Enabling a SuperFacility with Software Defined
Networking

Richard Shane Canon, Tina Declerck, Brent Draney, Jason Lee, David Paul, David Skinner
NERSC, Lawrence Berkeley National Laboratory
Berkeley, USA
Email: scanon@1bl.gov

Abstract—Experimental and Observational facilities are in-
creasingly turning to high-performance computing centers to
meet their growing analysis requirements. The combination of
experimental facilities with HPC Centers has been termed the
Super Facility. This vision requires a new level of connectivity
and bandwidth between these remote instruments and the HPC
systems. NERSC in collaboration with Cray has been exploring a
new model of networking that builds on the principles of Software
Defined Networking. We envision an architecture that allows the
wide-area network to extend into the Cray system and enables
external facilities to stream data directly to compute resources
inside the system at over a 100 Gbs in the near-future and
eventually reach beyond a 1 Tbs. In this paper will expand on this
vision, describe some of the motivating use cases in more detail,
layout our proposed architecture and implementation, describe
our progress to date, and outline future plans.

Keywords-SDN; HPC systems

I. INTRODUCTION

Experimental and Observational facilities are increasingly
turning to high-performance computing centers to meet their
growing analysis requirements. Typically data has been trans-
ferred to dedicated end-points like data transfer nodes and
stored in a campaign or scratch storage space. Once stored,
the data can then be read from this storage and analyzed
on the supercomputing resources. However, as the data rates
from instruments continue to increase and the need for real-
time response grows, these multi-hop approaches are no longer
sufficient. In addition, projects associated with large collider
facilities and other large distributed collaborations often use
a distributed collection of resources for both data storage and
analysis. Often data must transferred to the analysis resource
at run-time. In the past, supercomputers like Cori would have
had limited external access, but these new use cases demand
much greater external access. NERSC in collaboration with
Cray has been exploring a new model of networking that
builds on the principles of Software Defined Networking. We
envision a model that allows the external network to extend
into the Cray system and enables external facilities to stream
data directly to compute resources inside the system at over
a 100 Gbs in the near-future and eventually reach a 1 Tbs.
In this paper will expand on this vision, describe some of
the motivating use cases in more detail, layout our proposed
architecture and implementation, describe our progress to date,
and outline future plans.

II. BACKGROUND

Over the past decade, NERSC has formed close partnerships
with a growing number of user facilities that are looking to
NERSC to satisfy their growing demands for computing. This
is often motivated by rapid increases in data generation rates
from new instruments such as sequencers at the Joint Genome
Institute or cameras at X-ray light source facilities like the Ad-
vanced Light Source or LCLS. These advances are often driven
by Moore’s Law improvements in the detectors. Some of these
instruments have the ability to generate hundreds of megabytes
of data per second today and promise to grow to gigabytes per
second in the next five to ten years. Scientists at the ALS
and LCLS want to leverage supercomputer class resources
at NERSC to enable faster insight while the experiment is
running. This enables the researcher to make adjustments
in their experiment while they are still at the beam-line
rather than discovering weeks later after they complete their
analysis. In addition, researchers are looking at ways to couple
observation and simulation together in real-time to improve
the scientific process. This requires an unprecedented level of
coupling between facilities. Within the Department of Energy
Office of Science, this concept has been coined the Super
Facility. In order to achieve this larger vision, NERSC needs
to enable data to stream deep into the supercomputing system
at parity with the generation rates by the instruments. Existing
approaches have not been able to meet these demanding
requirements. This has motivated NERSC to explore new
models. Software Defined Networking is emerged in the larger
networking space as a way to allow networks to more quickly
adjust and adapt to user requirements.

NERSC is taking an incremental approach towards achiev-
ing the full vision of software defined networking that extends
to the Cray systems. The early phases have focused on replac-
ing the standard Realm-specific IP (RSIP) model used on the
Crays with a new architecture that uses software-based routers
running external to the system. Replacing RSIP was based on
several factors including poor performance, minimal use by a
broad community, and the lack of hooks to enable software-
based control. The new software-based routers are running the
Vyatta operating system (VyOS) which already supports many
of the underlying capabilities required for SDN, but initially
they are configured to do basic routing and network address
translation (NAT). With these changes, NERSC has already

demonstrated the ability to route packets from a single stream
of a single compute node at over 25 Gbs. The service nodes
that would have previously served as RSIP servers are now
acting as bridge nodes that route packets from the internal Cray
Aries network to an external ethernet network that connects
to the Software-based routers. The routers have initially been
configured to do standard masqueraded NAT. This allows com-
pute nodes to talk efficiently initiate connections to external
sources but doesn’t permit inbound connections.

In the next, phase we are exploring ways to manage these
inbound connections. The goal for this phase is to enable
users to easily specify requirements for external addresses
as part of their job script and have the system dynamically
assign and associate addresses with the jobs. Careful attention
should be paid to the crafting of this interface’s usability. User
job scripts (especially for workflows) are often themselves
already complex in resource assignments. We propose a user-
facing API which seeks simplicity. This capability should
enable users to stream data externally from the system to
compute resources. Our initial strategy is to leverage the
APIs provided by the VyOS to dynamically configure the
routers to map external addresses to the internal compute
node address. The router would still be performing address
translation, but would be doing a one-to-one map versus
masquerading. Dynamic configuration will first be handled by
a simple custom RESTful-based service that can easily be used
by the batch system. This service will broker communications
with the Vyatta routers and track and manage the pool of
external addresses. Based on our progress, we hope to present
results of this approach and describe the extended architecture
in more detail.

III. IMPLEMENTATION
A. Approach

To enable these new models of coupling remote facilities
requires a new approach to how networking is integrated into
the HPC systems. The Cray systems have relied on Realm-
Specific IP (RSIP) networking. This models has been shown
to underperform in many cases, encounter issues when many
compute nodes concurrently attempt to access external re-
sources and lacks the programmatic flexibility that is needed to
fully enable these new use cases. To addresses these limitations
we have replaced RSIP with a new architecture that utilizes
software-based routers and repurposes the RSIP servers into
“bridge” nodes. We will briefly describe this architecture in
more detail.

Software-based Routers

For Cori we have deployed ten software-based routers. Each
of these has a single socket Haswell processor (8 cores, 3.5
GHz) and two dual-port 40Gb Intel NICs (check). These
routers run the open-source VyOS software [1]. A single
socket node configuration was chosen because the routing
operations are bus and memory bandwidth constrained and
multiple processors can lead to additional latency to transfer
data between NUMA domains. The Intel NICs were selected
because the Vyatta software can leverage the Data Plane

Development Kit available for certain Intel NICs [2]. However,
the routers are currently running the open source version
of this software (VyOS) since the commercial version lacks
support for the Intel 40Gb NICs.

Daylight
Controller
i
NERSC Core _ // /
Router —
/ Ethernet Network o Cray System
ridge '
/1 Aries Network
| ew1 Dual Links
-
-Cumpule
Software-Based Dual Link: Bridge
Router running on ual Lini s"[—
Commodity Node
-Compme
—)
4(_ Bridge
Other GW Pairs
ComP| Compute Nodes
fail-over to
E— T
10 Bridges/Routers in other Bridges

Fig. 1. Routing configuration used on the Cori system that utilizes software-
based routers and bridge nodes connected to the high-speed Aries network.

Bridge Nodes:

The bridge nodes handle routing packets from the internal
Cray Aries network to the external Ethernet network attached
to the routers. These are effectively repurposed RSIP service
nodes. Each is configured with a single Haswell Process (8
cores, 2.6 GHz) and two dual-port 40Gb Mellanox NICs.

B. Detailed Implementation

Changes are required in the compute nodes and bridge
nodes to properly route traffic to the external routers. We will
summarize those here.

Router Node:

The Router requires the following configuration settings:

o Configure the internal facing interface to reside in the
same subnet (broadcast domain) as the high-speed net-
work.

o Configure to do outbound Network Address Translation
(e.g. Masquerading) for packets originating from the
internal network.

Bridge Node:

The bridge nodes require the following configuration

changes:

« External interfaces configured with a address in the same
subnet used for the HSN but with a the netmask restricted
netmask that includes that ideally just includes the router
but not compute nodes.

o Enable Proxy ARP on the external interface

o Enable IP forwarding

o Set the default route to point to the associated external
router.

Compute Nodes
The compute nodes require the following configuration
changes:

o Add a static ARP entry that maps the IP address of the
internal NIC on the router to the MAC address of the
Aries interface on the bridge node. If there are multiple
bridges and routers, these can be configured for all of the
bridges/router pairs.

o Set the default route to IP address of the internal interface
on the associated router for the compute node. If multiple
routers are available, they should be distributed evenly
across all routers.

C. Example Configuration

To help illustrate these configuration changes, let’s assume
a scenario where the system has a single bridge and router
pair (see Fig. 2). The HSN subnet is 10.128.0.0/23. The
router is configured with 10.128.255.1/23 on the internal
interface (eth0). The bridge node HSN MAC address is
00:01:01:00:00:0d and the IP address of the external interface
(ethO) is configured as 10.128.1.2/24. The key parts of the
router config can be seen in Fig. 3. Likewise the configurations
for the bridge and compute node can be seen in Fig. 4 and 5,
respectively.

Router
ipogif0 etho
10.128.0.22 10.128.255.2 eth0 eth1
00:01:01:00:00:0D 10.128.255.1 1234

Fig. 2. Illustration of the networking configuration using a “bridge” node to
provide connectivity to an external router.

ipogif0
10.128.0.21

D. Enabling In-bound Routing

To achieve the full vision of the SDN project, inbound
routing must be supported. Furthermore, it should be possible
to dynamically assign these addresses and integrate this control
with the HPC resource manager (SLURM). To provide this
control, we have implemented a simple RESTful interface that
can allocate and assign external addresses to a compute node
and later release them. This service in still in a prototype state.
We will briefly its design and implementation.

To enable this service, we wanted a simple interface that
ultimately could be integrated with SLURM. This service
has been implemented in Python using the Flask framework
[3]. The service uses a Mongo Database to track the state
of the external addresses in order to avoid conflicts. The
service uses Munge to authenticate requests and protect against
unauthorized access [4]. Munge is already used for authenti-
cation by SLURM, so we leverage the existing deployment.
Unfortunately, the open-source VyOS software does not offer
a programmatic interface. There, the SDN gateway interacts
with the routers via SSH using expect-style methods to con-
figure the routers.

Currently, the service supports a limited set of commands.
A summary of these is shown in Table I. When a “associate”
request is made to the service, this results in the following
actions:

interfaces {

ethernet ethO {
address 10.128.255.1/14
description "Int interface"

}

ethernet ethl {
address 1.2.3.4/24
description "ext interface"

}
nat {
source {
rule 100 {
outbound-interface ethl
protocol all
source {
address 10.128.0.0/14
}
translation {
address 1.2.3.4

Fig. 3. Key parts of the VyOS router configuration

ifconfig ethO 10.128.255.2 netmask \
255.255.255.0 up

echo 1 > /proc/sys/net/ipv4/ip_forward

echo 1 > \
/proc/sys/net/ipvd/conf/eth0/proxy_arp

route add default gw 10.128.255.1

Fig. 4. Configuring the bridge.

1) Authenticate the request via Munge

2) Find an available address or return an error if none are
available

3) Lookup the router associated with the requesting node

4) Configure the address on the external interface of the
associated router via ssh.

5) Configure an in-bound NAT rule for the external address
to the internal address.

6) Configure an out-bound NAT rule from the internal
address to the external address.

7) Commit the operations and return the external address
in the response.

A release request essentially does the same set of operations

/sbin/arp —-s 10.128.255.1
00:01:01:00:00:0D
/sbin/route add default gw 10.128.255.1

Fig. 5. Configuring the compute node.

in reverse and returns a “released” status message upon
success.

In the future, we will integrate this service with SLURM.
We envision the user being able to pass options to their batch
job request to request an external IP. Once the job has started, it
will be able to access the allocated address via an environment
variable. The application could then publish this address to a
coordination service or a dynamic DNS service.

TABLE I
GATEWAY API (ALL METHODS ARE CURRENTLY IMPLEMENTED AS GET
REQUEST)

Command
/associate/

Purpose

Allocate and associate an address to the requesting
compute node

Release and free

Return the status for public addresses including current
mappings

/release/
/status/

IV. PERFORMANCE

A major goal of the SDN project was to improve perfor-
mance over the existing RSIP-based approach and to enable fu-
ture use cases requiring high ingest bandwidths. We have made
baseline measurements of the previous RSIP configuration and
compared it with this new approach. In some case, we have
also measured the performance on a directly connected login
node to determine the potential performance for a host that is
directly connected to the wide area network. In general, the
new approach provides superior performance and approaches
the performance of the directly connected node configuration.
However, there are still some use cases exhibiting poor perfor-
mance compared with the directly connected node. It is worth
noting that the new approach still outperforms the previous
RSIP approach in all cases we have measured.

A. IPERF

Iperf is a low-level IP network performance measurement
tool [?]. It is typically used to determine the baseline network
performance between two end points. In these tests we are
using iperf version 3 with no additional command-line options.
Table II summarizes the results.

TABLE II
IPERF MEASURED PERFORMANCE.

[Configuration [Performance (Gbps)]
RSIP 4.5
Directly Connected 347
SDN Configuration 25.8

B. Grid FTP

GridFTP is part of the Globus Grid Toolkit. For this test, we
measured transfers from an ESnet test endpoint that supported
9000 Byte MTU (e.g. Jumbo Frames). Similar to the iperf
benchmark, we report the performance for RSIP, a directly
connected login node, and the new approach. We test against

two end points. One end-point is hosted at Berkeley lab and
thus has very low latency from NERSC. The other is hosted
at CERN, and has much higher latency. The bandwidth delay
product dictates that a high latency path will achieve lower
bandwidth if when using a common window size. So, not
surprisingly, the CERN results are much lower. The results
are summarized in Table III.

TABLE 111
PERFORMANCE DOWNLOADING A FILE VIA GRIDFTP.

Performance (MB/s)

Configuration LBNL | CERN |
RSIP 540 13.0
Directly Connected 750 19.5
SDN Configuration 550 13.0

C. TCP Backlog Drops and Tuning

As can be seen from the above results, the new approach
improves performance significantly for many use cases. How-
ever, some use cases continue to perform poorly. For example,
downloading a file from a web server connected at a standard
frame size (1500 Byte MTU) will perform achieve around
1/10 of the bandwidth compared to the same test performed
on a login node directly connected to the external network.
An example of this is shown in Table IV. Here a large file is
downloaded from an end-point located hosted at CERN. Un-
like the benchmark performed with GridFTP, this web server
is running at a standard frame size. The reported numbers
are observed sustained performance after TCP ramp up. The
performance for the RSIP and SDN results are extremely
noisy, implying dropped packets or similar issue.

TABLE IV
PERFORMANCE WITH AND WITHOUT ADDITIONAL TUNING.

[Configuration | Performance (MB/s) |
RSIP 0.2
Directly Connected 20
SDN Configuration (Default) 1
SDN Configuration (Optimized) 25

To diagnose this issue, TCP traces were collected. The
results of one trace is shown in 6. As expected, retransmits
are occurring. This explains the erratic performance and poor
performance. On closer inspection, the drops are discovered
to occur after arriving at the compute node. The trace shows
that the packet safely arrives all the way to the compute node,
but then a retransmit is still observed. Further investigation
showed that this was due to the packet being dropped due to
insufficient TCP buffer space. This can be seen in the “TCP
Backlog drop” counter (netstat — s). This typically occurs
because the application is not reading packets off of the socket
quickly enough.

This issue was reported to Cray and engineers explained
that the driver that provides the IP interface for the Aries
interconnect (e.g. ipogif) uses a fixed buffer size for all packets
set to the MTU size. Since the interface is typically configured

2131000000

71 29000000

Fig. 6.
packets.

Graph of TCP trace illustrating retransmits (red Rs) due to dropped

at 64k, the default maximum per-connection memory limit can
be exhausted by a few hundred packets. As an experiment, the
maximum per-connection was increased to 256MB (16x larger
than the default) on Cori’s test and development system. This
was done by increasing the last number in the tcp_rmem and
tep_wmem in /proc/sys/net/ipvd/. Applying these settings
on the test system alleviated the problem. The performance
increased by over 10x and even out performed the directly
connected login node. The results can be seen in the final row
of Table IV. Based on these results, the same changes were
applied to the much larger Cori system. Unfortunately, Cori
did not achieve the same performance gains. Backlog drops
are still occurring and the performance is roughly the same as
without the setting. NERSC staff are continuing to work on
this issue.

V. DISCUSSION

The early results of this work are mixed. Many of the
use cases show signifcant improvements, but work remains to
diagnose and address the remaining performance issues. The
prototype API service that enables addresses to be dynamically
allocated and associated with compute nodes provides a new
level of flexibility and control. However, additional work is
needed to harden this service, integrate it with the SLURM
resource manager, and move it into production.

In future phases, we will explore using more standard
Software-Defined Networking concepts and software. Our ar-
chitecture includes an OpenDaylight (ODL) Controller which
provides a platform for building end-to-end SDN applications.
The ODL Controller is not used in the early phases of the
project since it introduces additional complexity. There are
many open questions about how exactly to integrate many of
these components with Cray systems. In the larger paper and
presentation, we will describe basic SDN concepts, potential

ways of integrating these with the Cray, and our future plans
including thoughts on extended this architecture to multiple
sites to enable the Super Facility vision.

VI. CONCLUSION

Their is an increasing need to integrate the capabilities
of experimental facilities and high-performance computing
centers to keep pace with growing computational require-
ments, enable more rapid discover, and enable coupling of
simulations and experimental data. A key barrier to enabling
this new model is lowering the barriers between the facilities
and ensuring that data can flow at extremely high-data rates
between locations. We have designed and deployed a new
architecture that will enable this vision. While there is still
much work left to be done, the preliminary progress already
demonstrates that new approach can achieve high-performance
and flexibility. Building on this model, we hope to provide
experimental scientists an ability to seamless integrate these
resources and enable HPC resources like Cori to effectively
become an extension of the experimental apparatus. Achieving
tis vision will open doors to new scientific discovery.

ACKNOWLEDGMENT

This work was supported by the Director, Office of Science,
Office of Advanced Scientific Computing Research of the
U.S. Department of Energy under Contract No. DE-ACO02-
05CH11231.

REFERENCES

[1] “Vyos open source router,” https://vyos.io/.
[2] “Data plane developer kit,” http://dpdk.org/.
[3] “Flask web development framework,” http://flask.pocoo.org/.
[4] “Munge uid 'n’ gid emporium,” https://dun.github.io/munge/.

