needed to be able to make use of Cray’s modules.
Spack’s build environment is designed to be sandboxed, and
Spack actively unsets user environment variables that may
affect the build adversely. This includes many variables that
are set by the CrayPE modules.

Modules are easy for users but difficult as a programmatic
interface. Fundamentally, environment modules are shell files
that are sourced to execute within the current shell. However,
Spack is implemented in Python, and it cannot execute shell
code directly. While Spack can execute module code in a sub-
shell, the subshell has no effect on Spack’s own environment,
so launching a subshell, loading a module, and returning to
Python has no effect on Spack’s build process.

Fortunately, the module command is a wrapper around
the modulecmd executable, which can generate code for a
variety of scripting languages. modulecmd takes an argument
to indicate the language for which it should generate code.
As modulecmd supports Python, we can have Spack call
modulecmd to generate Python code that sets the environment
as a shell would, and we can eval the Python code from
within Spack’s Python interpreter. The generated Python code
directly modifies os.environ and other globals in Python, but
Spack sandboxes each build in its own subprocess, so we can
safely evaluate all modulecmd code in each package’s build
subprocess without corrupting Spack’s global state. Using this
mechanism, we were able to add the capability to “load” and
“unload” modules to Spack.

B. Architecture Support

To support heterogeneous architectures, we needed to up-
date several aspects of Spack’s architecture support. Prior to
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version 0.10, Spack encoded the architecture in each spec as
a single string. This was derived from LLNL’s long tradition
of providing a SYS TYPE environment variable on each of its
systems. The variable contained an identifier that correlated
loosely to binary compatibility across machines. The original
architecture field in specs was similar; it mainly provided
a way to separate packages built on one platform from those
built on another.

Heterogeneous machines and cross-compilation require the
build system to have a notion of both the front-end (login) and
back-end (compute) targets. Build dependencies like CMake
must be built for the front-end architecture, and link dependen-
cies like math libraries must be built for the back-end. Further,
as Spack relies to some extent on system libraries like glibc,
the operating system stack on the front-end and back-end
nodes is significant for differentiating incompatible binaries.
We need to know, for example, whether an installation relies
on the SuSE system libraries of the front-end nodes, or on the
CNL OS on the backend nodes. Finally, as Spack must run on
the front-end nodes (where users build packages), we need a
way to make it aware of the available front-end and back-end
nodes for the entire platform.

Given this system model, we introduced the concepts of a
platform, os, and target to Spack. Internally, we introduced
classes to represent each of these concepts, an we added logic
to Spack’s Spec class to allow more detailed architecture
descriptors. The new descriptors are platform-os-target
triples. The platform is auto-detected and indicates the type of
the overall system. Spack supports platforms like linux for
commodity Linux, darwin for macOS, bgq for BlueGene/Q
machines, and cray for Cray machines. Each platform may
have multiple operating systems (os) and targets (target)
associated with it, and the platform knows which is the
default front-end and back-end OS. Further, different operating
systems have different compiler detection strategies, and Spack
knows which compilers are associated with which OS.

The scheme has proven sufficiently general to model a range
of systems, from Linux, to macOS, to Cray, to Blue Gene/Q,
and it allows us to quickly add new machines to Spack.
Making concept of front-end nodes explicit in Spack has
enabled us to rework Spack’s concretization logic to compile
build dependencies (like CMake, make, or their dependencies)
for the front-end machine where they must run, while still
compiling back-end libraries for optimized compute nodes.

Our architecture support also gives the user fine-grained
control over builds. To compile for a given architec-
ture, they can specify the entire architecture string using,
arch=cray-cnl6-haswell, or they can specify the oper-
ating system and target independently with os=cnl6 or
target=intel-mic. We also added default frontend and back-
end targets and operating systems so that users would not
have to be intimately familiar with the Cray machine to
build on it. Users can request specific operating systems
or targets using os=frontend or os=backend. Targets are
similarly available on the command line with target=backend
or target=backend. With these additions, Spack is, to our
knowledge, the only package manager with a dependency
model that supports heterogeneous machines to this degree.

packages:
mpich:
buildable: false
compiler: []
modules:
mpich@7.3.2%intel@17.0.0.098: cray-mpich/7.3.2
mpich@7.4.1%cce@8.4.4: cray-mpich/7.4.1
mpich@7.4.1%gcc@6.1.0: cray-mpich/7.4.1

paths: {}
providers: {}
version: []
python:
buildable: false
compiler: []
paths:
python@2.7.12%gcc@6.1.0: /global/common/software/python
python@2.7.12%intel@17.0.0.098: /global/common/software/python
python@2.7.12%cce@8.4.4: /global/common/software/python

Fig. 4. To link with cray packages we use Spack’s configuration file
packages.yaml. We can declare a package to be located via path or by module.
If the package is declared as a module, then Spack will find the directory using
‘module avail’. Spack’s compiler wrappers will then link the package.

C. External Packages

Support for building with external packages already existed
in Spack prior to version 0.10. As described in Section II-E1,
Spack will normally build any Spec in a concrete DAG, but
using a packages.yaml file, we can specify that Spack should
rely on existing installations of certain packages and not
build them. Originally, it could only do this using a package
prefix, and it would use the prefix to determine where its
compiler wrappers should point their -I, -L, and -Wl,-rpath
arguments.

To support Cray provided packages, we added the ability
to record a module for an external package instead of an
installation prefix path. If an external package has a module
listed in the external packages configuration file instead of a
path, Spack will load the corresponding module and use the
information in the module to link against the package if it is
a link dependency. Now Spack can support either path-based
or module-based externals in a single build. An example of a
record of an external module can be seen on Figure 4.

D. Improved Compiler Detection and Wrapper Handling

With the new platform detection algorithm and support for
modules, Spack could now fully support loading and unloading
of Cray compilers and programming environments. However,
Spack was Spack was originally designed to build using
system-provided compilers directly, and not through custom
wrappers. Its compiler detection logic searched the user’s
$PATH for compilers, and it stored the compiler metadata into
a compilers.yaml configuration file. Spack did not check for
Cray compiler modules. Moreover, the Cray compilers must
be called through Cray’s wrappers.

We improved compiler detection methods by allowing
Spack to parse the output of the module avail command
and create a compiler configuration by pointing to the Cray
compiler wrappers. We also associated a compiler with an
operating system and target to help distinguish between
compilers found via the two different methods as shown in
Figure 5. After detecting the available compilers on a system,
we next pointed Spack to use the Cray compiler wrappers.



CUG 2017 CONFERENCE PAPER 7

- compiler:
environment: {}
extra_rpaths: []
flags: {}
modules: []
operating_system: sles12
paths:
cc: /usr/bin/gcc-4.8
cxx: /usr/bin/g++-4.8
f77: null
fc: null

spec: gcc@4.8
target: x86_64

- compiler:
environment: {}
extra_rpaths: []
flags: {}
modules:
- PrgEnv-gnu
- gcc/6.3.0
operating_system: cnl6
paths:
cc: cc
cxx: CC
f77: ftn
fc: ftn

spec: gcc@6.3.0
target: any

Fig. 5. New addition of operating system and target to compilers. Users can
specify front-end or back-end architecture by specifying either target or os on
spec.

Cray discourages using the direct compiler binary since it
only allows for packages to compile against the front-end.
We modified the compilers.yaml metadata stored on Crays
to point to the Cray compiler wrappers. This was done by
adding any compiler found via modules to point cc, cxx, f77,
and fc to cc, CC, ftn, and ftn, respectively, instead of the
actual compiler name. This avoids bypassing Cray’s compiler
wrappers.

Spack still has its own compiler wrappers, which we still use
in Spack builds. The only difference is that previously, Spack’s
wrappers would call the selected compiler directly, and now
Spack’s wrappers call Cray’s wrappers, which eventually call
the module-loaded compiler. Now, not only can Spack auto-
matically handle linking of dependencies but it can also use
Cray’s own lib and include flags. This process is shown in
Figure 6.

E. MPI and External Vendor Packages

In the next section we will use the Message Passing Inter-
face (MPI) as an example of a package that must be configured
as external on Cray systems.

The Message Passing Interface (MPI) is a parallel pro-
gramming model widely used in high performance computing
software. Cray provides a Message Passing Toolkit (MPT)
that includes cray-shmem and cray-mpich. To use the MPI
compilers, the cray-mpich module must be loaded and the
environment variables of MPICC, MPICXX, MPIFC, and MPIF77
should be be set to point to the Cray compiler wrappers. Since
users should not install their own versions of MPI on Cray
machines, MPI should be configured to always use mpich
when on a Cray platform, and mpich should be listed in the
external packages configuration file as having a module “cray-
mpich.” The logic in handling the MPI environment variables
lies in its package file. By listing mpich as a preferred package,

and registering cray-mpich as the external, we can use the
MPI compiler through the cray wrappers. This logic is shown
in Figure 7.

F. Static and Dynamic Linking

The GNU linker can be configured to use either static or
dynamic linking by default. Depending on the default, the user
must supply either a -static or a -dynamic flag to enable
the non-default mode. Most systems default to dynamic linking
and require developers to pass -static to the linker when they
want to do a static link, but the CrayPE defaults to static and
developers must explicitly pass the -dynamic flag.

Most build systems assume that linkers will be dynamic
by default, and many even hard-code this behavior and lack
settings to change the default sense of the linker flags. This
means that many build systems simply fail in the Cray
environment, as they cannot pass the necessary -dynamic
flag when it is needed. To standardize the environment and
prevent linking errors, Spack sets the environment variables
$CRAYPE LINK TYPE to dynamic. This causes the Cray linker
to behave as most packages expect, and increases portability
across the Spack software stack. Note that this does not mean
that we have to build all of our packages dynamically on Cray
machines. It simply means that, to get a static build, we need
to pass the flag, which is what most common open source
build systems already support.

1) Future Cray Support: We have highlighted most of the
changes we made to Spack to support Cray machines. We
are working towards improving Spack Cray support on an
ongoing basis, and our roadmap for Spack version 1.0 includes
improved support for external packages, improved module
support, and front-end compilation of build dependencies.

V. SPACK AT NERSC AND ORNL

Once we implemented the necessary changes and features
needed to control the Cray programming environment, NERSC
decided to test out using Spack to manage installs on our
Cray-XCs. We will go over the preliminary results of our
experiences using Spack at NERSC. Also included is usage
of Spack at Oak Ridge National Laboratory.

A. NERSC

Here we present our workflow at NERSC as well as the
packages we have provided to users using Spack.

1) Pseudo-user SWOWNER: To handle installs on NERSC
systems, a dedicated pseudo-user account called swowner was
created for NERSC staff to log in and compile NERSC-
provided software packages. This user has special write and
read access for installing software under a global shared
directory. Once a user has logged in as swowner they can
install packages either via a bash script or using Spack.

2) Spack Workflow: To allow for site-specific changes, we
forked the Spack LLNL repo into a NERSC github account. To
keep LLNL upstream changes separate from NERSC changes,
we created a git branch called nersc-spack that can be used to
change any core Spack code prior to merging upstream. Our
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Package Process

Build 

./configure make make 
install

Spack Compiler Wrappers
(spack/env/cray/cc, spack/env/cray/CC, spack/env/ftn)

cc CC ftn

do_install()

install dep1 install dep2 install root 
package

Fork

install()

Setup environment

CC=spack/env/cray/cc         SPACK_CC=cc
CXX=spack/env/cray/CC      SPACK_CXX=CC
F77=spack/env/cray/ftn       SPACK_F77=ftn
FC=spack/env/cray/ftn         SPACK_FC=ftn

PKG_CONFIG_PATH= …    PATH=spack/env:$PATH

-I/dep1-prefix/include
-L/dep1-prefix/lib
-Wl, rpath=/dep1-prefix/lib
-craype-verbose (cray compiler wrappers)

Fig. 6. Spack compiler wrappers. In this figure we describe the process in which Spack installs packages. Each dependency is installed by Spack prior to
the root package. When a package is built, an environment specific to that build is forked ensuring that no package environments collide. Once the install
procedure is executed the Spack compiler wrappers point to the cray wrappers (cc, CC, ftn).

def setup_dependent_environment(self, spack_env, run_env, dependent_spec):
# On Cray, the regular compiler wrappers *are* the MPI wrappers.
if 'platform=cray' in self.spec:

spack_env.set('MPICC', spack_cc)
spack_env.set('MPICXX', spack_cxx)
spack_env.set('MPIF77', spack_fc)
spack_env.set('MPIF90', spack_fc)

else:
spack_env.set('MPICC', join_path(self.prefix.bin, 'mpicc'))
spack_env.set('MPICXX', join_path(self.prefix.bin, 'mpic++'))
spack_env.set('MPIF77', join_path(self.prefix.bin, 'mpif77'))
spack_env.set('MPIF90', join_path(self.prefix.bin, 'mpif90'))

spack_env.set('MPICH_CC', spack_cc)
spack_env.set('MPICH_CXX', spack_cxx)
spack_env.set('MPICH_F77', spack_f77)
spack_env.set('MPICH_F90', spack_fc)
spack_env.set('MPICH_FC', spack_fc)

Fig. 7. Handling of the MPI in Cray and other platforms. The mpich
package.py file contains the logic for pointing the MPI to the correct
executables.

reasoning behind this is to have changes to either core Spack
code or the package repository immediately available to our
consultants rather that submit a pull request. Consultants create
private repositories using Spack’s repository feature which
creates a unique namespace for Spack packages. Creating a
private repository is useful for consultants to avoid using a
broken package file.

3) Spack Packages Provided: We provide a very limited
stack of software on our systems. Currently, we are testing
our workflow in using a single Spack instance. We are able to
install some packages such as abinit, wannier90, and boost
libraries, but most of our production software consists of
smaller libraries such as: openssl[13], gmp[14], mpfr[15].

B. Oak Ridge National Laboratory
ORNL houses Titan, Eos, Gaia-c3, and Gaia-c4. All ex-

cept for Titan are Cray-XCs with the Gaia supercomputers
being Cray-XC40s and Eos being a Cray-XC30. Their Titan
supercomputer is an older Cray XK7 model. They currently
maintain a minimal software stack of Spack-built packages on
their Crays. Most of their Spack packages are maintained on
their non-Cray supercomputers.

1) Managing Spack Installs: Currently, a single Spack
instance is present per host on Titan and Eos. On Gaia, there
exist two Spack instances per host. This however will soon
change as multiple Spack instances will exist per each host.
Plans are to have a Spack instance dedicated to building for
the login nodes and base OS compiler and a second that uses
builds from the first instance to assist with building scientific
software for the computer nodes. All software installs are made
via a continuous integration system, where an install is made
in a developmental location to prevent concretization issues or
inconsistencies with builds. A single Spack instance is used
amongst the support teams to install. Once an installation is
shown to work, the CI system deploys modulefiles in a CrayPE
consistent manner to general users’ $MODULESPATH.

All software built by Spack is available to users. Many of the
staff members at ORNL maintain private Spack instances for
testing and personal use. Similar to NERSC, ORNL has future
plans to provide Spack as a module to its users. However, the
availability will only be granted to a select few users and
development teams. Users will be able to take advantage of
Spack’s database introspection functions.

2) Development Teams: Development teams at ORNL are
free to use their own instance of Spack to install third party
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software in their own private locations. However, any software
that is made available to general users must go through their
CI system to keep track of what is installed.

C. Spack Results and Limitations

We found Spack to have a lot of potential in our software
maintenance but lacked production stability with packages. It
has powerful features such as database querying and cross-
compilation using the architecture spec. During our time using
Spack, we found it a bit rigid when it comes to modifying
modulefiles and the installation tree. Most HPC sites have
their own conventions and hierarchy of directories for their
packages. Spack unfortunately does not currently allow for
customization of trees (though this is a project already un-
derway). We also found support for installing with compilers
from different platforms was needed. At times Spack can
get confused with it’s compilers.yaml configuration and use
compilers from another system, or output an error message
that the compiler could not be found. We also found Spack
unable to recognize already installed dependencies. Spack
tends to re-download dependencies from a software stack
even if it has already been downloaded as a dependency
from another package. This could lead to a cluttering of low-
level dependency libraries. At Oak Ridge, Spack is used to
maintain 7 packages out of 193 on Titan, and 5 packages out
of a total of 73 on Eos. Currently, main usage of Spack is
seen in Oak Ridge Leadership Computing Facility (OLCF)
and National Climate-Computing Research Center (NCRC)
machines. Another limitation of Spack involves the lack of
testing of stable packages on Cray supercomputers. Most
testing is done in a Linux container environment that lacks the
complexity of a Cray environment. Though these limitations
have slowed down adoption at NERSC, work is being made
to improve package stability on Cray machines as well as
development to move Spack towards a beta release.

VI. OTHER PACKAGE MANAGERS

Other package managers have been developed at other
sites to support Cray supercomputers. In this section we
will compare three package managers with Spack: EasyBuild,
Maali, and Smithy.

A. EasyBuild

EasyBuild is a tool for building and installing scientific soft-
ware. It is developed and maintained by HPC support teams
at Ghent University (Belgium) and has been in development
since 2009 and was publicly in 2012[16]. EasyBuild is a
collection of Python modules that interact with each other and
can pick up additional Python modules needed for building
and installing software packages specified via specification
files. EasyBuild consists of three different parts: a framework,
install procedures called easyblocks, and specification files
called easyconfig files. Together these help automate and build
packages on HPC systems.

Easybuild is Spack’s main competitor in the HPC space,
and both systems are notable for having active developer
communities that span large numbers of HPC sites.

B. Maali

Maali is a package manager developed at Pawsey Supercom-
puting Centre. It is a lightweight automated system used for
managing optimized scientific libraries. Maali consists of a set
of bash scripts that read like a template file. These scripts help
automate the Autoconf process of configure, make, and make
install. It has also been developed to handle CMake and
Python builds. Maali depends on system-level configurations
to set environment variables that can be used for building and
defining the build environment[17].

C. Smithy

Smithy is a package manager written in Ruby that was
first developed at Oak Ridge National Laboratory. It borrows
heavily from the MacOS package manager Homebrew. Its
main purpose was to handle software stacks specifically for
Cray supercomputers. It uses “formulae”, which, like Spack’s
package files, describe the build process.[18].

D. Key differences

This section compares how each package manager handles
software installations with a specific emphasis on the Cray
supercomputing environment.

1) Managing Dependencies: Both Spack and EasyBuild
contain logic for managing dependencies. In Spack, depen-
dency resolution is handled dynamically, for each build, with
its concretization algorithm. Spack works with an in-memory
model of the DAG and exposes DAG semantics to packages
at build time. The same package.py file can be used to build
many different versions and configurations of a package. Once
a DAG is concretized, Spack will install each dependency
on the DAG according to its spec. EasyBuild uses either
an easyconfig file or modules to determine which depen-
dencies are available. If no dependencies are available via
modules it will search through a user-configured path for other
easyconfig files and install each dependency. Easybuild’s
dependency structure is static, that is, easyconfig files do not
use any templating, and new packages for new platforms
and versions require new config files. Further, while Spack
maintains a database of installed packages and tracks installed
dependencies, EasyBuild does not track dependencies after a
packages is installed. At this time Smithy and Maali do not
support any dependency resolution; it is entirely up to the user
to manage resolving installation of dependencies for complex
packages.

2) Compilers: All package managers that support the Cray
environment are able to interact with compilers through mod-
ules. EasyBuild uses compiler toolchain modules to help setup
the build environment prior to installation. Adjustments were
made to provide support to the CrayPE compiler toolchains
for GNU, Intel, and Cray Compiling Environment (CCE)[19].
To use such toolchains requires the user to simply enter the
desired toolchain into an easyconfig file and EasyBuild will
use that compiler and load the appropriate modules. Spack
can autodetect compilers by searching the $PATH and available
Cray modules. Spack also differentiates between front-end and
back-end compilers making it easy to swap compilers in and
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out of builds, while re-resolving dependency DAGs with each
change. To use such compilers one can either set the target in
the spec or the operating system. EasyBuild and Spack both
load the appropriate PrgEnv and compiler modules for a given
toolchain. Smithy and Maali also interact with compilers via
the module system, but Smithy requires that the build name
of a formula match the required compiler toolchain name.
Once the name has been queried, the appropriate modules will
be loaded. Maali requires an environment module be set to the
desired compiler toolchain before building, so the user must
handle interaction with the Cray environment manually.

Aside from Spack, each package manager requires a dedi-
cated file or specification of a compiler. Although this is not
terribly difficult, it does add complexity to the process, since
many files are needed for each programming environment.
Spack can build its compilers.yaml file automatically, and
detected compilers can plug seamlessly into package tem-
plates.

3) Generation of module files: Smithy, Maali, EasyBuild,
and Spack all support module file generation. EasyBuild inte-
grates well with the Cray modules. During an install, module
files are generated and integrated to the modules environment.
These modules are automatically available to the user and
EasyBuild as well. Spack can also auto-generate module files
and allows for configuration of module file naming scheme
and manipulation of environment variables. Smithy and Maali
both create module files but the information contained in them
is hard coded. Easybuild and Spack both have integration with
Lmod and TCL modules.

VII. COMMON ISSUES INSTALLING ON CRAY

Our implementation of Spack on Cray machines revealed
some common issues that were also encountered by others
who have attempted to produce automated build systems for
Cray, e.g., the Easybuild team [19].

a) Clean build environment: Both EasyBuild and Spack
have difficulty obtaining sanitized build environment on Cray
machines. Cray provides a default list of modules that each
contain an important set of optimized libraries and compiler
flags. To avoid accidentally linking or using the wrong package
during some builds requires unloading modules that are not
part of Cray’s standard list. We expected that the module
purge command would be able to create a “factory” environ-
ment, but instead it breaks the module system. After a module
purge, the default environment cannot be reconstructed with-
out logging out of the system and then logging in again. This
triggers the system init scripts, which add environment settings
that are outside the control of the module system, but required
to load a proper environment. Reconstructing a proper CrayPE
environment from a purged state is sensitive to the order in
which modules are loaded and to the particular site where the
Cray system is hosted. This is because Cray allows sites to
heavily customize their installations, and there is no “factory”
setting for a Cray. We believe that it is important to be able
to recover a factory setup when module purge is run, so that
we can create a consistent build environment that is portable
across Cray sites. The lack of such a capability impedes our
ability to collaborate with other sites on Spack packaging.

b) Integration with Cray modules: Another common
problem is integration of modules with the Cray program-
ming environment. Making module swap behave properly for
PrgEnv modules is difficult, as it requires lengthy conditional
logic. Easybuild adds custom logic to their modules, but
Spack does not yet add this. Whenever a user loads a specific
module in a programming environment, the respective package
will be loaded. Although this can be resolved with adding
a conditional, we think it would be best if Cray provided
a hook for modulefiles so that whenever a user switches a
programming environment, that package will be switched with
the appropriate one.

c) Linker behavior: As mentioned in Section IV-F, the
default behavior of the linker on Cray machines is incompat-
ible with many common build systems. We believe it would
be easier to port many open source packages to Cray if the
default linker mode were more similar to most commodity
Linux/UNIX environments.

d) Compiler wrapper names: Cray uses a nonstandard
set of names for its compiler wrappers. Specifically, it sets
their names to cc, CC, and ftn. While the Cray names are
simple and straightforward for humans writing basic makefiles,
they can cause portability issues, because some build systems
(including the widely used libtool component of autotools)
are sensitive to the compiler name and use it to deduce the
correct compiler and link flags to use during the build. Porting
packages to Cray may require patching the affected build
system or adding special compiler flags.

Spack’s compiler wrapper methods have another beneficial
side effect for some builds. Spack ensures that during a build,
its compiler wrappers are named similarly to the selected
compiler. That is, if we are compiling with gcc, we ensure that
the compiler wrapper scripts are called gcc, g++, gfortran,
etc., and if we are compiling with the Intel compiler, we
similarly use the standard icc, icpc, and ifort. This makes
porting some packages to Cray easier when using Spack than
they would be without it.

VIII. CONCLUSION

As a result of our collaboration with LLNL, various other
Cray sites have shown interest in using Spack for their
software management. For example, Los Alamos National
Laboratory has show interest in using Spack and has con-
tributed packages that have been built on Cray. Although
NERSC has not fully depended on Spack for software man-
agement, our current experience has been satisfactory with
the Spack package manager. NERSC is currently working on
stabilizing Spack on both of our Crays. Some limitations of
Spack such as custom module file generation and detection
of external packages are being worked on, and it is our hope
that they will be released for either version 1.0 of Spack or
for future releases. Currently, Spack is running tests on the
cDASH platform, and NERSC plans to run nightly tests on
our machines to ensure stable packages. In addition, we are
planning on providing Spack as a module for users to install
their software. We found that Spack works well for users
wanting to install their own configured package and to install
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older less supported software. We also believe that Spack
would be suitable for user-defined containers, such as our
own Shifter[20]. Since Shifter will contain lightweight Linux
images, we believe that Spack with it’s powerful capabilities
to provide different software stacks would work very well in
a container environment.
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