
Python Usage Metrics on Blue Waters
Colin A. MacLean

National Center for Supercomputing Applications
University of Illinois

Urbana, Illinois
Email: cmaclean@illinois.edu

Abstract—Blue Waters supports a large Python
stack containing over 650 total packages. As part
of maintaining this support, logging functionality
has been introduced to track the usage statistics of
both National Center for Supercomputing Appli-
cations (NCSA) and user provided Python pack-
ages. Due to the number of NCSA supplied pack-
ages, it is rare to receive a request for packages
which are not already installed, leading to a lack
of information about which packages and their
dependencies are being used. By tracking module
imports, a detailed log of usage information has
been used to focus support efforts on improving
the usability and performance of popular usage
patterns.

Index Terms—Python; Cray; HPC; Blue Wa-
ters;

I. Introduction
Python is a programming language which has seen

rapid growth in scientific computing. Despite Python
itself being poorly suited to parallel programming
due to its Global Interpreter Lock (GIL), Python has
been increasingly used[3] for the rapid development
of scientific software. Python excels as a high level
glue to interface high performance native libraries
such as Numpy, Scipy, and Tensorflow. New libraries
are increasingly being written for use with Python,
if not as the primary interface, then at least with
Python bindings. This is particularly the case in the
field of machine learning[1].

II. Python on Blue Waters
Python on Blue Waters, BWPY, is built and

maintained by a patched installation of Gentoo
Portage[4]. The goal of BWPY is to provide users
with a large number of preinstalled packages built
against optimized libraries. Because Blue Waters
uses the aging SLES 11 GNU/Linux as its operating
system, the ability for Portage to manage many non-
Python dependencies as well as Python packages is
important for ensuring that BWPY provides access
to up-to-date releases of software packages. Python
packages in BWPY are currently built for CPython
2.7, 3.3, 3.4, 3.5, PyPy, and PyPy 3, depending
on package compatibility. For the Python 3 branch,

Python 3.4 is the default Python 3. Python 2.7
is the default Python. Patches to Gentoo Portage
also provide functionality for creating a hierarchy of
environment modules, which are used to customize
the Python environment.
BWPY currently tracks 661 packages. Approxi-

mately 230 of these are Python packages, the rest
being libraries which would otherwise be too old or
unavailable. The BWPY-MPI sub-module overlays
BWPY with 13 packages which are either rebuilt
with MPI support or require MPI. Because MPI
processes cannot run on login nodes or MOM nodes,
splitting this functionality from the main BWPY
collection is necessary for ensuring Python is usable
in all environments users may encounter.
Tensorflow is also provided via a sub-module. This

is in response to Tensorflow being difficult to build
on systems with nonstandard toolchains and library
locations and multiple users requesting frequent up-
dates to this rapidly developing machine learning
framework. Installing Tensorflow as a sub-module
allows for multiple versions to be available and pre-
vents frequent changes to the main BWPY prefix.
The modularization also prevents the introduction of
unstable dependencies into the main BWPY prefix
which may be used by other packages.

III. Instrumentation
The Python module imports were logged via a

sitecustomize.py exit hook. This exit hook uses
sys.modules to list the module name and the
file location of the modules imported at the end
of Python’s execution. Additionally, the username,
timestamp, execution context (login node, MOM
node, or compute node), number of nodes and
processes per node, and sub-module usage were
recorded. This data was written to plain text log
files. Because all users needed write access to these
files, the logs were given the +a (append only) file at-
tribute to prevent accidental deletion or truncation.
The advantage of this logging method, as opposed

to intercepting import calls, is that any errors in
sitecustomize.py are non-fatal. This allowed for

tweaking the logging without the worry of impacting
users or any performance penalty. The disadvantage
of this method is that not all imports are visible
in the global sys.modules upon program termi-
nation, such as Python scripts invoked via exec
and Virtualenv containers not inheriting system site-
packages. This logging does not record invocations
which crash or are killed.

IV. Results
Between January 13th, 2017 and April 2nd, 2017,

Python 2.7 was used by 126 users. Python 3.3, an old
version kept in case of possible compatibility prob-
lems, was not used at all. Python 3.4 was used by 28
users and Python 3.5 was used by 8 users. Python 2.7
was invoked 264,064 times, Python 3.4 was invoked
4828 times, and Python 3.5 was invoked 775 times.
Despite Python 3 having been released over 8 years
ago, Python 2 remains by far the most dominant
branch of Python used in HPC. The most likely
reason Python 3 has seen low adoption is that many
of the lower level libraries took a significant amount
of time to be ported to Python 3 and some still
remain incompatible with the Python 3.5 branch.
PyPy and PyPy 3 have not seen any adoption by
Blue Waters users. For a detailed table of Python
modules used by multiple users on Blue Waters, see
Appendix.

A. Python Versions and Node Usage

Fig. 1. Python Usage by Type (Invocations)

Login MOM Compute
0

50,000

100,000

150,000

200,000

73,690

10,399

177,515

1,228 34 2,579352 0 14

In
vo

ca
tio

ns

Python 2.7 Python 3.4 Python3.5

As seen in Fig. 1, Python is consistently used
across login nodes, MOM nodes, and compute nodes.
Based upon the packages used and the contexts in
which Python is invoked, Python is used for data
processing, analysis, and visualization, job process-
ing, and directly for scientific computing purposes.

B. Fields of Science
Logged job IDs were used to associate jobs and

Python users with their respective fields of science.

Fig. 2. Workloads of Python Users

Astronomical Sciences
Biological Sciences
Computer Science
Physics
Materials Science

Engineering
Atmospheric Sciences
Chemistry
Mathematics

22%

19%

18% 10%

8%

7%

7%
7%

2%

Fig. 3. Workloads of Python Invocations

Astronomical Sciences
Biological Sciences
Computer Science

Materials Science
Atmospheric Sciences
Other

34.6%

29.5%

20.7%

9.8%

5.4%

Fig. 2 shows that Python is used across diverse
areas of science. However, it can also be seen from
Fig. 3 that these areas of science tend to use Python
differently. Atmospheric sciences account for the
most users of Python on Blue Waters, but only
account for <10% of Python invocations. This lack
of correlation is likely due to Python being used in a
more supportive role in some fields versus a primary
programming language in others.

C. Module Usage by Number of Users
The following graph, Fig. 4, lists the most popular

Python modules related to scientific computing, de-
termined by how many unique users imported these
modules. This graph includes data from all available

Python versions. Utility modules such as six are not
included in this graph.

Fig. 4. Python Module Usage by Number of Users
nu

m
py

m
at
pl
ot
lib PI
L

sc
ip
y

sc
ik
its

Py
Q
t4

IP
yt
ho

n
pa

nd
as

h5
py

m
pi
4p

y
te
ns
or
flo

w
ne

tC
D
F4

pa
st
a

de
nd

ro
py

PE
T
Sc

0

20

40

60

80

100
8

4

3

1 1
1

1 1
2

5 5 4

86

57 56
44 44

34 31 28 27
17 15

6

BWPY
User

Numpy is the most popular module of the BWPY
Python stack, being used by more than 60% of Blue
Waters Python users. Most Numpy users used the
module provided by BWPY, but 8 built their own
version. At least one user overrode all the major
Python packages. One potential reason for users
building their own versions of modules which have
already been provided by BWPY is that the pip
--upgrade command will upgrade BWPY provided
commands when the user does not necessarily want
or need to provide their own build. One user who con-
tacted Blue Waters support built their own Numpy
to use the libsci_mp OpenMP enabled BLAS.

D. Most Imported Modules
Numpy was also by far the most imported module

on Blue Waters, imported over 150,000 times over
the course of the data collection, over double that of
the next most imported module, Vasp.
It is clear from comparing the module usage by

number of users (Fig. 4) to the module usage by num-
ber of imports (Fig. 5) that Python is used as both a
primary and secondary tool. Vasp is only used by a
single user, but is the second most invoked scientific
Python module. Dendropy is only used by 5 users
but is the 3rd most invoked module. Matplotlib is
the second most popular module with 61 users but
is only the 7th most invoked. This lack of correlation
between the number of users and number of imports
is because a minority of users use Python for per-
forming primary scientific calculations, resulting in a
high number of invocations, while a larger number of

Fig. 5. Python Module Imports

nu
m
py

Va
sp

de
nd

ro
py PI
L

sc
ip
y

sc
ik
its

m
at
pl
ot
lib

m
pi
4p

y
ke
ra
s

as
tr
op

y
th
ea
no

py
cu

da
h5

py
ne

tC
D
F4

te
ns
or
flo

w
pa

nd
as

0

50,000

100,000

150,000 BWPY
User

users employ Python less often in a supportive role
for data analysis and visualization.

E. Python Job Walltimes
Using the logged job IDs, the walltimes of Com-

pute and MOM node jobs were found from the job
scheduler logs. It should be noted that Python could
be run multiple times within a single job or Python
may only be used briefly. The Python atexit logging
could also record Python execution walltimes. As the
focus of this logging was initially Python module
usage, additional logging including Python walltime
was not yet implemented. Python execution walltime
could also be misleading if Python is merely used
to execute other programs with Python sleeping as
a parent process. Thus, it is not trivial to precisely
determine the length of time Python processes are
run.
The vast majority of Python jobs were under four

hours of walltime. 10893 jobs ran for less than 15
minutes, 7004 jobs ran between 15 and 30 minutes,
and 6288 jobs ran between one half to one hour. Only
162 jobs ran for more than 16 hours.
The high number of short jobs was noteworthy

and concerning. Such usage causes extra work for
the scheduler compared to bundling short jobs into
longer jobs. Additionally, Python on Blue Waters is
installed on a Lustre filesystem and there are a large
amount of IOPs required to launch Python. Ideally,
running Python on multiple datasets would be done
within a single invocation of Python, reducing un-
necessary load to the filesystem.

Fig. 6. Compute Node Job Walltimes

0-
4

4-
8

8-
12

12
-1
6

16
-2
0

20
-2
4

24
-2
8

28
-3
2

32
-3
6

36
-4
0

40
-4
4

44
-4
8

100

101

102

103

104

Walltime (hours)

In
vo

ca
tio

ns

Fig. 7. MOM Node Job Walltimes

0-
4

4-
8

8-
12

12
-1
6

16
-2
0

20
-2
4

24
-2
8

28
-3
2

32
-3
6

36
-4
0

40
-4
4

44
-4
8

100

101

102

103

Walltime (hours)

In
vo

ca
tio

ns

Python processes running on MOM nodes tended
to run longer than on compute nodes. This suggests
that Python is being used to bundle other programs
for execution on compute nodes. It is also likely that
some of these jobs mistakenly ran Python without
using aprun.

F. Python Usage in Jobs
By counting duplicate job IDs in the log, the

frequency of Python invocation within jobs was cal-
culated. Fig. 8 and Fig. 9 show how often Python is
executed per job.
Similarly to running many short Python jobs,

running Python many times within the same job puts

Fig. 8. Executions Per Job

100 101 102 103

100

101

102

103

104

Python Executions per Job

N
um

be
r
of

Jo
bs

Compute Node
MOM Node

Fig. 9. Multiple Launch Breakdown

2-
9

10
-1
9

20
-2
9

30
-3
9

40
-9
9

10
0-
11
9

12
0-
75
0

>
75
0

0

1,000

2,000

3,000

Python Executions per Job

N
um

be
r
of

Jo
bs

Compute
MOM

strain on the Lustre filesystem. When possible, users
should be encouraged to limit the number of Python
invocations by creating a Python script to bundle
multiple tasks within the same invocation of Python.

G. Compute Job Width Distribution
The Python atexit logging also recorded the PBS

job width and processes per node using the environ-
ment variables set by the scheduler. This data was
collected for both compute node and MOM node
jobs.

TABLE I
Python Compute Job Widths

of nodes Invocations
1 170488

2-32 8555
33-64 53

65-128 222
129-256 600
257-512 94

513-1024 71
1025-2048 25

As can be seen in Table I, the vast majority of
Python compute node jobs were single node jobs.
However, there were some jobs which used many
nodes. Unlike invoking Python multiple times per
job or running many short jobs, the load incurred by
launching Python across multiple nodes cannot be
reduced by bundling tasks. Better support for wide
workoads will require running Python in a manner
which is more friendly to high IOPs than off the
Lustre filesystem.

V. Implications for Python on Blue Waters
The Python usage statistics indicate that the

packages provided by BWPY more than sufficiently
cover the needs of Blue Waters Python users. Rather
than continuing to proactively expand the number of
packages supported by BWPY, it was decided that it
would be more beneficial to provide multiple options
for the most commonly used packages.
Due to the high frequency of Numpy/Scipy usage,

giving users multiple BLAS options was deemed to
be the most useful expansion of BWPY. A user had
also expressed interest in an OpenMP enabled BLAS
with Numpy, which was additional evidence that
multiple options would be appreciated by the users
of Python on Blue Waters. Using the Gentoo utility
revdep-rebuild.sh, a list of 10 packages were found

to be linking against Cray’s libsci. Two new sub-
modules were added, providing alternative builds of
these packages using libsci_mp and libsci_acc for
OpenMP enabled BLAS and GPGPU enabled BLAS.
Blue Waters users will be given advice for bundling

their Python tasks to reduce startup cost. Providing
BWPY as a mounted image to reduce Lustre meta-
data load could also significantly improve interactive
experience and scalability; the use of mounted images
in Shifter was shown to improve performance to that
of ramdisks[2].
Despite Numpy being used by the majority of

users, it is not used unanimously. Those users which
need limited or no Numpy functionality should be
encouraged to try running under PyPy or PyPy3.
These Python implementations use JIT compilation
to achieve better performance.

References

[1] Martín Abadi et al. “TensorFlow: Large-Scale
Machine Learning on Heterogeneous Distributed
Systems”. In: (Mar. 2016). arXiv: 1603.04467.
url: http://download.tensorflow.org/paper/
whitepaper2015.pdf%20http://arxiv.org/abs/
1603.04467.

[2] Richard Shane Canon and Doug Jacobsen.
“Shifter: Containers for HPC”. In: (2017). url:
https : / / cug . org / proceedings / cug2016 _
proceedings/includes/files/pap103.pdf.

[3] Matthew D Jones et al. FINAL REPORT:
WORKLOAD ANALYSIS OF BLUE WATERS.
Tech. rep. ACI, 2017, p. 25. url: https://arxiv.
org/pdf/1703.00924.pdf.

[4] Colin A. MacLean. “Maintaining Large Soft-
ware Stacks in a Cray Ecosystem with Gentoo

Portage”. In: Cray User Group (2016).

http://arxiv.org/abs/1603.04467
http://download.tensorflow.org/paper/whitepaper2015.pdf%20http://arxiv.org/abs/1603.04467
http://download.tensorflow.org/paper/whitepaper2015.pdf%20http://arxiv.org/abs/1603.04467
http://download.tensorflow.org/paper/whitepaper2015.pdf%20http://arxiv.org/abs/1603.04467
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap103.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap103.pdf
https://arxiv.org/pdf/1703.00924.pdf
https://arxiv.org/pdf/1703.00924.pdf

Appendix
Invocations Users

Module BWPY User BWPY User
CIME 0 1858 0 2
Cookie 49 0 3 0
Cython 330 1 20 1
FixTk 15379 0 3 0

HTMLParser 39 0 3 0
IPython 8663 64 31 1

OpenSSL 885 0 36 0
PETSc 0 24 0 4

PIL 48459 0 56 0
PyQt4 1719 7 34 1
Queue 15407 0 3 0
RDict 0 24 0 4
SCons 1 24 1 2

SNP_class 0 764 0 2
StringIO 15486 0 3 0

Tools 0 128 0 2
apitools 0 24 0 2
appdirs 191 1362 4 6
archive 0 688 0 3

argcomplete 12 0 2 0
argparse 149 20 3 4

args 0 24 0 4
arpack 0 8 0 2

ast 15047 0 4 0
astropy 0 16619 0 2

atari_py 0 245 0 2
atexit 15643 0 3 0
babel 27 0 5 0

backports 14593 64 45 1
base64 15458 0 3 0
bisect 15289 0 3 0
blopex 0 8 0 2
blzpack 0 8 0 2

boto 3880 12 28 2
bottleneck 4002 0 28 0

bson 3689 0 2 0
btmorph 0 90 0 2

build 0 20 0 3
buildnml 0 70 0 2
builtins 0 13910 0 2

cairo 168 0 3 0
calendar 15462 0 4 0

certifi 522 0 39 0
cffi 47824 819 56 1
cgi 53 0 4 0

Invocations Users
Module BWPY User BWPY User
chardet 545 0 14 0
check 0 8 0 2

cloudpickle 3287 0 13 0
cmakeboot 0 20 0 4
cmakegen 0 43 0 4
collections 15525 0 3 0
colorama 1197 0 7 0
common 0 37 0 2

compileall 28 0 4 0
concurrent 7935 0 13 0

config 0 224 0 5
contextlib 15493 0 4 0
cookielib 49 0 3 0

copy 15497 0 3 0
coverage 18 0 4 0
crcmod 0 12 0 2

csv 15278 0 4 0
ctypes 15480 0 4 0

cutils_ext 44 2 4 1
cv2 3 61 2 2

cycler 29972 1179 60 2
cython 49 1 6 1
dask 3288 0 13 0

dateutil 13603 17621 59 6
decimal 15251 0 4 0

decorator 11022 65 32 1
dendropy 0 49069 0 5

difflib 15432 0 4 0
dis 15430 0 4 0

docutils 27 0 5 0
email 15536 0 4 0
enum 456 70 34 3

ez_setup 0 11 0 5
feast 0 8 0 2

fractions 15251 0 4 0
funcsigs 255 0 10 0

functools 15487 0 3 0
functools32 16428 0 7 0

future 0 14105 0 2
getopt 15541 0 4 0
getpass 28 0 4 0
gettext 179 0 4 0
gflags 0 12 0 2
glob 15652 0 4 0

globus_sdk 6 4 1 1
gmpy2 1580 0 5 0
google 19 43 3 3
graph 0 24 0 4

Invocations Users
Module BWPY User BWPY User

gsd 0 3695 0 2
gslib 0 12 0 2
gsutil 0 12 0 2
gym 8 307 1 2
gzip 15411 0 4 0
h5py 7701 2 27 1

hashlib 15487 0 3 0
healpy 0 16431 0 2
heapq 15525 0 3 0
help 0 24 0 4

hmac 52 0 3 0
hoomd 15 143 2 3
html 8 10 1 1
http 10 14 1 1

httplib 72 0 3 0
httplib2 0 24 0 2

idna 886 0 36 0
importlib 15472 0 3 0
inspect 15430 0 4 0

io 15487 0 3 0
ipaddress 487 1 36 1
ipykernel 8137 0 14 0

ipyparallel 133 0 5 0
ipywidgets 407 0 12 0

jinja2 119 0 10 0
joblib 393 0 14 0
json 15314 0 4 0

jsonschema 92 7 6 1
keras 0 17513 0 6

keyword 15525 0 3 0
lapack 0 8 0 2
libutil 0 688 0 3

llnl 0 8 0 2
log 0 8 0 2

logger 0 24 0 4
logging 15455 0 4 0

lxml 20 0 3 0
markupbase 39 0 3 0
markupsafe 119 0 10 0
matplotlib 13596 17609 59 4
mimetools 72 0 3 0
mimetypes 56 0 4 0

miscVar 0 339 0 2
mock 189 0 7 0

mpdlib 0 7 0 2
mpi4py 27410 2 17 1
mpmath 460 1120 5 1

nargs 0 24 0 4

Invocations Users
Module BWPY User BWPY User
nbformat 92 0 6 0

ndg 64 0 8 0
netCDF4 3306 918 7 2

netcdftime 3306 918 7 2
netifaces 156 0 5 0

netrc 8 0 4 0
neuron 0 877 0 2

neurotrees 0 987 0 2
nose 251 0 8 0

notebook 91 0 6 0
numbers 15454 0 4 0
numexpr 3890 0 28 0
numpy 135741 19591 93 8
opcode 15519 0 4 0

optparse 30 0 4 0
osgeo 0 4 0 2

overview 0 11 0 2
packaging 0 1553 0 10

pandas 3878 0 28 0
parfile 0 180 0 3
pasta 0 3030 0 5

pathlib 22138 0 49 0
pbr 551 12 31 1

petscconf 0 8 0 2
pexpect 8671 64 31 1
pickle 15444 0 4 0

pickleshare 8572 64 31 1
pip 319 52 29 9

pkgutil 15461 0 4 0
platform 15652 0 4 0
plistlib 15461 0 4 0

polp_new 0 30 0 2
pprint 15492 0 4 0

primme 0 8 0 2
project 0 20 0 3
psutil 3324 0 16 0

ptyprocess 8671 64 31 1
py 3884 7 29 1

py_compile 70 0 4 0
pyasn1 870 24 35 2
pycuda 15230 0 2 0
pydot 72 15217 5 1

pygments 8718 64 35 1
pyini 0 688 0 3
pylab 7014 36 9 2

pynbody 0 24 0 2
pyparsing 28342 19440 58 13

pytest 0 10 0 2

Invocations Users
Module BWPY User BWPY User

pytz 3912 0 32 0
pyu2f 0 12 0 2
qhull 27 0 3 0
queue 4 7408 1 1

quicklens 0 4660 0 2
quopri 15462 0 4 0

random 15487 4 3 1
redis 374 0 32 0

requests 534 0 14 0
restartlib 0 688 0 3
retrieval 0 17 0 4
rfc822 72 0 3 0

rlcompleter 33 0 3 0
rsa 0 24 0 2

scikits 35843 0 44 0
scipy 39232 986 47 3
script 0 24 0 4

seaborn 187 0 6 0
sepp 0 1182 0 2
setup 0 12 0 2

setuptools 612 57 27 9
shlex 15262 0 4 0
shutil 15487 0 3 0

sim-build 0 688 0 3
sim-info 0 688 0 3

sim-manage 0 688 0 3
sim-sync 0 688 0 3
sim-util 0 688 0 3

simarchive 0 688 0 3
simdb 0 688 0 3
simdt 0 688 0 3

simenv 0 688 0 3
simlib 0 688 0 3

simopts 0 688 0 3
simplejson 12458 0 51 0
simremote 0 688 0 3
simrestart 0 688 0 3
simsubs 0 688 0 3

simtk 73 151 2 1
sip 1715 7 35 1
six 52177 1409 89 8

sklearn 106 13 6 1
socket 15463 0 4 0
socks 330 24 31 2

sphinx 27 0 5 0
ssl 15463 0 4 0

statsmodels 188 0 6 0
storemagic 214 14 19 1

Invocations Users
Module BWPY User BWPY User

string 15649 0 4 0
stringprep 13 0 4 0

struct 15487 0 3 0
subprocess 15447 0 4 0

sympy 460 1120 5 1
sysconfig 15461 0 4 0

tables 44 0 2 0
tarfile 67 0 3 0

tempfile 15487 0 3 0
tensorflow 3676 26 16 1
terminado 87 0 6 0

tests 0 12 0 2
textwrap 15464 0 4 0
theano 24 15242 4 2

threading 15495 0 4 0
timeit 28 0 2 0
token 15445 0 3 0

tokenize 15445 0 3 0
toolz 3294 0 13 0

tornado 8139 0 14 0
tqdm 0 52 0 3

traceback 15519 0 4 0
traitlets 8677 64 32 1

trlan 0 8 0 2
unittest 15434 0 4 0

urllib 15470 0 4 0
urllib2 72 0 3 0
urllib3 667 0 18 0

urlparse 15458 0 3 0
util 0 73 0 2
utils 0 44 0 4
uu 15462 0 4 0

uuid 56 0 4 0
version 2441 22 1 3

vgg_model 0 31 0 2
virtualenv 16 4 7 2
wcwidth 8668 64 32 1
weakref 15504 0 3 0

webcolors 81 0 8 0
wheel 379 29 31 5
xml 233 0 4 0

xmlrpclib 24 0 3 0
yaml 917 8 7 2

yt 50 1119 2 1
zipfile 15461 0 4 0
zmq 8179 0 15 0

	Introduction
	Python on Blue Waters
	Instrumentation
	Results
	Python Versions and Node Usage
	Fields of Science
	Module Usage by Number of Users
	Most Imported Modules
	Python Job Walltimes
	Python Usage in Jobs
	Compute Job Width Distribution

	Implications for Python on Blue Waters
	Appendix

