
Application-Level Regression Testing Framework using Jenkins

Reuben D. Budiardja
National Center for Computational Sciences

Oak Ridge National Laboratory, Oak Ridge, TN 37831
reubendb@ornl.gov

Timothy Bouvet, Galen Arnold
National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign, 61801
tbouvet@illinois.edu, gwarnold@illinois.edu

Abstract—Monitoring and testing for regression of large
scale systems such as the NCSA’s Blue Waters supercomputer
are challenging tasks. In this paper we describe the solution
we came up with to perform those tasks. Our goal was to
find an automated solution for running user-level regression
tests to evaluate system usability and performance. Jenkins,
an automation server software, was chosen for its versatility,
large user base, and multitude of plugins including collecting
data and plotting test results over time. We describe our
Jenkins deployment to launch and monitor jobs on remote HPC
system, perform authentication with one-time password, and
integrate with our LDAP server for its authorization. We show
some use cases and describe our best practices for successfully
using Jenkins as a user-level system-wide regression testing and
monitoring framework for large supercomputer systems.

Keywords-System-monitoring; Regression-testing; Applica-
tions; Performance; Benchmarking

I. INTRODUCTION

Monitoring large and complex high-performance com-
puting systems have many challenges. Layers and multiple
versions of the software stack, system-level configurations,
(parallel) file systems, diversity in user need and usage,
and variable network traffic all interact to increase the sys-
tem’s complexity. Although there exist monitoring systems
for each of these components, they often do not capture
the behavior of the system in aggregate, which in fact is
what users and their applications experience. Therefore an
application-level system monitoring framework is needed to
give us a more complete picture of the system behavior.

Over time, either due to configuration and software
changes or hardware aging, performance of such a complex
system may regress. To identify and correct such regression,

Notice of copyright: This manuscript has been authored by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department
of Energy. The United States Government retains and the publisher,
by accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this manuscript,
or allow others to do so, for United States Government purposes. The
Department of Energy will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

This paper has been submitted as an article in a special issue of
Concurrency and Computation Practice and Experience on the Cray User
Group 2017.

one must have some method to do regression testing of the
system performance. This requires a systematic record of
the system performance over time.

These two requirements can be concisely summarized
as “application-level regression testing”. Our goal was to
implement an automated solution for running these user-
level regression tests to evaluate system usability and per-
formance. For this purpose we have chosen to use Jenkins
[1].

Jenkins is an open source automation server. Although
it is typically used as a continuous integration tool in
the software development process, its wide-ranging features
makes it suitable for any task that can be automated. These
tasks may include building applications, executing them,
deploying software, and running various custom-written tests
and scripts. We chose Jenkins as the tool for our regression
testing framework because of its active development, wide
community support, and the readily available “plugins” to
perform various specific tasks.

In this paper we describe in detail our experience in
using Jenkins to perform application-level regression testing
on high-performance computing systems such as the Blue
Waters supercomputer at the National Center for Supercom-
puting Applications (NCSA) [2], Darter, and Beacon at the
National Institute for Computational Sciences (NICS) [3].
These systems are Cray XE, XK, XC, and CS series. The
outline of this paper is as follows. In section II we describe
in detail how we configure Jenkins for our deployment. This
is followed by a brief description of application test structure
in section III. Section IV shows some use cases and results
from applications we have used to monitor our systems. We
end the paper with concluding remarks in section V.

II. JENKINS CONFIGURATION

A. Installation

Jenkins is typically available from the package repository
of most major linux distributions. One can also download
and install Jenkins directly from its website. We used the
RPM package to install Jenkins on a CentOS virtual machine
(VM). Jenkins comes with its own web server so that manag-
ing and accessing Jenkins can be done via any web browser
(in the next section we discuss using Apache HTTP Server

1

This CUG paper is a preprint of the final paper published in the CCPE Special Online Issue of CUG 2017 at
http://onlinelibrary.wiley.com/doi/10.1002/cpe.v30.1/issuetoc

in front of Jenkins for better security). Typically Jenkins’s
web server listens on port 8080, but this is configurable.

B. Accessing HPC Test Systems

Jenkins has an implicit assumption that the machine on
which it is installed is also the primary machine being used
to build and test the software. In our case, this is not what
we want. In fact, our applications will be built on the HPC
system on which we intend to run the tests (typically on
the login nodes), and will be run on the compute nodes
of the HPC system (i.e. via batch job submission to the
job queueing system). This is because not only do we want
to test the runtime performance of the applications, but we
also want to ensure that the software and programming en-
vironment of the system can build the applications correctly.
Incidentally, the latter also informs us of any user-level
problem such as slow or overloaded login nodes, slow file
system access, erroneous or incompatible default software
(library, compilers, etc) versions. In short, we want our tests
to simulate the typical workflow of a user on the system
being tested.

Therefore what we need is a mechanism to execute a
“project” — a user-configured description of work which
Jenkins should perform such as building a piece of software,
in Jenkins parlance — on remote machines (“remote” from
the perspective of Jenkins). In this case, the Jenkins machine
simply manages the automation scheduling, shows status of
projects in execution (“builds” in Jenkins parlance) , and
archives results of the tests (i.e. “artifact”). It also provides
the user interface (via its own web server) to create and
configure projects. These tasks are sufficiently light weight
that Jenkins can be installed on a VM with sufficient disk
space for the artifacts, since the truly heavy lifting on
building and executing the application tests are done on the
remote machine.

There are two ways to achieve an executing build on a
remote machine. Each have their own benefits, and your
selection is a matter of choice. One may use Jenkin’s core
feature of adding “Nodes“ to its environment. One may also
use a Jenkins plugin called ”SSH Plugin“ to allow execution
on a remote machine via SSH protocol. At NICS our setup
uses the former, while at NCSA our setup uses the latter.
In the following we briefly discuss the setup of these two
mechanisms.

1) Using Nodes for Test Systems: The original idea
behind adding nodes is to allow Jenkins to scale with
its workload. As projects are added, one can add nodes
(i.e. more build machines) allowing Jenkins to build more
projects concurrently. Jenkin’s projects may also be explic-
itly ’labeled’ to execute on a certain node. We capitalized
both of these features to enable the aforementioned remote
execution.

For each HPC system login node, we created a Jenkins

node1. We then labeled the (Jenkins) node with the name
of the HPC system. For example, at NICS we have the
labels ’beacon’ and ’darter’ to refer to the Cray CS-300
(Beacon) and XC-30 (Darter) login nodes, respectively. Each
test application (i.e. ”project“) is then labeled to ensure that
they only run on the appropriate node. For example, we have
used NAMD [4] as an application test. We would create a
Jenkins project called ”NAMD-Beacon“ and label it to run
only on the ”beacon“ node. We would also create another
project called ”NAMD-Darter“ and label it appropriately.
The two projects have slightly different build scripts (and
possibly different test cases) so that they build correctly on
the systems where they were meant to run.

Jenkins nodes need to have a Java-based daemon (Jenkins’
”slave.jar“) running which connects back to the master via a
certain port (which is configurable). This can be considered
a drawback. If the daemon somehow dies, it needs to be
restarted. The daemon runs as regular user, the user which
essentially runs the build and submits the jobs on the HPC
system. In our case, we created a NICS user called ”jenkins“
with the same privilege as any other regular user. Both the
extra port opening and the daemon itself may be considered
as attack vectors from a security perspective. At NICS
however we consider this to be acceptable because of other
mitigation (which we will discuss later).

The benefit of this method is that one can basically treat
the nodes as a local environment in Jenkins, while having
access to the HPC environment. For example, each node
would have access to the parallel lustre filesystem mounted
by the HPC system (even if Jenkins master itself does not,
being only a small separate VM). Each node can define
its lustre filesystem as its build and test workspace. Yet
Jenkins automatically manages all communication with the
nodes such that files (e.g. plot data, test output) generated on
the lustre filesystem are readable from Jenkins without the
explicit remote copy (i.e. via SCP). Another example is that
one can have Jenkins checkout or clone code from a remote
repository (e.g. using Subversion or Git) and the copy will
be automatically available on the lustre filesystem defined as
the workspace of that node. These integration benefits make
building Jenkins projects more seamless.

2) Using SSH Plugins for Test Systems: The SSH plugin
[5] is another method for which one can access the HPC
systems from Jenkins. As the name implies, Jenkins projects
with these type of build scripts simply SSH to the desired
machine then execute the scripts there.

The benefit of this method is that it more closely mimicks
the way real users access the HPC system. There is no
need for an additional daemon to run on the HPC login
nodes and there is no need for the corresponding open-
ing of a port on the Jenkins VM. Because NCSA and

1Do not be confused with multiple usage of the word ”node“ here. The
former refers to the typical usage of a login node in HPC. The latter refers
to Jenkins’ vernacular of ”node“ as previously defined

2

NICS systems utilize two-factor RSA one-time password
for user login, one must make a slight modification so
that Jenkins can have automated logins. The NCSA login
node’s /etc/ssh/sshd_config was modified to allow
”Public Key Authentication“ from the Jenkins VM unique IP
address. We created a NCSA user called ”bwjenkins“ with
standard user privilege. Pairs of SSH keys with passphrase
were generated on the Jenkins VM with their public keys
deployed on the appropriate login nodes in the bwjenk-
ins user account to allow passwordless login. The SSH
plugins allow one to manage which key (and passphrase)
to use with which system. The keys on the Jenkins VM
are located under the Jenkins home directory (by default)
/var/lib/jenkins/.ssh. Although this configuration
can be somewhat tedious, when complete, Jenkins will be
able to run scripts on the intended HPC systems via SSH.
For testing our setup, we created simple Jenkins projects
whose task is to print out the $HOSTNAME of the system.

The drawback of this method is that one has to manage
almost all data management explicitly. If one checks out or
clones a repository on Jenkins (part of Jenkins core feature),
it needs to be explicitly copied (e.g. with rsync or scp) to
the remote system. Any files generated by the tests that need
to be read by Jenkins (e.g. plot file) have to be copied back
explicitly to the Jenkins VM. A related drawback is that one
must explicitly ensure that the build environment is ”clean“
on the remote system (e.g. no left over files or data from
previous run). This is because although Jenkins can clean up
its workspace, this workspace (in Jenkins perspective) exists
only on the VM. The remote systems’ workspaces are out of
the reach of Jenkins. This drawback also prevents one from
easily allowing concurrent builds of the same project.

C. Securing Jenkins Web Front-end

Jenkins comes with its own web server. Although Jenkins
also has a command-line interface, the primary way to in-
teract with Jenkins (configuring, setting up projects, running
builds) is via a web browser. Although the Jenkins web
server may be sufficient for a setup in which Jenkins is only
accessible in a secure, walled off, intranet environment, we
feel that using a more secure, well-tested, production quality
web server as its front end is warranted.

We decided to use an Apache HTTP Server as the front-
end web server facing the world. To achieve that, first we
set the Jenkins web server to only listen to the localhost
interface on port 8080, by setting the following variable in
Jenkins configuration file /etc/sysconfig/jenkins:

#-- Restrict to only listen to localhost
JENKINS_PORT="8080"
JENKINS_LISTEN_ADDRESS=127.0.0.1

Second, we need to forward all HTTP requests to Jenkins,
and also forward Jenkins responses back to the client.
This is accomplished using the module mod_proxy [6] in
Apache HTTP which allows it to act as a proxy / gateway.

To enable this feature, the following stanza is added to
the configuration file /etc/httpd/conf.d/ssl.conf
inside the <VirtualHost> directive:

ProxyRequests Off
ProxyPreserveHost On
AllowEncodedSlashes On
<Proxy *>
Order deny,allow
Allow from all

</Proxy>
ProxyPass / http://localhost:8080/ nocanon
ProxyPassReverse / http://localhost:8080/
ProxyPassReverse / http://bwjenkins.ncsa.illinois.edu/
RequestHeader set X-Forwarded-Proto "https"
RequestHeader set X-Forwarded-Port "443"

Listing 1: Relevant configuration lines for setting up reverse
proxy in Apache HTTP Server

With this setup, all requests to the HTTP over SSL
protocol (i.e. https) on port 443 by default) are forwarded
to the Jenkins server and Jenkins responses are forwarded
back to the client (i.e. web browser).

Optionally, one may allow non-authenticated, ”read-only“
access to the Jenkins dashboard over regular (non-secure)
HTTP connections. Jenkins’ own authorization mechanism
can be used to control this access, but we can also add
Apache HTTP directives for further security, limiting to
GET requests only. To achieve this, we created the file
/etc/httpd/conf.d/vhosts.conf with the follow-
ing content:

NameVirtualHost *:80
<VirtualHost *:80>

ServerAdmin tbouvet@illinois.edu
DocumentRoot /var/www/html
ServerName bwjenkins.ncsa.illinois.edu
Options Indexes FollowSymLinks

ProxyPass / http://localhost:8080/ nocanon
ProxyPassReverse / http://localhost:8080/
ProxyRequests Off
AllowEncodedSlashes On

LimitRequestBody 512
LimitRequestFields 15
LimitRequestFieldSize 1024
LimitRequestLine 128

<Location /asynchPeople/>
Order Deny,Allow
Deny from all

</Location>

<Proxy *>
Order deny,allow
Allow from all
<LimitExcept GET>
Deny from all

</LimitExcept>

3

</Proxy>

</VirtualHost>

D. Authenticating with One-Time Password

Although Jenkins supplies its own authentication mech-
anism with its built-in user and password database, we
feel that it is inadequate for securing our instance. The
default Jenkins authentication setup is unfortunate, in that it
allows anyone to self-register creating their own username
and password2. We wanted instead to use our One-Time
Password (OTP) infrastructure with RSA SecurID [7] token
for authentication. In this section we describe how we
accomplished that.

Our use of Apache HTTP Server as front-end allow us
to use ”Basic Authentication“ [8]. Via mod_authnz_-
external module [9], one can use any external mech-
anism or program to authenticate. One example of an
authenticator is the ”pwauth“ authentication program. It is
a simple program that returns a status code given a login
(username) and password.

Combined with the Pluggable Authentication Mod-
ule (PAM) — a Unix authentication framework —,
we use ”pwauth“ to authenticate against our RSA Se-
curID OTP infrastructure. This is set up in the file
/etc/pam.d/pwauth:

#%PAM-1.0
auth required /lib64/security/pam_securid.so
account include password-auth

Jenkins can use the user information given by Apache
HTTP server if one selects ”HTTP Header by reverse proxy“
for its security realm. This means that all authentication
is handled by Apache. Authenticating directly to pwauth
against RSA SecurID OTP however presents an issue. It is
often the case that a request needs to re-authenticate. The
web browser normally handles this seamlessly by caching
the user’s credentials. However, this does not work since,
by definition, OTP credentials can only be used once. The
solution is to use a back-end authenticator with some form
of session management.

To accomplish this, we wrote a small python script
for managing session with OTP [10] as the authentication
mechanism, wrapping the real authenticator (i.e. pwauth
with PAM for RSA SecurID in our case). When this script is
initially called, it uses a pre-defined back-end authenticator
for authentication. Once an authentication succeed, a session
is created and the next request with the same credentials
from the same IP address are deemed successful without
going through the real authenticator. The session expires in
a predefined amount of time. A new request within that time
renews the session. If there are no more requests within that

2This is perhaps another artifact of the Jenkins setup intended for intranet
environment

time, the session expires. When this happens, one has to
authenticate again with the back-end authenticator.

Most of the configuration is defined in the file
/etc/httpd/conf.d/ssl.conf, immediately follow-
ing the stanza reproduced in listing 1 inside the same
<VirtualHost> directive:
#-- OTP for Jenkins SSL connection
DefineExternalAuth pwauth+session pipe
/usr/local/bin/BasicAuthOTPSession.py

<LocationMatch / >
AuthType Basic
AuthBasicProvider external
AuthName "NCSA RSA OTP login"
AuthExternal pwauth+session
require valid-user
RequestHeader unset "X-Forwarded-User"
RequestHeader set "X-Forwarded-User" (REMOTE_USER)

</LocationMatch>

The <LocationMatch / > directive ensures that every
request to the secure HTTP site is authenticated.

E. Authorization and Access Control
Jenkins default authorization allows logged in (authenti-

cated) users to have full control. We wanted a more fine-
grained access control to our instance and therefore selected
the ”matrix-based security“ option (see Figure 1). Using this
option we can limit what access individual users and groups
have to our Jenkins instance. For example we restrict most
users (other than admin users) from having the ”Job Delete“
permission to prevent one user or group from deleting each
other’s jobs.

Figure 1: Jenkins fine-grained authorization.

We use the built-in LDAP plugin to query our LDAP
server what group a user belongs to. This greatly simplifies
managing the authorization since it can be done based on
groups rather than just individual users. The LDAP plugins
gets the user information from the HTTP header passed by
the reverse proxy set up. Figure 2 shows the screenshot of
our LDAP configuration within Jenkins interface.

Since Jenkins allows one to enter arbitrary commands to
be executed on login nodes, we want to further mitigate

4

Figure 2: Using LDAP with Jenkins.

security risk via firewall rules. In our installation, we only
allow IP address originating from our institution block to
access the secure HTTP portion and authenticate to access
Jenkins. At NCSA, the non secure, read-only, HTTP portion
is accessible from anywhere. At NICS, this access is only
allowed from the institution IP block.

III. ANATOMY OF A TEST APPLICATION

In this section we briefly describe the primary elements
of a test application. A new test application (i.e. Jenkins job
/ project) must be tested on our test and development system
(TDS) and approved before deployment on the user-facing
production system (e.g. Blue Waters). 3 This is one of our
key best practices.

Jenkins’ dashboard by default shows the list of all Jenkins
jobs under the ”All“ view tab. One may create different
”views“ containing a list of selected projects. In our case, we
created several views to help us categorized our test applica-
tions. For example, once a test application is deployed on a
production environment such as Blue Waters, it is assigned
to the ”BlueWaters“ view. This can be done by editing that
view and add the selected applications to it. Tests that are
still in development reside in the ”All” tab view until they
have been peer reviewed by at least one other test developer.

A. Name and Description

Beyond naming the Jenkins project, we require a descrip-
tion for each test to describe: what is tested, the resources
used by the test, the intent of the test, and the scheduling
frequency of the test.

3We use the terms ”test application , ”test“ (for short), ”Jenkins project“,
and ”Jenkins job“ interchangeably as they refer to the same thing.

B. Limiting Number of Builds Kept
The Jenkins VM filled to capacity after the first few weeks

of intensive use and an influx of several new tests that output
long source code build detail. We retroactively modified all
tests to limit the number of old build logs retained (max 50
for most tests).

C. Source Code Management
Jenkins is intended to be a continuous integration tool

to help with software development, and therefore has in its
core features the ability to check out source code directly
from a source code manager such as Subversion or Git (with
plugin). For our purpose, most of our tests use a specified,
static version of the application and therefore do not need
this functionality.

We do have a small number of tests that automatically
pulls from a repository containing SWTools2 scripts to build
and test software. SWTools2 is a software management tool
we use to install center-provided applications and libraries.
Having these tests in Jenkins is useful to make sure that we
can still build the software correctly with any changes in
the scripts or on the systems. In section IV we show some
examples of these.

D. Build Triggers
In this part we specify how the job is triggered. For most

cases we do periodic builds with a time-based specification.

E. Build Commands
This is where we specify the (shell) commands to actually

build (and run) our test application. This may include the
actual commands to compile and link the executable, sub-
mitting jobs to the queue, retrieving artifacts and checking
results.

Where possible, we try to be as transparent with our test
construction as possible. We prefer explicit shell commands
specified via Jenkins interface over running a script in the
filesystem on the remote HPC system. Remote scripts are
run with verbose mode or are displayed via cat -n so that
their outputs are captured by the Jenkins project console log.
This makes it simpler for debugging when a test fails.

As described in section II, there are two mechanisms
to run these commands on the actual HPC systems. Using
Jenkins nodes mechanism, one would select ”Execute Shell“
as the build step and put the commands there. Using the
”SSH“ mechanism, one would select ”Execute shell script
on remote host using ssh“. The former requires that one
checks the ”restrict where this project can be run“ selection
to specify the HPC system. With the latter, in our instance
there are several target ssh hosts which may be selected:
the TDS (JYC), the production system (Blue Waters), and
the new software deployment login node (H2ologin4) within
the main system. None of our tests run locally within the
Jenkins VM.

There are basically two kinds of tests:

5

1) Test Completes on the Login Node: Some tests run
only on the login node and return more or less immediately.
Examples include tests for batch system functionality, login
/ SSH functionality, and filesystem functionality. These tests
are very similar in style to unit tests which target a limited
set of functionality.

2) Test Submitted to Batch System: More comprehensive
tests typically build and run an application or benchmark
through the batch system. These tests exercise multiple
aspects of the system: (filesystem, compilers and modules,
high-speed network, external connectivity to the internet,
etc.). These tests are written such that they block to com-
pletion so that we do not overburden the batch system
with tests. Unlike tests that run entirely on a login node,
completion time can be highly variable depending on the
queue depth and available backfill windows for the batch
system.

Most comprehensive tests produce output that we use
when debugging a failed test. They may also produce plot
data. When using the ”SSH“ mechanism, these files are
copied back to the Jenkins server so that they can be saved,
viewed and/or incorporated into the plot feature of Jenkins.

F. Post-build Actions

After a test is run, arbitrary numbers of post-build actions
can be specified. The following are some that we have used.

1) Plots: We installed Jenkins Plot plugin [11] so that
successful tests can save plot files. The test needs to be writ-
ten to generate a data point (e.g. performance value, timing,
memory / IO bandwidth, etc.) to contribute to the plot. Under
the hood, the Jenkins server accumulates the data as rows in
a spreadsheet (in directory /var/lib/jenkins/jobs/)
and plots them via the ”Plots” link for a test.

2) Email Notification: When the state of a test changes,
email notification is sent to the test owner. As a best
practice we also use the email notification as a method of
tracking authorship and each test has an email owner even
if notifications are disabled for the test.

IV. USE CASES

A. IOR for Lustre Scratch Test

We created Jenkins tests to periodically run the IOR MPI
parallel I/O benchmark at modest scale and validate filesys-
tem functionality and performance for the scratch filesystem.
The test is scaled to provide representative performance
numbers for a typical small application while not creating
performance issues with other jobs or the larger filesystem.
One of our best practices is to provide a management level
summary description (see Figure 3) for casual Jenkins users
who want to view the tests but do not need to understand
the full Jenkins configuration and execution details.

Figure 3: IOR description in Jenkins.

Where possible, tests build from source and exercise
multiple user-facing system components such as: Git for
external connectivity and modules to test defaults in the
environment. Where scripts on the remote SSH site are used,
they are echoed and/or displayed with cat -n to make
console output verbose and easy to debug in case of errors.

Figure 4: IOR configuration sample

The IOR test is set to run as scheduled by Jenkins with a
best-effort through our batch system. The test synchronously
blocks such that the next test will not start until the previous
one has completed. We employ a watchdog script (see
Listing 2) to monitor the batch queue and keep the test active
until the system marks it as finished. This has the side effect
of making the minimum test time an integer multiple of the
sleep time in the watchdog script. This may be adjusted to
fit individual site needs.

Listing 2: pbs/torque watchdog script

6

#!/bin/bash
echo "=== RUNNING $0 ==="
if [$# -lt 1]
then
echo "$0: missing argument for jobid"
exit 1

fi
while true
do

MYQSTAT=‘qstat $1‘
if test "$MYQSTAT" = ""
then

echo $1 finished
exit

else
DATE=‘date‘
echo "$DATE: waiting for $1 to finish"

fi
sleep 5m

done

Figure 5: IOR watchdog console output.

For tests that produce an interesting performance metric
like IOR, we save that output to the file format expected by
Jenkins (see Listing 3) and use plotting feature to produce
plots (Figure 6).

Listing 3: sample YVALUE output file
bwjenkins$ cat myiorREADnumber.dat
YVALUE=8352.71

Figure 6: IOR Plot View.

A plot like this helps us with performance baselines and we
can quickly react to changes in the software environment or
filesystem configuration that adversely impact performance.

B. mdtest Lustre Tests

The mdtest metadata test is run on the home and scratch
filesystems to validate metadata server performance. The
IOR and mdtest user-facing tests complement the fine-
grained detail we are able to glean from the backend system-
side counters in our OVIS [12] database where we record
details about individual server metrics and network traffic
on the Cray Gemini fabric. Figure 7 plots the results of this
test over a certain period of time.

Figure 7: mdtest plot view

An additional best practice is to enable E-mail Notifica-
tions to the test author and/or other interested parties. Setting
notifications for unstable builds will trigger an e-mail every
time the test state changes (from successful to failing and
once again when successful). Figure 8 shows screenshot of

7

the email notification configuration for the mdtest test in
Jenkins.

Figure 8: mdtest email configuration

C. Filesystem Dashboard

Our Jenkins instance is a source of information for
a filesystem dashboard display we maintain in our wiki
(Figure 9). The http:// URLs for the plot images can be
referred directly and are shown on the dashboard to provide
a recent-time display of filesystem metrics from a user
point of view. We add a Jenkins test to track response time
of /bin/ls on the login nodes—a reasonable metric of
metadata server health and also the most common problem
reported by users when we are having filesystem issues.

Figure 9: filesystem dashboard displaying multiple Jenkins
plots

D. Special Projects

The initial display tabs (i.e. Jenkins ”Views“) in our Jenk-
ins instance are used to group tests that are run periodically
in production. We add separate ”Views“ for special projects.
For example we clone existing tests for evaluating a new
software stack on our test login node (”H2ologin4“ view).
Our TDS (JYC) has a separate set of tests from our produc-
tion system and is used as our Jenkins development mule.

The sustained petascale performance benchmarks (SPP) are
in their own tab because they run at scale and are only run
on-demand by staff (i.e. not scheduled to run periodically
by Jenkins). Figure 10 illustrates our use of Jenkins views
to organize our application tests.

Figure 10: Jenkins views (tabs) in our instance.

E. NAMD Test

NAMD is one of many applications provided system-wide
at NICS due to its high use. It is managed via SWTools2
[13] such that build and test recipes are standardized. For
the purpose of regression testing, we have written several
glue scripts in SWTools to make it work seamlessly in
Jenkins. Figure 11 shows a screenshot of shell commands
in the Jenkins interface to build and test this application.
The commands hide many of the complexities of building
and executing the application behind SWTools recipes for
NAMD. However, they are exactly the same commands used
to build and test this application for provisioning to users 4.

Figure 11: Build commands for NAMD in Jenkins with
SWTools2 integration.

For this application testing, we use a well known NAMD
benchmark case ”ApoA1”. We collect performance data such
as CPU time and memory usage and plot them over time
(see Figure 12 for screenshot of the plots as seen in Jenkins
interface).

4SWTools recipes for this case can be gleaned at
https://github.com/reubendb/SWTools-NICS-CI

8

Figure 12: Plots of NAMD test results in Jenkins.

V. CONCLUSION

In this paper we have described our deployment of Jenkins
automation server for user-level, application-based system
monitoring and regression testing on large installations of
HPC systems at NCSA and NICS. This monitoring system
has proved to be useful in early detection of system issues.

Another value of this system is to anticipate issues related
to software updates. We typically run the latest Programming
Environment (PE) on our Test and Development System
(TDS), while our production systems have the latest PE
installed as non default. During initial testing this newer
PE can be loaded by modulefile selection. This setup allow
us to use both the TDS and login node for testing the new
software stacks and changes to the login environment with-
out affecting the production environment. Jenkins projects
tailored for each environment allow for regression testing of
the current production as well as pre-production user-level
environments with the new PE.

In developing Jenkins projects for testing, we adhere to
the following best practices:

� Tests are developed on the TDS and not assigned into
a Jenkins tab until reviewed.

� Email notification is enabled for most tests and the field
is always populated with a test owner.

� All tests contain a description that describes what is
tested, resources required, scheduling frequency, and
overall summary to be readable by the management
team.

� Log file count is limited in the test configuration to
keep from filling filesystem space with verbose logs.

� Tests are coded to be more verbose than necessary so
that failures can be isolated quickly and easily.

In summary, our Jenkins-based system monitoring has
enabled:

� Reproducibility and Regression Testing: Jenkins pro-
vides the framework we need to maintain tests in a con-
sistent fashion and track the results over time (logs and
plots). Tests typically are not changed so that we get
apples-apples comparisons. When a new test is needed
for a particular activity, we attempt to derive it from an
existing test to maintain consistency and simplify test
creation. Reusable test components (watchdog scripts,
plotting metrics) are employed to make construction of
completely new tests straightforward.

� Rapid Reaction: The notification feature keeps test
owners engaged in the testing activity of Jenkins and
they are often our first responders to system issues.
This results in a shorter reaction time when the system
is not performing to expectations–staff are notified
automatically when the user experience is impacted.

In working with Jenkins tests, we have found that it is
useful to be aware of the following caveats:

� Transient Errors: Transient errors with Jenkins some-
times occur–particularly with the Jenkins ssh subsys-
tem. It’s not unusual to get ssh failure rates of 1/100
which are completely transient (immediately running
the test again manually clears the issue on the dash-
board).

� Test Scale and Frequency: There is some subjectivity
in the frequency and scale (resource utilization) of tests.
Testing too often, too large, or some combination of
the two may perturb the system such that other tests
are impacted or create bottlenecks in the system for
the real user community. This is the primary reason we
require peer review for new tests.

Our initial successful deployment of Jenkins as regression
testing framework on NCSA and NICS resources leads
to its being in deployment for other resources including
the CADES (Compute and Data Environment for Science)
resources at the Oak Ridge National Laboratory.

ACKNOWLEDGMENT

We thank Gary Rogers at NICS for his help in setting
up and testing OTP integration. This material is based
upon work performed using computational resources at
the National Institute for Computational Sciences (NICS)
and the National Center for Supercomputing Applications
(NCSA), funded by the National Science Foundation (NSF).
NICS is supported by the University of Tennessee and Oak
Ridge National Laboratory through the Joint Institute for
Computational Sciences5. A portion of this research used
resources of the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

5http://www.jics.tennessee.edu

9

REFERENCES

[1] Jenkins website. https://jenkins.io. Accessed: 2017-04-04.

[2] NCSA website. http://www.ncsa.illinois.edu/enabling/
bluewaters. Accessed: 2017-04-28.

[3] NICS website. https://www.nics.tennessee.edu/. Accessed:
2017-04-28.

[4] James C. Phillips, Rosemary Braun, Wei Wang, James Gum-
bart, Emad Tajkhorshid, Elizabeth Villa, Christophe Chipot,
Robert D. Skeel, Laxmikant Kal, and Klaus Schulten. Scal-
able molecular dynamics with namd. Journal of Computa-
tional Chemistry, 26(16):1781–1802, 2005. http://www.ks.
uiuc.edu/Research/namd/.

[5] Jenkins ssh plugin. https://wiki.jenkins-ci.org/display/
JENKINS/SSH+plugin. Accessed: 2017-04-04.

[6] Apache module mod proxy. https://httpd.apache.org/docs/2.
4/mod/mod proxy.html. Accessed: 2017-04-04.

[7] Rsa securid wikipedia page. https://en.wikipedia.org/wiki/
RSA SecurID. Accessed: 2017-04-04.

[8] Apache basic authentication. https://httpd.apache.org/docs/2.
4/howto/auth.html. Accessed: 2017-04-04.

[9] Apache module for external authentication.
https://github.com/phokz/mod-auth-external/tree/master/
mod authnz external. Accessed: 2017-04-04.

[10] Simple session management for http basic authentication
with one-time password (otp). https://github.com/reubendb/
BasicAuthOTPSession. Accessed: 2017-04-04.

[11] Jenkins plot plugin. https://wiki.jenkins-ci.org/display/
JENKINS/Plot+Plugin. Accessed: 2017-04-04.

[12] Ovis website. https://ovis.ca.sandia.gov/mediawiki/index.php/
Main Page. Accessed: 2017-04-28.

[13] Swtools2: a set of tools to manage third-party software
installations at supercomputer centers. https://github.com/
reubendb/SWTools2. Accessed: 2017-04-04.

10

