Enabling a SuperFacility with Software Defined Networking

Nersc

Shane Canon

CUG 2017

May 2017

Combining the capabilities of multiple user facilities in a seamless manner to accelerate and enable new models of scientific discovery and innovations.

Coupling experimental and observational facilities with advanced networking and high-performance computing and analytics capabilities.

- User Management
- Data Transfer
- Data and Metadata Management
- Porting applications and workflows

Workflow Execution

Supporting SuperFacility and data-intensive use cases requires new modes of network access compared to traditional HPC modeling and simulation.

- Jobs from ATLAS, ALICE, STAR and others must communicate with remote data servers and job managers.
- In the future, LCLS2 will need to stream data at ~ 1 GB/s direct to memory or burst buffer for real-time processing.
- In the future, network must be provisioned like compute/memory resources to allocate and

control access and integrate with ESnet.

- Compute nodes can access external services and ingest data at high-bandwidths and high connection rates.
- Compute nodes can also be accessed by external systems (e.g. for streaming uses cases).
- Bandwidth and access to compute nodes can be engineered based on job placement and user needs.

Evolution of Data Transport

Improving External Network Access on Cori

Problems with current RSIP model

- Poor performance in some cases*
- Port exhaustion for many short connections*
- Lacks Fail-over support
- Lacks Flexibility and Programmability

* Has improved over past year

- Deploy Software-based Routers
- Repurpose RSIP-type nodes to act as "bridges" between HSN and external routers
- Develop API service to enable resource manager (SLURM) to manage router configuration
- Extend architecture to eventually couple with software-defined network enabled infrastructure to the border and out to ESnet

Architecture

What was required

Bridge

- Enable Proxy ARP
- Configure routes
- Enable IP forwarding

Compute Nodes

- Add ARP entries for Bridge/Gateway pairs
- Change default route to gateway

Router

• Deploy and configure software-based routers

Key Configuration Information

Compute Nodes Settings

```
/sbin/arp -s 10.128.255.1 \
00:01:01:00:00:0D
```

route add default gw 10.128.255.1

Bridge Node Settings

```
ifconfig eth0 10.128.255.2 \
netmask 255.255.255.0 up
```

echo 1 > /proc/sys/net/ipv4/ip_forward

echo 1 > \
/proc/sys/net/ipv4/conf/eth0/proxy_arp

route add default gw 10.128.255.1

- Outbound NAT is in production on Cori
- Performance is typically ~5x better than RSIP*
- Some tests and use cases showing great performance
 - Single stream Iperf 25 Gbps (CN <-> Login)
 - Local Globus Transfers 550 MB/s (single stream), 1 GB/s (multiple streams)
- Some tests and use cases show poor performance (more later)

Towards SDN

- Still need a mechanism to allow control of routes via resource manager
- Approach: Develop simple REST-like API service to configure router

"SDN" Gateway

- **REST-like API interface**
- Tracks available and used external addresses
- Python Flask
- Munge Authentication (HTTP Header)
- Credentials for VYOS Router
- Issues Expect-based commands via SSH to Router

- Auth Header encrypted by munge which includes user information and IP address
- **End Points**
- /associate/ Allocate an address and map (1-to-1 NAT) to the compute node IP
- /release/ Release the IP address associated with the compute node
- /status/ Show current mappings
- /addresses/ Show unallocated addresses

• Extend integration to interact with SDN controller (e.g. OpenDaylight, Ryu). This could include enabling OpenFlow-based protocols to enable a fast path through internal networks at both ends and across ESNet.

U.S. DEPARTMENT OF Office of Science

SDN Definition

- A software-defined networking (SDN) architecture (or SDN architecture) defines how a networking and computing system can be built using a combination of open, softwarebased technologies and commodity networking hardware that separate the control plane and the data layer of the networking stack. (from SDx Central)
- Typically SDN uses open standards such as OpenFlow to communicate and manage data flows.

Performance Issues

- Observation: performance for many operations are still slow, especially when talking to remote endpoints with standard MTU sizes (1500 bytes).
- Example: wget/curl against a CERN URL is 5x slower compared to the login node performance.
- Data: Poor performance is correlated with TCP backlog drops on the compute node (netstat –s).

canon@mom1:~> netstat -s|grep Backlog TCPBacklogDrop: 7

Performance

• TCP traces shows that packet arrives but then has to be retransmitted

- With Cray input, concluded the TCP buffers were being exhausted.
- Ipogif interface uses ~64k MTU. The upper limit for the TCP buffers per connection is ~16M
- Increasing this to 256MB improved performance by 5-10x (on the TDS system)
- WIP: Improvements didn't translate to Cori. Still see roughly ~10x slow down.

Near Term

- Diagnose and fix performance issue
- Deploy configuration on Edison

Mid Term

- Testing SDN Controllers and Integration
- Exploring Slurm Integration

Long Term

Extending to LAN and WAN

A NERSC Cray data system is transparently accessible to any scientist in the world, as though it was on their own network.

- To do this we need to have a fully customizable routing into the Cray that can be used as part of a dynamic circuit between a remote scientist, instrument or data source and the internal Aries network.
- We need the ability to control the routing layer through a combination of the batch system and software defined networking (SDN) in order to engineer traffic from a remote site to a scheduled job on a Cray supercomputer

Questions?

