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Background: New Architectures 


u Cori	Phase	II	was	installed	in	2016	
§  Intel	Xeon	Phi	2nd	genera2on	

§  Knights	Landing	(KNL)	
KNL	 Haswell	

CPU	 1.4GHz	 2.3GHz	

Memory	 96	G	DDR4,	16G	HBM	 128	G	DDR4	

Cache(L1,	L2,	L3)	 64K,	1M	 64K,	256K,	40M	

Node	 68	core,	single	socket	 32	core,	two	socket	

Capacity	 9688	nodes	 2388	nodes	



Problem: Performance Gap

u Different	Architectures,	Performance	Difference	Detected	

§  NESAP	program	at	NERSC,	focuses	on	computa2on	performance	[1]		

§  How	about	IO?	~2X	gap,	why?		

	IOR	File	Per	Process	
•  1G	per	process,	1	to	32	processes,	POSIX	IO	

1.52X	

[1]	T.	Barnes,	etc.	Evalua2ng	and	Op2mizing	the	NERSC	Workload	on	Knights	Landing.	PMBS	2016	



Mysterious IO Gap 


u  IO	is	typically	slowed	down	by	disk,	not	CPU	
§  CPU	is	faster	enough	than	disk,	and	has	rela2vely	smaller	

impact	to	the	IO	performance	

u But	IO	stack	underneath	Haswell	and	KNL	is	same	

§  Cray	Sonexion	2000	Lustre	appliance	

§  Cray	Aries	with	Dragonfly	topology	
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IO Benchmarks


u DD	
u  IOR	
u HDF5	



DD


u dd:	Simple,	commonly	used	in	tes2ng	disk	bandwidth	
§  Copy	a	file,	conver2ng	and	formahng	according	to	the	operands.	

§  dd if=input of=output
u  IO:		

§   dd_copy(){
§      posix_read();
§      posix_write();}

u 512	bytes	by	default	
§  1M	block	size	is	used	in	our	test	

§  10000	count	



IOR


u  IOR:	HPC	IO	Benchmark	for	measuring	peak	performance	
u  IO:		

§  File	Per	Process	(FPP)	

§  Single	Shared	File	(SSF)	

u Flexible	Configura2ons:	

§  Transfer/block/segment	size	

§  Fsync/dsync/direct	IO	

§  POSIX/MPIIO/HDF5	



HDF5


u HDF5:	IO	middleware	used	in	many	HPC	applica2ons	
§  Construct	logical	access	pa7ern	

§  MPI	Independent/Collec2ve	IO	

u MPIIO:		

§  H5Dwrite() and H5Dread()
§  Collective buffer	

u Customized	IO	Benchmarks	



Varying CPU Frequencies: Haswell


Without	Turbo	Mode	
§  r2	=	0.79	

Haswell,	Single	Core,	10G	write	

With	Turbo	Mode	
§  r2	=	0.76	



Varying CPU Frequencies: KNL


Without	Turbo	Mode	
§  r2	=	0.95	

KNL,	Single	Core,	10G	write	

With	Turbo	Mode	
§  r2	=	0.94	



How Well is the Fitting


u  IO	~	CPU	Frequency	
u Single	Core	IO	=	f	(	CPU	frequency,	other),	if	IO	fits	in	page	buffer	

§  r2haswell		<	r2knl	:	Complex	Haswell	chip;	Wider	range	of	CPU	
frequencies,	more	pipelined	KNL	chip	

§  intercept	>>	0:	Page	Cache.		

ParDDon	 Haswell	 KNL	

r2	 0.79	 0.95	

intercept	(MB/s)	 286.11	 41.28	

v  Note	that,	the	IO	can	fit	in	the	page	buffer	well	



Haswell vs KNL


§  Bandwidth	Ra2o	Haswell	/	KNL			=	2.30	(at	same	CPU	freq)	
																																		 	 	 		 			=	3.46	(Turbo)		



Other Facts


§  IPChaswell	/	IPCknl	=	2.23	(average)	
§  IPChaswell	/	IPCknl	=	2.35	(at	same	cpu	freq)	



Similar Result with HDF5 Parallel IO


§  IOhaswell	/	IOknl				=	1.83	(at	same	CPU	freq)	
																																		=	3.06	(Turbo)		



IPC Statistics


§  IPChaswell	/	IPCknl	=	1.88	(average)	
§  IPChaswell	/	IPCknl	=	1.93	(at	same	cpu	freq)	



Same KNL IO Issue Confirmed at ANL


§  dd	write	10G	to	scratch	
§  IO	Bandwidth:	262MB/s,	1.398GHz	(Turbo),	ANL	
									 	 							306MB/s,	NERSC	

§  CPU	7230	@	1.30GHz	64	cores	ANL		
§  CPU	7250	@	1.40GHz	68	cores	NERSC	



Summary I for Single Core IO Performance


u  IO	~	F(	CPU	Frequency	)	
§  Haswell:	r2	=	0.79	(DD),	r2	=	0.89	(HDF5)	
§  KNL:								r2	=	0.95	(DD),	r2	=	0.96	(HDF5)	

u KNL	/	Haswell		
§  HDF5:	IPC	Ra2o=	51%,	IO	BW	Ra2o	=	55	%				
§  DD:						IPC	Ra2o=44%,	IO	BW	Ra2o	=	43	%		

u Turbo	Mode	(Default)	
§  IO	BW	Ra2o	(KNL/Haswell)	=	32%	(HDF5),	29%	(DD)	

Page	Buffer	

IO	 IO	
IO	



Node Local IO Path Deep Dive


u With	the	Same	CPU	Frequencies	
§  What	is	the	difference	in	the	two	node’s	IO	path?	



IO Path in Different IO Modes 


§  MCDRAM	in	Cache	Mode	or	Flat	Mode	
§  IO	is	

1.  Buffer	IO	
2.  Sync	IO	
3.  Direct	IO	

u 1	Buffer	IO	(Default)	
§  User->Kernel,	memcpy()	

DRAM	

L3	or	RAM	

Kernel	

User	1	

Cray-Lustre	2.7.1	

2.1	

2.2	

3	

CPU	

User	

MCDRAM	

u 2	Sync	IO	
§  2.1	User->Kernel,	memcpy()	
§  2.2	Memory->Lustre,	buffer_io()	

u 3	Direct	IO	
§  User->Lustre,	direct_io()	



Sync IO


X	is	1.4Ghz,	1.3	Ghz,	1.2Ghz,	each	is	repeated	3	2mes	

dd	oflag=dsync	if=/dev/zero	of=$SCRATCH/1.txt	bs=1m	count=10000	

Kernel	

User	

FS	



Sync IO: CPU Impact diminishes


r-square		
§  0.89-0.96	(Buffered	IO)		
§  0.03-0.16	(Sync	IO)	

KNL	 Haswell	



Sync IO: KNL is closer to Haswell


Kernel	

User	

FS	

Haswell	 KNL-DRAM	 KNL-MCDRAM	

STDEV	 0.55	 0.46	 2.22	

AVERAGE	 45.21	 31.23	 30.20	

MEDIAN	 45.35	 31.47	 31.13	

KNL/Haswell	 69%	 67%	
§  10G	write	with	sync	IO	
§  CPU	1.4,	1.3,	1.2	GHz	
§  Each	test	repeated	3	Gmes	
§  Average	
§  User	space	memory	is	in	DRAM	or	MCDRAM,	set	by	numactl	m=0	or	1	
§  Kernel	space	memory	is	unknown	in	case	of	MCDRAM	as	first	priority	memory,	

i.e.,	m=1	



Page Cache Off, Direct IO




MCDRAM	DRAM	

Page Cache Off, Direct IO


User	

FS	

3	

Haswell	 KNL-DRAM	 KNL-MCDRAM	

STDEV	 1.21	 1.02	 1.15	

AVERAGE	 48.99	 43.83	 46.78	

MEDIAN	 49.60	 43.93	 46.40	

KNL/Haswell	 90%	 96%	
§  10G	write	with	direct	IO	
§  CPU	1.4,	1.3,	1.2	GHz	
§  Each	test	repeated	3	Gmes	
§  Average	
§  Bypassing	kernel	space	buffer	
§  User	space	memory	is	either	using	DRAM	or	MCDRAM,	controlled	by	numactl	m=0	for	DRAM,	1	for	MCDRAM	



Summary II for Single Core IO Performance


u  IO	~	CPU	Frequency:	CPU	Impact	diminishes	
§  Haswell	r-square:	0.79	(page	cache	on)	--->>	0.03	(page	cache	off)	
§  KNL	r-square:	0.95	(on)	--->>	0.16	(off)	

u  IO	BW	at	same	CPU	Frequencies	
§  DRAM:				Sync	IO	67%,	Direct	IO	90%	(KNL/Haswell)	
§  MCDRAM:	Sync	IO	69%,	Direct	IO	96%	

u Turbo	Mode	(Default)	
§  DRAM:	Sync	IO	65%,	Direct	IO	78%	
§  MCDRAM:	Sync	IO	73%,	Direct	IO	88%	
	



Summary II for Single Core IO Performance


Note	that	the	absolute	performance	number	is	not	revealed	in	this	
plot,	Buffered	IO	typically	deliver	10X	performance	speedup	in	write		

Ra2o=KNL/Haswell	



Summary II for Single Core IO Performance




Parallel IO


u Parallelism	
§  More	threads	on	KNL	
§  Internal	parallelism,	Check	Intel’s	new	Lustre	op2miza2on	LUG17	

u Network,	Inter-node	Communica2on	Latency	
§  MPIIO	

u Node	Local	Collec2ve	Buffer	Size	
§  Collec2ve	IO	
	



Mul2ple	Core,	Mul2ple	Node	IO	Tests	
File	per	Process	



Write, Same IO Mode, Haswell vs KNL


Buffered	Write,	Haswell	vs	KNL	 Direct	Write,	Haswell	vs	KNL	

KNL/Haswell=	0.58	 0.83	Same	Number	of	Procs	

Maximum	 KNL/Haswell=	0.99	 2.25	

More	Cores	



Write: Same Node, Buffered vs Direct IO


Buffered	vs.	Direct	Write,	KNL	 Buffered	vs.	Direct	Write,	Haswell	

§  Direct	IO	is	scalable	
§  KNL	has	less	page	buffer,	and	probably	less	

powerful	buffer	management			

1	Node	2	Node	

More	Buffer	



Read Once, Same IO Mode, Haswell vs KNL


Buffered	Read,	Haswell	vs.	KNL	 Direct	Read,	Haswell	vs	KNL	

§  KNL	IO	BW	outperforms	Haswell	with	more	cores	in	both	buffered	&	direct	IO	

Read	1	2me	



Read Multiple Times


Buffered	Read,	Haswell	vs.	KNL	

§  KNL	IO	BW	drops	at	48-64	cores	per	node	
§  Increase	page	buffer,	not	tried	yet	

Read	3	2mes,	Don’t	flush	the	cache	explicitly		



Read Once, Same Node, Buffered vs Direct IO


Buffered	Read	vs.	Direct	Read,	KNL	 Buffered	vs	Direct	Read,	Haswell	

§  Direct	Read	reaches	and	outperforms	Buffered	Read	
§  Lustre	readahead	benefit	reduces	as	memcopy	cost	increases	



Lustre Read-ahead to Read Performance




Summary III Multi-Node/Core File Per Process


u Write	
§  KNL/Haswell	0.58	->	0.99		(32	processes	to	64	processes)	
§  Direct	IO:	Scalable,	can	reach	Buffered	IO	
§  More	page	buffer	for	beWer	buffered	IO	performance	

u Read	
§  KNL	outperforms	Haswell	with	more	cores	in	both	buffered/

direct	IO,	with	read	once	IO	pa7ern	
§  KNL	drops	due	to	page	buffer	limit	when	read	mul2ple	2mes	
§  Lustre	read-ahead	is	a	factor	
§  Direct	IO	outperforms	buffered	IO	with	large	one-2me	read	



Mul2ple	Core,	Mul2ple	Node	IO	Tests	
Single	Shared	File	



u With	0	Byte,	Haswell/KNL	Inter-node	BW	2.49X	
	 						 	 	 									Intra-node	BW	2.73X 		

u KNL	outperforms	Haswell	with	larger	message	size	in	inter-node	comm	
u Larger	buffer	size	



u With	0	Byte,	Haswell/KNL	Inter-node	BW	2.49X	
	 						 	 	 									Intra-node	BW	2.73X 		

u KNL	outperforms	Haswell	with	larger	message	size	in	inter-node	comm	
u Larger	buffer	size	



Conclusion

u CPU	Frequency	

§  Main	factor	
§  IO	scales	with	CPU	when	IO	can	fit	into	page	buffer	

u Page	Buffer	
§  KNL	is	close	to	Haswell	with	direct	IO	
§  Page	buffer	management	is	slower	on	KNL	
§  Page	buffer	benefits	generally,	e.g.,	write,	mul2-read	
§  Direct	IO	can	be	be7er	than	buffered	IO	with	large	one-2me	read	

u Many	Cores	
§  KNL	could	outperform	Haswell	with	more	cores	in	FPP	read	once.	
§  Direct	IO	is	much	more	scalable	than	buffered	IO	

u Network,	Collec2ve	Buffer	and	Others	
§  KNL	has	larger	inter-node	latency	than	Haswell	
§  Increasing	buffer	size	in	MPIIO	can	improve	IO	BW	



Future Work


u Page	Buffer	Management	on	KNL	
§  MCDRAM	as	page	buffer	

u Cross-par22on	IO	
§  Offload	IO	from	KNL	to	Haswell	
§  Shiv	computa2on	from	Haswell	to	KNL	
§  Dynamic	Datahub:	h7ps://github.com/NERSC/heterogeneous-IO	

u Many/Heterogeneous	Core	IO	Op2miza2on	

Pub Sub

IO Compute


