
Jialin Liu, Quincey Koziol, Houjun 
Tang, Francois Tessier, Wahid Bhimji, 
Brandon Cook, Brian Austin, Suren 
Byna, Bhupender Thakur, Glenn 
Lockwood, Jack Deslippe, Prabhat 


Understanding the IO 
Performance Gap 
Between Cori KNL and 
Haswell


May	10	2017	
Cray	User	Group	Mee2ng,	Sea7le,	2017	



Background: New Architectures 


u Cori	Phase	II	was	installed	in	2016	
§  Intel	Xeon	Phi	2nd	genera2on	

§  Knights	Landing	(KNL)	
KNL	 Haswell	

CPU	 1.4GHz	 2.3GHz	

Memory	 96	G	DDR4,	16G	HBM	 128	G	DDR4	

Cache(L1,	L2,	L3)	 64K,	1M	 64K,	256K,	40M	

Node	 68	core,	single	socket	 32	core,	two	socket	

Capacity	 9688	nodes	 2388	nodes	



Problem: Performance Gap

u Different	Architectures,	Performance	Difference	Detected	

§  NESAP	program	at	NERSC,	focuses	on	computa2on	performance	[1]		

§  How	about	IO?	~2X	gap,	why?		

	IOR	File	Per	Process	
•  1G	per	process,	1	to	32	processes,	POSIX	IO	

1.52X	

[1]	T.	Barnes,	etc.	Evalua2ng	and	Op2mizing	the	NERSC	Workload	on	Knights	Landing.	PMBS	2016	



Mysterious IO Gap 


u  IO	is	typically	slowed	down	by	disk,	not	CPU	
§  CPU	is	faster	enough	than	disk,	and	has	rela2vely	smaller	

impact	to	the	IO	performance	

u But	IO	stack	underneath	Haswell	and	KNL	is	same	

§  Cray	Sonexion	2000	Lustre	appliance	

§  Cray	Aries	with	Dragonfly	topology	



IO Stack


248	 OSS	 OSS	 …	 …	

OST	 OST	 OST	 OST	 OST	 OST	…	 …	

MDS4	MDS3	

MDS1	 MDS2	

1	primary	MDS,		
4	addi2onal	MDS	

ADU1	

ADU2	
MDS	

248	

OSS	 OSS	OSS	 OSS	

Infiniband	

130	

Haswell	with	Aries	Network	
…	CMP	 CMP	

…	…	
CMP	

…	

CMP	

LNET	

…	

…	

…	

CMP	 CMP	

LNET	 LNET	

KNL	with	Aries	Network	
…	CMP	 CMP	

…	…	
CMP	

…	

CMP	

LNET	

…	

…	

…	

CMP	 CMP	

LNET	 LNET	…	

2338	 9688	

Co
m
pu

te
	S
id
e	

Storage	Side	



IO Benchmarks


u DD	
u  IOR	
u HDF5	



DD


u dd:	Simple,	commonly	used	in	tes2ng	disk	bandwidth	
§  Copy	a	file,	conver2ng	and	formahng	according	to	the	operands.	

§  dd if=input of=output
u  IO:		

§   dd_copy(){
§      posix_read();
§      posix_write();}

u 512	bytes	by	default	
§  1M	block	size	is	used	in	our	test	

§  10000	count	



IOR


u  IOR:	HPC	IO	Benchmark	for	measuring	peak	performance	
u  IO:		

§  File	Per	Process	(FPP)	

§  Single	Shared	File	(SSF)	

u Flexible	Configura2ons:	

§  Transfer/block/segment	size	

§  Fsync/dsync/direct	IO	

§  POSIX/MPIIO/HDF5	



HDF5


u HDF5:	IO	middleware	used	in	many	HPC	applica2ons	
§  Construct	logical	access	pa7ern	

§  MPI	Independent/Collec2ve	IO	

u MPIIO:		

§  H5Dwrite() and H5Dread()
§  Collective buffer	

u Customized	IO	Benchmarks	



Varying CPU Frequencies: Haswell


Without	Turbo	Mode	
§  r2	=	0.79	

Haswell,	Single	Core,	10G	write	

With	Turbo	Mode	
§  r2	=	0.76	



Varying CPU Frequencies: KNL


Without	Turbo	Mode	
§  r2	=	0.95	

KNL,	Single	Core,	10G	write	

With	Turbo	Mode	
§  r2	=	0.94	



How Well is the Fitting


u  IO	~	CPU	Frequency	
u Single	Core	IO	=	f	(	CPU	frequency,	other),	if	IO	fits	in	page	buffer	

§  r2haswell		<	r2knl	:	Complex	Haswell	chip;	Wider	range	of	CPU	
frequencies,	more	pipelined	KNL	chip	

§  intercept	>>	0:	Page	Cache.		

ParDDon	 Haswell	 KNL	

r2	 0.79	 0.95	

intercept	(MB/s)	 286.11	 41.28	

v  Note	that,	the	IO	can	fit	in	the	page	buffer	well	



Haswell vs KNL


§  Bandwidth	Ra2o	Haswell	/	KNL			=	2.30	(at	same	CPU	freq)	
																																		 	 	 		 			=	3.46	(Turbo)		



Other Facts


§  IPChaswell	/	IPCknl	=	2.23	(average)	
§  IPChaswell	/	IPCknl	=	2.35	(at	same	cpu	freq)	



Similar Result with HDF5 Parallel IO


§  IOhaswell	/	IOknl				=	1.83	(at	same	CPU	freq)	
																																		=	3.06	(Turbo)		



IPC Statistics


§  IPChaswell	/	IPCknl	=	1.88	(average)	
§  IPChaswell	/	IPCknl	=	1.93	(at	same	cpu	freq)	



Same KNL IO Issue Confirmed at ANL


§  dd	write	10G	to	scratch	
§  IO	Bandwidth:	262MB/s,	1.398GHz	(Turbo),	ANL	
									 	 							306MB/s,	NERSC	

§  CPU	7230	@	1.30GHz	64	cores	ANL		
§  CPU	7250	@	1.40GHz	68	cores	NERSC	



Summary I for Single Core IO Performance


u  IO	~	F(	CPU	Frequency	)	
§  Haswell:	r2	=	0.79	(DD),	r2	=	0.89	(HDF5)	
§  KNL:								r2	=	0.95	(DD),	r2	=	0.96	(HDF5)	

u KNL	/	Haswell		
§  HDF5:	IPC	Ra2o=	51%,	IO	BW	Ra2o	=	55	%				
§  DD:						IPC	Ra2o=44%,	IO	BW	Ra2o	=	43	%		

u Turbo	Mode	(Default)	
§  IO	BW	Ra2o	(KNL/Haswell)	=	32%	(HDF5),	29%	(DD)	

Page	Buffer	

IO	 IO	
IO	



Node Local IO Path Deep Dive


u With	the	Same	CPU	Frequencies	
§  What	is	the	difference	in	the	two	node’s	IO	path?	



IO Path in Different IO Modes 


§  MCDRAM	in	Cache	Mode	or	Flat	Mode	
§  IO	is	

1.  Buffer	IO	
2.  Sync	IO	
3.  Direct	IO	

u 1	Buffer	IO	(Default)	
§  User->Kernel,	memcpy()	

DRAM	

L3	or	RAM	

Kernel	

User	1	

Cray-Lustre	2.7.1	

2.1	

2.2	

3	

CPU	

User	

MCDRAM	

u 2	Sync	IO	
§  2.1	User->Kernel,	memcpy()	
§  2.2	Memory->Lustre,	buffer_io()	

u 3	Direct	IO	
§  User->Lustre,	direct_io()	



Sync IO


X	is	1.4Ghz,	1.3	Ghz,	1.2Ghz,	each	is	repeated	3	2mes	

dd	oflag=dsync	if=/dev/zero	of=$SCRATCH/1.txt	bs=1m	count=10000	

Kernel	

User	

FS	



Sync IO: CPU Impact diminishes


r-square		
§  0.89-0.96	(Buffered	IO)		
§  0.03-0.16	(Sync	IO)	

KNL	 Haswell	



Sync IO: KNL is closer to Haswell


Kernel	

User	

FS	

Haswell	 KNL-DRAM	 KNL-MCDRAM	

STDEV	 0.55	 0.46	 2.22	

AVERAGE	 45.21	 31.23	 30.20	

MEDIAN	 45.35	 31.47	 31.13	

KNL/Haswell	 69%	 67%	
§  10G	write	with	sync	IO	
§  CPU	1.4,	1.3,	1.2	GHz	
§  Each	test	repeated	3	Gmes	
§  Average	
§  User	space	memory	is	in	DRAM	or	MCDRAM,	set	by	numactl	m=0	or	1	
§  Kernel	space	memory	is	unknown	in	case	of	MCDRAM	as	first	priority	memory,	

i.e.,	m=1	



Page Cache Off, Direct IO




MCDRAM	DRAM	

Page Cache Off, Direct IO


User	

FS	

3	

Haswell	 KNL-DRAM	 KNL-MCDRAM	

STDEV	 1.21	 1.02	 1.15	

AVERAGE	 48.99	 43.83	 46.78	

MEDIAN	 49.60	 43.93	 46.40	

KNL/Haswell	 90%	 96%	
§  10G	write	with	direct	IO	
§  CPU	1.4,	1.3,	1.2	GHz	
§  Each	test	repeated	3	Gmes	
§  Average	
§  Bypassing	kernel	space	buffer	
§  User	space	memory	is	either	using	DRAM	or	MCDRAM,	controlled	by	numactl	m=0	for	DRAM,	1	for	MCDRAM	



Summary II for Single Core IO Performance


u  IO	~	CPU	Frequency:	CPU	Impact	diminishes	
§  Haswell	r-square:	0.79	(page	cache	on)	--->>	0.03	(page	cache	off)	
§  KNL	r-square:	0.95	(on)	--->>	0.16	(off)	

u  IO	BW	at	same	CPU	Frequencies	
§  DRAM:				Sync	IO	67%,	Direct	IO	90%	(KNL/Haswell)	
§  MCDRAM:	Sync	IO	69%,	Direct	IO	96%	

u Turbo	Mode	(Default)	
§  DRAM:	Sync	IO	65%,	Direct	IO	78%	
§  MCDRAM:	Sync	IO	73%,	Direct	IO	88%	
	



Summary II for Single Core IO Performance


Note	that	the	absolute	performance	number	is	not	revealed	in	this	
plot,	Buffered	IO	typically	deliver	10X	performance	speedup	in	write		

Ra2o=KNL/Haswell	



Summary II for Single Core IO Performance




Parallel IO


u Parallelism	
§  More	threads	on	KNL	
§  Internal	parallelism,	Check	Intel’s	new	Lustre	op2miza2on	LUG17	

u Network,	Inter-node	Communica2on	Latency	
§  MPIIO	

u Node	Local	Collec2ve	Buffer	Size	
§  Collec2ve	IO	
	



Mul2ple	Core,	Mul2ple	Node	IO	Tests	
File	per	Process	



Write, Same IO Mode, Haswell vs KNL


Buffered	Write,	Haswell	vs	KNL	 Direct	Write,	Haswell	vs	KNL	

KNL/Haswell=	0.58	 0.83	Same	Number	of	Procs	

Maximum	 KNL/Haswell=	0.99	 2.25	

More	Cores	



Write: Same Node, Buffered vs Direct IO


Buffered	vs.	Direct	Write,	KNL	 Buffered	vs.	Direct	Write,	Haswell	

§  Direct	IO	is	scalable	
§  KNL	has	less	page	buffer,	and	probably	less	

powerful	buffer	management			

1	Node	2	Node	

More	Buffer	



Read Once, Same IO Mode, Haswell vs KNL


Buffered	Read,	Haswell	vs.	KNL	 Direct	Read,	Haswell	vs	KNL	

§  KNL	IO	BW	outperforms	Haswell	with	more	cores	in	both	buffered	&	direct	IO	

Read	1	2me	



Read Multiple Times


Buffered	Read,	Haswell	vs.	KNL	

§  KNL	IO	BW	drops	at	48-64	cores	per	node	
§  Increase	page	buffer,	not	tried	yet	

Read	3	2mes,	Don’t	flush	the	cache	explicitly		



Read Once, Same Node, Buffered vs Direct IO


Buffered	Read	vs.	Direct	Read,	KNL	 Buffered	vs	Direct	Read,	Haswell	

§  Direct	Read	reaches	and	outperforms	Buffered	Read	
§  Lustre	readahead	benefit	reduces	as	memcopy	cost	increases	



Lustre Read-ahead to Read Performance




Summary III Multi-Node/Core File Per Process


u Write	
§  KNL/Haswell	0.58	->	0.99		(32	processes	to	64	processes)	
§  Direct	IO:	Scalable,	can	reach	Buffered	IO	
§  More	page	buffer	for	beWer	buffered	IO	performance	

u Read	
§  KNL	outperforms	Haswell	with	more	cores	in	both	buffered/

direct	IO,	with	read	once	IO	pa7ern	
§  KNL	drops	due	to	page	buffer	limit	when	read	mul2ple	2mes	
§  Lustre	read-ahead	is	a	factor	
§  Direct	IO	outperforms	buffered	IO	with	large	one-2me	read	



Mul2ple	Core,	Mul2ple	Node	IO	Tests	
Single	Shared	File	



u With	0	Byte,	Haswell/KNL	Inter-node	BW	2.49X	
	 						 	 	 									Intra-node	BW	2.73X 		

u KNL	outperforms	Haswell	with	larger	message	size	in	inter-node	comm	
u Larger	buffer	size	



u With	0	Byte,	Haswell/KNL	Inter-node	BW	2.49X	
	 						 	 	 									Intra-node	BW	2.73X 		

u KNL	outperforms	Haswell	with	larger	message	size	in	inter-node	comm	
u Larger	buffer	size	



Conclusion

u CPU	Frequency	

§  Main	factor	
§  IO	scales	with	CPU	when	IO	can	fit	into	page	buffer	

u Page	Buffer	
§  KNL	is	close	to	Haswell	with	direct	IO	
§  Page	buffer	management	is	slower	on	KNL	
§  Page	buffer	benefits	generally,	e.g.,	write,	mul2-read	
§  Direct	IO	can	be	be7er	than	buffered	IO	with	large	one-2me	read	

u Many	Cores	
§  KNL	could	outperform	Haswell	with	more	cores	in	FPP	read	once.	
§  Direct	IO	is	much	more	scalable	than	buffered	IO	

u Network,	Collec2ve	Buffer	and	Others	
§  KNL	has	larger	inter-node	latency	than	Haswell	
§  Increasing	buffer	size	in	MPIIO	can	improve	IO	BW	



Future Work


u Page	Buffer	Management	on	KNL	
§  MCDRAM	as	page	buffer	

u Cross-par22on	IO	
§  Offload	IO	from	KNL	to	Haswell	
§  Shiv	computa2on	from	Haswell	to	KNL	
§  Dynamic	Datahub:	h7ps://github.com/NERSC/heterogeneous-IO	

u Many/Heterogeneous	Core	IO	Op2miza2on	

Pub Sub

IO Compute


