
KNL System Software CUG 2017 1

KNL System Software
CUG 2017, Systems Support

Peter Hill, Clark Snyder, John Sygulla
Compute Products R&D

Cray Inc.
Bloomington, Minnesota, USA

{pfh,csnyder,jsygulla}@cray.com

Abstract — Intel® Xeon Phi™ “Knights Landing” (KNL)
presents opportunities and challenges for system software.
This paper starts with an overview of KNL architecture. We
describe some of the key differences from traditional Xeon
processors, such as processor (NUMA) and memory
(MCDRAM) modes. We describe which KNL modes are most
useful, and why. From there, we describe a day in the life of a
KNL system, emphasizing unique features such as mode
reconfiguration (selecting the processor and memory
configuration for a job) and the zone sort feature (which
optimizes performance of MCDRAM cache). As part of this
coverage, we'll look at implementation, scaling and
performance issues.

Keywords: Cray XC40, Cray Linux Environment, CLE, Intel
Xeon Phi, KNL, MCDRAM, reconfiguration, zone sort

I. OVERVIEW OF KNL ARCHITECTURE
The second-generation Xeon Phi processor, known as

Knights Landing (KNL), is self-hosted — it boots a standard
operating system. It incorporates a novel memory-on-
package feature, where each processor includes 16 GB of
high-bandwidth MCDRAM memory, in addition to support
for DDR4 memory.

The KNL processor has the following characteristics:
• It is binary-compatible with traditional Xeon
• It has support for Intel® AVX-512 instructions
• It has up to 36 tiles, where each tile has two cores,

and 1 MB L2 cache; and each core has four threads,
using Intel® Hyper-Threading technology

• It has 16 GB of MCDRAM memory
• It has support for up to 384 GB of DDR4-2133 or

DDR4-2400 memory (six DIMMs)
• It has 36 lanes of PCI Express Revision 3.0
The KNL processor and MCDRAM can be configured in

twenty different combinations of NUMA and MCDRAM
modes. For example, the quadrant NUMA mode can be
combined with the cache MCDRAM mode, and this
combination is known as quad/cache.

The five NUMA modes are shown in Table 1.

Table 1. Processor NUMA modes
Mode Name Description

a2a All-to-All Addresses are uniformly hashed across
distributed directories

quad Quadrant Addresses are hashed to a directory in
the same quadrant as the memory

hemi Hemisphere Addresses are hashed to a directory in
the same hemisphere as the memory

snc4 (4) Sub-NUMA
Clusters

Tiles are divided into four sub-NUMA
clusters; each cluster is one NUMA node

snc2 (2) Sub-NUMA
Clusters

Tiles are divided into two sub-NUMA
clusters; each cluster is one NUMA node

The four MCDRAM modes are shown in Table 2.

Table 2. MCDRAM modes
Mode Name Description

cache Cache MCDRAM is used as a cache between the
processor and DDR4 memory

flat Flat MCDRAM is physically addressable,
in a separate NUMA node

equal Hybrid Equal 50% of MCDRAM is Flat, and
50% of MCDRAM is Cache

split Hybrid Split 75% of MCDRAM is Flat, and
25% of MCDRAM is Cache

II. USING KNL MODES
With twenty different combinations of KNL modes, a

natural question is “which KNL modes are most useful, and
why?” We’ll start with a recommendation for two
combinations, quad/flat and quad/cache.

For the “why” of the question, it depends on the
application, of course; but we can offer a few guidelines.

NUMA mode: Quad is preferred. It delivers similar
performance to snc2 — but with quad mode, placement is
straightforward, and you have more flexibility in choosing
the number of MPI ranks versus OpenMP threads. If you
consider snc4 mode, note that it complicates placement on
KNL processors with 68 cores, because the tiles cannot be
evenly distributed across the four NUMA nodes.

MCDRAM mode: If your application uses less than
16 GB memory per node, you should probably use flat. If
your application uses more than 16 GB memory per node, it

KNL System Software CUG 2017 2

can be difficult to use flat mode — and cache mode will
typically perform as well as flat.

The Cray Performance Team provided these specific
examples of KNL modes for applications:

• AMG, GTC, MiniGhost, MiniDFT, SNAP and UMT
all benefit from quad/cache.

• MiniFE and MILC both benefit from quad/flat.
The Cray Performance Team provided these suggestions

when using quad/flat: If your working set is less than 16
GB, consider using the numactl command to place all
memory allocations on NUMA node 1, which is MCDRAM
memory. If your working set is greater than 16 GB, but the
key data fits in less than 16 GB, consider using numactl to
place all memory allocations on NUMA node 0, which is
DDR4 memory; and then use the memkind library for
explicit allocation of key data on MCDRAM.

These are general guidelines, and your mileage may vary.

III. KNL ON THE CRAY XC40 SYSTEM
The Cray XC40 system, which was introduced with dual-

socket Xeon compute nodes, can now be configured with
single-socket KNL compute nodes. Xeon and KNL compute
nodes can be combined into a single large-scale system.

At this time, supported KNL processors on a Cray XC40
system are:

Xeon Phi 7250 1.4 GHz 68 cores, 272 threads DDR4-2400

Xeon Phi 7230 1.3 GHz 64 cores, 256 threads DDR4-2400

Xeon Phi 7210 1.3 GHz 64 cores, 256 threads DDR4-2133

Each KNL compute node can be configured with either

96 GB or 192 GB of DDR4 memory.
As an option, each KNL compute node can be configured

with either 128 GB or 256 GB of M.2 solid-state disk (SSD),
for local storage.

Support for KNL processors was introduced with the
Cray Linux Environment (CLE) 6.0/8.0 release in 2016. The
CLE system software required significant new features to
support KNL processors, and we will discuss those features
in the next section.

IV. A DAY IN THE LIFE OF A KNL SYSTEM
A typical workload on a Cray XC40 system consists of

many batch jobs, under the control of a workload manager
(WLM). Once it is running, a batch job can launch one or
more applications, and each application is placed on one or
more compute nodes.

With the introduction of the KNL processor, we have
new requirements. At the beginning of each job, we may
need to reconfigure one or more processors with the
requested mode. We need to optimize performance on the
MCDRAM cache, if that is in use. If the optional on-node
SSD is configured with managed space, that space will need
to be cleared at the end of each job.

A. Mode Reconfiguration
KNL mode reconfiguration is performed by the BIOS. In

order to start a reconfiguration, we need to set the new
NUMA and/or MCDRAM configuration for the node, and
then reinitialize the node — which consists of the following
steps: Shut down the operating system on the node;
“bounce” the node (an initialization step that includes the
BIOS); and transfer the operating system image to the node.
Finally, we need to wait for the node to finish booting.

This is under the control of the workload manager
(WLM). The WLM does this by making requests using the
Cray capmc interface, as shown in Table 3.

Table 3. Cray capmc mode reconfiguration requests

Name Description

get_numa_cfg_capabilities Get supported NUMA configurations

get_numa_cfg Get current NUMA configuration

set_numa_cfg Set new NUMA configuration

get_mcdram_cfg_capabilities Get supported MCDRAM configurations

get_mcdram_cfg Get current MCDRAM configuration

set_mcdram_cfg Set new MCDRAM configuration

node_reinit Reinitialize node

A command-line interface, the capmc command, allows

manual control by the system administrator or operator.
The following example demonstrates manual control of

KNL mode reconfiguration, with the same sequence of
operations that is used by the WLM. In this example, we
reconfigure four nodes in quad/cache:

smw:~ # capmc set_numa_cfg \
 --mode quad -n 8,9,10,11 -p
smw:~ # capmc set_mcdram_cfg \
 --mode cache -n 8,9,10,11 -p
smw:~ # capmc node_reinit -n 8,9,10,11

One important aspect of reconfiguration is resiliency.

We now allow each customer site to tune the number of
retries that are allowed during the “bounce” step. On a large
system, two retries will often allow all nodes to be
reinitialized successfully. In addition, Intel, AMI and Cray
have together made many improvements to the KNL BIOS,
which is now faster and more reliable.

We continue our work to reduce the time taken to
reinitialize a node, because each mode reconfiguration
affects system utilization; a node isn’t doing useful work
while it is being reconfigured. Our customers will see these
additional improvements both in UP03 patches, and in the
upcoming UP04 release later in 2017.

Table 4 shows the time taken to reconfigure
approximately 3,200 KNL compute nodes on an 18-cabinet
Cray XC40 system.

We show the time taken for each of the steps performed
during reconfiguration, followed by the time taken for the
nodes to finish booting. We show these results for two

KNL System Software CUG 2017 3

different update releases of CLE 6.0/8.0: UP01 (June 2016)
and UP03 (February 2017).

After the upgrade from UP01 to UP03, reconfiguration
time was reduced from 2799 seconds (one example) to 1059
seconds (average of three tests) — a reduction of 62%.

Table 4. Time to reconfigure KNL nodes with capmc for

CLE 6.0/8.0 updates UP01 (3,233 nodes) and UP03 (3,240 nodes)
UP01,

Seconds
UP03,

Seconds
Reinitialization

Step Description

146 26 xtcli shutdown Shut down OS on nodes

170 177 xtbounce Bounce nodes

97 109 xtcli boot Fan out OS image to nodes

2386 747 wait for boot Boot OS on nodes

2799 1059 Total time (seconds)

B. Zone Sort
When the MCDRAM is configured as cache, it provides

a physically addressed, direct-mapped cache. Thus, each
DDR address has only one possible destination in the
MCDRAM cache. With 16 GB of cache, each physical
address in DDR will conflict with every address that is a
multiple of 16 GB away.

Over time, as jobs run on a compute node allocating and
freeing memory, the actual physical memory that is free
changes, as does the order in which this memory is kept on
the kernel’s free lists. As a result, a program will almost
certainly be given different physical memory each time it
runs. This results in inconsistent cache performance from
run to run due to the underlying physical memory allocations
causing different conflicts in the cache.

Zone sort reorders the pages of memory on the kernel’s
free lists to try to minimize cache conflicts among later
memory allocations. This sorting is a discrete operation and
not continuous.

On a Cray XC40 system, zone sort is used on compute
nodes between applications along with other cleanup
operations, such as memory compaction and clearing the file
cache, in order to improve memory availability and reduce
run-to-run variability. Our testing has shown the time to
perform a zone sort is typically less than 50 milliseconds.

The Cray Performance Team validation of zone sort
v1.5.0 included the following test on one quad/cache KNL
node. The STREAM and DGEMM MPI benchmarks were
run in alternation. With zone sort, STREAM triad rate was
consistently 350-360 GB/sec. Without zone sort, STREAM
performance would degrade to 100-150 GB/sec after the
DGEMM runs, and remain in that state until the node was
rebooted.

An additional feature, which will allow a user to request
that zone sort run periodically while an application is
running, is under development.

C. Local storage
If an SSD is present on a KNL compute node, the local

storage may be configured in one or more of the following
categories:

• Swap device for the local node
• Managed space — cleared at the end of each job
• Unmanaged space — the customer site may allocate,

format, mount, and use this space as desired
The system administrator can keep track of SSD life

remaining with the xtcheckssd command.

D. KNL debug information and tools
Mode reconfiguration: System administrators can use

log files to get a better understanding of reconfiguration [1].
These files are on the System Management Workstation
(SMW) in the /var/opt/cray/log/ directory:

• xtremoted-yyyymmdd – detailed logging of capmc
configuration and reinitialization requests, with
timestamps; also any errors that occur during the
xtbounce step (note that errors are logged after the
bounce has completed)

• commands/log.yyyymmdd – logging of commands,
including those issued for reinitialization, with
timestamps

• p0-current/console-yyyymmdd – console messages
from each node, with timestamps; KNL mode is
recorded for each boot; search for the string
NODE_INFO_OS_BOOT_SUCCEEDED to determine when
a node has finished booting

Zone sort: System administrators with root access can

log into individual compute nodes, and enable dynamic
debug messages to observe zone sort while a workload is
active. These messages are too verbose for the console.

Query current KNL mode: Anyone with an account on

the XC40 system can use the following techniques [2]:
• ALPS command on login/mom node: apstat -M
• SLURM command on login/mom node: sjstat
• Command on compute node [3]: hwloc
When launching an application with ALPS, the aprun

and cnselect commands can be used together to target nodes
with specific characteristics, including KNL mode.

System administrators can query current KNL mode
when logged into the SMW [1]:

• Command on SMW: xthwinv …
• Command on SMW: capmc get …
Please be aware that the capmc command returns the

most recent requested configuration, which may not be the
current configuration.

System administrators can also determine historical KNL
mode settings, by inspecting the xtremoted and console log
files described above.

KNL System Software CUG 2017 4

V. CONCLUSION
We have installed Cray XC40 systems at customer sites

with up to 10,000 KNL compute nodes in a single system.
Several of these systems also have traditional Xeon compute
nodes, for workloads that benefit from both kinds of
processors.

The features in CLE 6.0/8.0 support these diverse
workloads, and we continue to make significant
improvements.

ACKNOWLEDGMENT
The authors would like to thank Nathan Wichmann and

Stephen Behling for their contributions to this paper.

REFERENCES
[1] XC Series Software Initial Installation and Configuration Guide

(S-2559), Cray Inc
[2] XC Series Programming Environment User Guide (S-2529), Cray Inc
[3] Hardware Locality (hwloc) documentation, open-mpi.org

