
Precipitation Nowcasting: Leveraging Deep Recurrent Convolutional Neural
Networks

Alexander Heye∗, Karthik Venkatesan†, Jericho Cain‡

Cray, Inc.
Seattle, Washington
∗aheye@cray.com

†kvenkatesa@cray.com
‡jcain@cray.com

Abstract—Automating very short-term precipitation fore-
casts can prove a significant challenge in that traditional
physics-based weather models are computationally expensive;
by the time the forecast is made, it may already be irrelevant.
Deep Learning offers a solution to this problem, as that a
computationally dense machine can train a neural network
ahead of time using historical data and deploy that trained
network in real-time to produce a new output within seconds
or minutes. Our team intends to prove the capabilities of
Deep-Learning in short-term forecasting by leveraging a model
built on Convolutional Long Short-Term Memory (convLSTM)
networks. By designing a 3D sequence-to-sequence convLSTM
model, we hope to offer accurate precipitation forecasts at
minute scale time resolution and neighborhood scale spatial
resolution. Our work will be accelerated by the GPU-dense
Cray R© CS-StormTM system for training and the Cray R© Urika-
GXTM for real-time processing of radar data.

Keywords-Analytic; Deep Learning; Meteorology

I. INTRODUCTION

High accuracy, short-term precipitation forecasts have the
potential to not only keep us dry on our way to work, but
also to save lives in extreme precipitation events. Heavy
localized precipitation over a narrow river valley can produce
massive flash floods rapidly and with insufficient warning if
high resolutions predictive models are not in place. When a
difference of 1-2km can be the difference between a normal
rainy day and flood conditions, it is vital that a specialized
system exists to inform meteorologists and decision makers.

A. Precipitation Nowcasting

Weather Nowcasting is term used to refer to very
short term weather forecasts at high time and spatial
resolutions.[12] Contemporary short-term weather forecast-
ing tends to focus on making predictions with forecast
lengths of 1-5 days into the future every 3-6 hours and with
spatial accuracy on the order of 1-5 kilometers. Nowcasting
in comparison aims to make reliable predictions up to 6
hours into the future as often as every 10 minutes and spatial
accuracy on the order of 1 kilometer.

B. Deep Learning

Deep learning has recently become a popular technique
for high level feature extraction from large, complex data-
sets. With recent advancements in training techniques and
new found architectures for new data formats, deep learning
has found applications in any data-heavy field of study.

Deep learning refers to the training of deep neural net-
works, or a neural network with more than a single layer.
These neural networks are generally trained on supervised
data-sets where each input data has a corresponded known
solution that we want the network to learn to predict. This
learning occurs through an iterative process of parameter
updates based on an error value representing how far off
a prediction was to the expected value. This tends to be a
very computationally demanding process, taking anywhere
from hours to days to properly train a sufficiently complex
network.

The primary driver of the widespread success of deep
learning is the expanded capabilities to capture and process
large amounts of data. A larger dataset provides a neural
network to train on a larger subset of the complete set
of possible input-output pairs, and thus can more readily
generalize to an even larger subset of possible inputs.
Managing and processing a sufficiently large dataset is a
large undertaking, and thus is likely to be the primary pain
point when applying deep learning to a new problem.

Because of this, we intend to explore the full workflow of
a deep learning task, from data sourcing to data processing to
model training and inference. Deep Learning is inherently a
big data problem and therefore the deep learning approach
we demonstrate will follow the pipeline from initial data
extraction though a final trained neural network model.

II. PREVIOUS WORK

Methods for precipitation nowcasting have traditionally
been focused on techniques based on the extrapolation of
radar observations. [15], [14], [13]. More recently techniques
which blend information from both extrapolation of radar
observations and output from NWP models have emerged.
[16]



Figure 1: Deep Learning Data Pipeline

Extrapolation techniques tend to rely on linear relationship
and a limited amount of local observational data. Because
of this, the time to a prediction is low, but the skill of the
prediction degrades rapidly from the initial state. [8]

Short term Numerical Weather Prediction (NWP) uses
physics-based models relying on the same methods as for
global forecasting models. Based on an initial atmospheric
state extracted from weather observations, NWP makes pre-
dictions of the future states of the atmosphere. Observational
weather data comes from many sources and data points are
scattered inconsistently both spatially and vertically in the
atmosphere. A data assimilation step is therefore necessary
to combine data sources and project known data points into
a gridded structure for ingestion into the physical model.
Whereas global NWP models have large grid-spacing on
the order of 10km and a limited time resolution of around
6-12 hours between predictions, short-term NWP models
will have grid-spacing on the order of 1-5km and time
resolution closer to 1 hour. In order to make a prediction
in this time frame, these models are regionally focused to
limit the computational time demand required by a higher
resolution grid and allow a prediction within the hour.

The delay caused by the data assimilation and simulation
steps limits the capacity of NWP Nowcasting systems to
make very short term predictions, however the skill of
predictions 1-6 hours into the future will degrade more
slowly then the extrapolation techniques.

Machine Learning approaches to weather nowcasting,
specifically with neural networks, have been an active re-
search area recently. It has the potential to model non-
linear relationships and shifts most of the computational
burden to well before the predictions need to be made.
The deep learning approach utilized in our system was
originally introduced by X. Shi et al. in Convolutional LSTM
Network: A Machine Learning Approach For Precipitation
Nowcasting[1] which introduced the novel architecture of
the Convolutional LSTM and provided evidence of improve-
ment over traditional Nowcasting techniques.

III. DATA PIPELINE

A. Data Source

For our initial testing of this system, we have been work-
ing with radar data provided by the National Oceanic and
Atmospheric Administration (NOAA). To improve public
accessibility, NOAA has partnered with Amazon Web Ser-
vices (AWS) to host historical NEXRAD (Next-generation
Radar) level-II data in a S3 bucket, a data storage location
in the AWS cloud identified by a user-defined key. Our data
pipeline originates here at our data source. We download
all relevant radar archive files through this service and store
them on a Cray R© SonexionTM system.

B. Dataset Processing

Deep learning is inherently data intensive. Much of the
time spent developing a trained neural network model is
spent acquiring, labeling and processing an extensive dataset.
Additionally, iterative changes to and augmentation of the
dataset can be a vital part of improving training results as
more information becomes available. With this in mind, the
Cray R© Urika-GXTM system was selected as the platform for
building and managing our radar data sets before and during
training.

The analytics software tools on the Cray R© Urika-GXTM

system allowed us to collect and process the data with
ease. The raw, compressed radar files in radial format are
parallelized as a Resilient Distributed Dataset (RDD) in
Apache Spark. These files are extracted and transformed
using python libraries such as numpy and py-art[5]. The final
format of the radar data will be a saved numpy file accessible
to the Cray R© CS-StormTM system for quick ingestion into
the neural network training process.

C. Model Training

Training of Neural Networks on multi-dimensional data
is extremely computationally expensive. Tools such as
NVIDIA R© CUDATM and CuDNNTM libraries have allowed
GPU computing to accelerate the training of deep neural
networks, and we make full use of GPU acceleration in our
training process.

The density of high end GPUs provided by the Cray R© CS-
StormTM Cluster Nodes allows us to easily distribute model
training and parameter tuning on each node and among
multiple nodes. Each node has 8 NVIDIA R© TeslaTM M40
GPUs, each with 24GB on device memory, and 2 Intel R©

XeonTM host processors.
The Microsoft R© Cognitive ToolkitTM (CNTK) was uti-

lized to declare, build and train a neural network as a
computational graph. By utilizing this toolkit, the work
necessary to design and build the neural network was greatly
simplified in that many common functions were built-in and
predefined and all gradient calculations and modifications
are automated.



To support such an effort along a broad range of neural
network and machine learning techniques, the list of prereq-
uisites and necessary hardware and software configurations
is extensive. To aid with deployment, the toolkit and its
prerequisites were containerized through docker. A container
is able to utilize portions of the underlying operating system
as well as all software installed and configured within its
separate environment. When the toolkit is containerized, the
prerequisites and environment comes with it and therefore
should offer portability from system to system.

Training was performed on multiple GPUs in paral-
lel. There are two primary methods for distributed neural
network training: Data Parallel and Model Parallel. Data
parallel creates a copy of the network on each device and
distributes the dataset (or minibatch) among the devices for
training. The gradients are then combined and applied to
the master copy and the copies on each device are updated.
Model parallel splits the network, generally by layers, among
the devices and samples from the dataset and gradients
move through each device during the forward and backward
passes.

The nowcasting model will run in a data parallel setting.
This choice was heavily influenced by the recurrent structure
as well as the number of GPU devices available. Each
convolution recurrent layer (described in the next section)
is very large and stacking a large number of layers required
to keep each device active would decrease flexibility as a
larger network may not train to the same accuracy due to
the vanishing gradient problem common in large networks.

IV. NEURAL NETWORK ARCHITECTURE

A. Long Short-Term Memory Network

To understand the complex dynamics of convective pre-
cipitation in the atmosphere, temporal relationship must be
considered. The ability to consider not only the initial atmo-
spheric state prior to the prediction, but also the sequence of
events that led to that state should provide more predictive
power.

Recurrent Neural Networks (RNN) are designed to retain
temporal data in a hidden state and use that knowledge for
each subsequent prediction. RNNs come in various forms,
however the Long Short-Term Memory (LSTM) network
has in recent years proven itself again and again as an
exceptional tool for learning long term dependencies.[9]
The LSTM is able to do this by retaining and managing
sequential information in a cell state, or a numeric vector
held over between time steps. The cell state is managed
through gating functions that can control the influence of
input vectors as well as prior cell and hidden state vectors
on it while also controlling the rate at which information is
lost.

The cell state is managed by the input, forget and output
gates and are represented in (3) by it, ft and ot. These gates
are functions of the input vector, previous hidden state. A

sigmoid function is applied to confine the gating function
between 0 and 1. In the extreme cases, a gated vector of all
0s would ignore all influence from the vector it is applied to
and a value of 1 would do the opposite: allow full influence
from the vector it is applied to.

A minor variant of the standard LSTM is to include
what are called ”peephole” connections as introduced in [5].
These are represented by the third piece of each sigmoid
function in (3), Wc◦ct−1. The idea is that each gate function
has access to the current cell state at some capacity.

it = σ(Wxixt +Whiht−1 +Wci ◦ ct−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcf ◦ ct−1 + bf )

ot = σ(Wxoxt +Whoht−1 +Wco ◦ ct−1 + bo)

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt +Whcht−1 + bc)

ht = ot ◦ tanh(ct)

(1)

B. Convolutional LSTM

To understand precipitation trends in a certain location,
you must have a spatial understanding of where it is raining
and where it is not. Learning the location of the edges of a
band of precipitation and how those edges move over time
is vital to extrapolating into the future.

Convolutional Neural Networks (CNN) have been widely
adapted in the area of computer vision due to the distinct
ability of a convolutional operation to extract spatial context
of each pixel rather than just the independent value. With
radar reflectivity data, the shape of a convective cell can have
significant impacts on its direction, speed and intensity over
time. Combining this strength with the sequential processing
capabilities of the LSTM will allow a neural network to
effectively make predictions from a sequence of multi-
dimensional reflectivity values.

We followed the approach introduced by [1] in building a
Convolutional LSTM network. This network follows much
of the same structure as the peephole LSTM, however the
core internal equations of the LSTM utilize convolutional
operations rather than matrix multiplications. In order to
keep the operations consistent, the hidden state and cell
state are also represented as 3 dimensional tensors matching
the size and shape of the input tensor. By expanding the
dimensionality, we are likely also improving the potential
representative power of the hidden and cell states.

The Convolutional LSTM is represented in (2). Here the
weight matrix multiplications have been replaced by convo-
lutional operations represented by ∗ and the input, hidden
state and cell state have taken the form of 3 dimensional
tensors Xt, Ht and Ct.



it = σ(Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ(Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf )

ot = σ(Wxo ∗ Xt +Who ∗ Ht−1 +Wco ◦ Ct−1 + bo)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt +Whc ∗ Ht−1 + bc)

Ht = ot ◦ tanh(Ct)
(2)

C. Sequence to Sequence

Figure 2: Encoder/Decoder Network

A simple Convolutional LSTM network is sufficient to
make single predictions based on the state of the atmosphere
leading up to that time, however the true goal of nowcasting
is to forecast multiple time steps into the future and provide
predictions of when it will be raining with a time resolution
in the minutes to an hour. We want a neural network
architecture that can readily provide predictions arbitrarily
far into the future.

We can build on the techniques used to solve vector based
sequence to sequence problem such as [2] and develop a
decoder/encoder structure with more than one recurrent cell.
In this approach, one recurrent cell is used exclusively to
process the input sequence, the encoder. The decoder recur-
rent cell is applied generatively to produce a sequence of
predictions. The encoder cell synthesizes the input sequence
into its cell and hidden states; these tensors are concise
representations of the entire input sequence. The decoder’s
hidden and cell states are initialized with these tensors
allowing for an efficient transfer of information between
recurrent cells.

The decoder input sequence is made up of either actual or
predicted reflectivity tensors and a “start symbol” that primes
the network to make it’s initial prediction. During training,
the label, or ground-truth reflectivity sequence is used such
that each time step can provide valuable training information
from the start and thus accelerating the training process.
When evaluating the model, we switch to prior predictions
which are fed back into the network at each time step after
priming. The priming step involves feeding a unique image
through the network that will initiate the first prediction. We
ran experiments with different start symbols to evaluate the
performance effect. Input data was scaled to the range of
[0,1], so the easiest choices for a start symbol are tensors
of all 0s and of all 1s, representing the extremes at each
location. On top of this we tried using the last time step of
the encoder input sequence to represent the current state of
the atmosphere. This option allowed the decoder to assume
a consistent input format and thus simplify the task. The

potential drawback is that the network may learn to mimic
the input as a faster route to a lower loss value rather than
actually learning the underlying pattern. The results can be
found in Table 1, and are discussed in the results section.

V. EXPERIMENTS

A. NOAA NEXRAD data

Figure 3: Example Radar Image

NOAA NEXRAD-II data is used in training and validation
of our model. NEXRAD data has the benefit of being high-
quality, consistent and openly accessible. Specifically, our
focus is on reflectivity scores captured from the radar station
that represent the amount of a radar beam that is scattered
back to the radar station by precipitation and small objects
in the atmosphere.

Each data point used in training and evaluation of the
neural network model is a Cartesian projection of the re-
flectivity scores onto a 3 dimensional grid. This grid was of
the shape 5x100x100 where 5 is the vertical dimension and
100x100 is the horizontal plane. The data used was limited to
100km from the radar site in the north, south, east and west
directions and 12km vertically. That gave us a horizontal
resolution of 2km and vertical resolution of 2.4km.

With the initial projection in place, the tensor was further
processed for the sake of training efficiency. The reflectivity
values were clipped to the range of [0, 80], and any location
without a reading was set to 0. 80 was chosen as a max
value simply because the likelihood of an event producing
a reflectivity value of 80dBZ is very unlikely. The goal is
to predict severe precipitation, exact predictions at this level
will not make a significant affect on decisions. In order to
keep weight values and gradients small, the reflectivity was
projected down to the range of [0, 1] by simply divided the
each data point by 80.

The full dataset focuses on a single station outside of
Seattle, Washington with the NOAA station code of KATX.
This location was chosen for the initial investigation due
to the number of localized weather phenomena, such as
rain shadows and convection zones, common in western
Washington due to the unique terrain and proximity to the



Pacific Ocean. For training and evaluation, all sequences
from all days of the 2015 calendar year with over 0.1
inches of rain at the KSEA observation site were selected,
which came out to 76 days for the year, or about 138GB
of raw data. This cutoff was used to ensure the training set
was not over-saturated with near zero reflectivity on clear
days. Including full days with precipitation ensures that the
network will train on a small number of sequences with little
to no precipitation and thus not saturate training in the other
direction.

B. Tuning and Hyperparameters
Hyperparameter selection was performed the open version

of Spearmint[11], which provides a Bayesian optimization
mechanism for quickly finding a near optimal configuration
of hyperparameter values. Spearmint was allowed to run for
100 iterations at which time the best model was selected
and used. The hyperparameters key to this approach include
the convolutional kernel size, the number of convolutional
filters, learning rate and momentum constant.

C. Evaluation Metrics
During the training process, either Mean Absolute Error

(MAE) or Mean Squared Error (MSE) loss functions were
used for back-propagation. MSE is a common metric in
Machine Learning, however MAE has strengths in Computer
Vision[10]. MSE and MAE are able to describe the similarity
of two tensors, however the goal is to accurately predict
rainfall. In order to do that, we convert the predicted
reflectivity values into actual rainfall rates in millimeters
per hour (mm/hr). This was done for each grid-point in the
reflectivity tensor using the Marshall-Palmer formula [7] (3).

mm

h
=

(
10(dBZ/10)

200

) 5
8

(3)

A threshold was defined at 0.5mm/hr in order to convert
the rainfall rates into a binary grid where 1 represents pre-
cipitation at that location and 0 represents no precipitation.
This threshold is set to filter out virga conditions and barely
detectable precipitation. With the binary precipitation grid
for both the prediction (P) and observed reflectivity (T)
tensors, we can compute further metrics by computing hits
(Pi,j = Ti,j = 1), misses (Pi,j = 0, Ti,j = 1) and false-
alarms (Pi,j = 1, Ti,j = 0). With these values, we can
compute the Probability of Detection (POD)(4), False Alarm
Rate (FAR)(5) and Critical Success Rate (CSI)(6).

POD =
hits

hits+misses
(4)

FAR =
false− alarms

hits+ false− alarms (5)

CSI =
hits

hits+misses+ false− alarms (6)

Observed
Precipitation

No Observed
Precipitation

Predicted
Precipitation

Hit False Alarm

No Predicted
Precipitation

Miss Ignored

Table I: Criterion Table for Nowcasting Metrics

VI. RESULTS

In order to gauge the efficacy of various techniques
attempted, comparison tests were run holding all hyper-
parameters constant. Techniques explored include Decoder
priming techniques (Table II), training loss function (Table
III) and the sequence to sequence method utilized. The
metrics reported represent the evaluation at 1 hour after the
last radar scan was taken.

Technique FAR POD CSI
Zeros 0.29 0.48 0.41
Ones 0.31 0.51 0.43

Last input 0.29 0.49 0.42

Table II: Effect of Different Priming Techniques

The first experiment evaluated the effect of priming tech-
niques for the generative decoder network. In vector based
problems, the use of a unique start symbol, either a special
class or an extreme value, can be used to kick-start the
string of predictions. As that this is a very detailed and data
heavy regression model, making the encoder learn two tasks
(detecting the start symbol and making a prediction from a
prior radar image) may have a detrimental effect on overall
training.

Loss Function FAR POD CSI

MSE 0.29 0.49 0.42
MAE 0.30 0.51 0.43

Table III: Effect of Loss Function on Rainfall Metrics

We also chose to investigate the effects of two standard
loss functions for tasks similar to this, MAE and MSE. The
effects of the loss function can be significant in that while
training with stochastic gradient descent, an error function
that over-emphasizes very large error values, such as MSE,
can provide an environment for small, potentially equally
relevant errors to remain.

Method FAR POD CSI
Attention 0.28 0.46 0.40

Encoder-Decoder 0.29 0.48 0.41

Table IV: Effect of Sequence-to-Sequence Methods

Both a standard encoder-decoder model and a more ad-
vanced attention model[3] of sequence to sequence tech-
niques were used and evaluated in table IV. Surprisingly, the



Figure 4: Probability of Detection: Predictions vs Persistence

Figure 5: Critical Success Rate: Predictions vs Persistence

standard encoder-decoder method proved more successful in
POD and CSI and saw only a slight increase in false alarms
over the attention model.

In order to evaluate the degradation of prediction quality
over time, the metrics were calculated and averaged for each
timestep through 180 minutes. Figures 4, 5 and 6 display the
values of these metrics for the neural network predictions
(blue dashed line) over this 3 hour time period compared
to a prediction of persistence (solid red line) on the best
network determined by 100 iterations of spearmint.

Figure 6: False Alarm Rate: Predictions vs Persistence

VII. DISCUSSION

Differences in priming techniques on overall training
performance seem to be minimal. Priming with a tensor
of ones saw an increase in POD and CSI. A potential
cause may be that since a input value of 1 would represent
high reflectivity (80dBZ or higher), and therefore extreme
precipitation, priming with this start symbol may increase
the number of activations within the first few timesteps, thus
propagating higher value through the output sequence. An
issue we ran into regularly was a trend toward lower values
for predictions further from the current time. This is likely
caused by less than confident precipitation predictions being
fed back into the RNN repeated causing the uncertainty to
increase at each step. Priming with the last input tied for the
lowest FAR and had improved CSI and POD scores relative
to priming with zeros. This makes intuitive sense as that
priming with the last input allows the decoder to focus on a
single task: making a prediction based on the cell state and
the last predicted or recorded reflectivity tensor.

Surprisingly, the basic encoder-decoder network outper-
formed the attention model in both POD and CSI, but also
led to more false alarms. The attention model provides a
means for the decoder to access parts of the input se-
quence potentially relevant to that specific prediction. In
this case, then entire input sequence should be relevant to
each prediction. By forcing the neural network to learn a
distinct single representation of the input sequence rather
than depending on just a portion of that sequence, each
prediction from the encoder is guaranteed to have a more
complete representation of the environment leading up to
that time.

Over the course of the first 3 hours of predictions,
all metrics outpaced persistence. Though persistence is a
low bar, we are likely to see the least change, and thus
highest performance from persistence during the first 0-
3 hours and thus clearing this bar is a vital first step in
building a superior nowcasting model for very short term
predictions. This proves that the neural network was able to
understand common atmospheric motions and apply them
to new situation effectively. This model performed worst on
POD likely due to the rapid propagation of uncertainty that
pushed predicted reflectivity values lower at each timestep.

VIII. CONCLUSION AND FUTURE WORK

We provide a viable and scalable method for very short
term precipitation nowcasting that can effectively bridge the
gap between Numerical Weather Prediction and basic ex-
trapolation techniques. This model was able to successfully
beat a forecast of persistence in the 3 metrics described for
the timeframe of concern.

Further evaluation should be done to compare the success
of this model to traditional nowcasting techniques, both
NWP at the hour level and extrapolation techniques for
shorter timeframes. Improvements may be found through



(a) Title A (b) Title B

Figure 7: Predicted vs Expected Reflectivity Graph at 10
minutes from t0

(a) Title A (b) Title B

Figure 8: Predicted vs Expected Reflectivity Graph at 30
minutes from t0

(a) Title A (b) Title B

Figure 9: Predicted vs Expected Reflectivity Graph at 60
minutes from t0

(a) Title A (b) Title B

Figure 10: Predicted vs Expected Reflectivity Graph at 90
minutes from t0

further preprocessing of the radar images, including more
sophisticated techniques for de-noising the raw reflectivity
data and more exploration of initial resolution. A longer term
goal is to implement real-time training and inference system
where all new radar data is incorporated into the neural
network model as it becomes available such that predictions
improve continuously over time.

REFERENCES

[1] X. Shi, Z. W. Chen, D. Y. Wong and W. C. Woo Convolutional
LSTM Network: A Machine Learning Approach For Precipi-
tation Nowcasting Neural Information Processing Systems
(NIPS) 2015.

[2] I. Sutskever, O. Vinyals and Q. Le Sequence to Sequence
Learning with Neural Networks Advances in Neural In-
formation Processing Systems (NIPS), 2014.

[3] D. Bahdanau, K. Cho, Y. Bengio Neural Machine Translation
by Jointly Learning to Align and Translate Proc.
International Conference on Learning Representations
http://arxiv.org/abs/1409.0473, 2015.

[4] A. Agarwal, E. Akchurin, C. Basoglu, G. Chen, S. Cyphers,
J. Droppo, A. Eversole, B. Guenter, M. Hillebrand, T. Ryan
Hoens, X. Huang, Z. Huang, V. Ivanov, A. Kamenev, P. Kra-
nen, O. Kuchaiev, W. Manousek, A. May, B. Mitra, O. Nano,
G. Navarro, A. Orlov, H. Parthasarathi, B. Peng, M. Radmilac,
A. Reznichenko, F. Seide, M. L. Seltzer, M. Slaney, A. Stolcke,
H. Wang, Y. Wang, K. Yao, D. Yu, Y. Zhang and G. Zweig
An Introduction to Computational Networks and the Compu-
tational Network Toolkit Microsoft Technical Report MSR-
TR-2014-112, 2014.

[5] J. J. Helmus and S. M. Collis The Python ARM Radar
Toolkit (Py-ART), a Library for Working with Weather Radar
Data in the Python Programming Language. Jour-
nal of Open Research Software. 4(1), p.e25. 2016. DOI:
http://doi.org/10.5334/jors.119

[6] F. A. Gers, N. N. Schraudolph and J. Schmidhuber Learning
Precise Timing with LSTM Recurrent Networks Journal of
Machine LEarning Research 3, 2002.

[7] J. S. Marshall and M. Palmer The Distribution of Raindrops
with Size Journal of Meteorology vol. 5, Shorter Contribu-
tions, 1948.

[8] C. Mass Nowcasting: The Next Revolution in Weather Predic-
tion Bulletin of the American Meteorology Society, 2011.

[9] R. Jozefowics, W. Zaremba and I. Sutskever An Empirical Ex-
ploration of Recurrent Network Architectures In Proceedings
of the 32nd International Conference on Machine Learning
(ICML-15), 2015.

[10] H. Zhao, O. Gallo, I. Frosio, and J. Kautz Loss Functions for
Neural Networks for Image Processing arXiv:1511.08861,
2015.

[11] J. Snoek, H. Larochelle and R. P. Adams Practical Bayesian
Optimization of Machine Learning Algorithms Advances in
Neural Information Processing Systems (NIPS), 2012.



[12] World Meteorological Organization Nowcasting
http://www.wmo.int/pages/prog/amp/pwsp/Nowcasting.htm,
retrieved 17 May 2017.

[13] N. E. Bowler, C. E. Pierce, A Seed Bowler NE, Pierce CE,
Seed A. Development of a precipitation nowcasting algorithm
based upon optical flow techniques. hskip 1em plus 0.5em
minus 0.4emJournal of Hydrology 288.1,74-91 2004.

[14] A. W. Seed A dynamic and spatial scaling approach to ad-
vection forecasting hskip 1em plus 0.5em minus 0.4emJournal
of Applied Meteorology 42.3,381-388 2003.

[15] U. Germann, I. Zawadzki Scale-dependence of the pre-
dictability of precipitation from continental radar images Part
I: Description of the methodology hskip 1em plus 0.5em minus
0.4emMonthly Weather Review Dec;130.12,2859-73 2002.

[16] N. E. Bowler, C. E. Pierce, A. E. Seed STEPS: A probabilistic
precipitation forecasting scheme which merges an extrapola-
tion nowcast with downscaled NWP hskip 1em plus 0.5em
minus 0.4emQuarterly Journal of the Royal Meteorological
Society. Oct 1;132(620),2127-55 2006.


