
 Betweeness Centraility performance…
Observations using Cray Graph Engine and Apache GraphX on computer network data

Eric Dull, Felix Flath, Brian Sacash, John Zachary
Cyber Risk Services

Deloitte and Touche, LLP
Arlington, VA

{edull, fflath, bsacash, jzachary}@deloitte.com

Abstract—	Graph analytics are useful for overcoming real-world
analytic challenges such as detecting cyber threats. Our Urika-GX
system is configured to use both the Cray Graph Engine (CGE) and
Apache Spark for developing and executing hybrid workflows
utilizing both Spark and Graph analytic engines. Spark allows us to
quickly process data, stored in HDFS, powering flexible analytics in
addition to graph analytics for cyber threat detection. Apache
Spark’s GraphX library offers an alternative graph engine to
CGE. In this paper, we will compare the available algorithms,
challenges, and performance of both CGE and GraphX engines in
the context of a real-world client use case utilizing 40 billion RDF
triples. (Abstract)

Keywords: Graph engines, Cray Graph Engine, Apache
GraphX, computer network security, BRO, Betweenness
centrality, Urika-GX

I. INTRODUCTION
Detecting intruders inside of a computer network requires

a variety of security tools and analytic techniques used
together along lines of analysis thought. Signature-based
security tools detect previously-identified malicious files,
websites and network traffic. These tools cannot identify
currently-unknown malicious files, websites, and network
traffic which are used by adversaries to vary their tactics,
techniques, and procedures. Detecting these variations in
files, websites, and network traffic used by adversaries is
enabled by the use of behavioral analytic data science tools
and engines with data science techniques, statistic methods
and models of intruder behaviors. Once security
professionals detect anomalous or suspicious files, websites,
and network traffic that could be in use by intruders to
infiltrate and exploit a target network, they perform manual
analysis to validate that the identified files, websites, or
network traffic are malicious. Security professionals then use
streaming analytic engines and signature-based security tools
to detect the validated files, websites, or network traffic going
forwards.

There are a number of analytic engines that can be used in
performing these behavioral analytic, including interactive,
batch, and streaming engines. Each engine is architecturally
suited to perform a different type of analysis. These engines
can be used together in a “hybrid architecture” to execute
different parts of a larger data science workflow. Using
“hybrid architectures” allow multi-step analytic workflows to

be more efficiently executed over more data in less time,
enabling security professionals to identify more-
sophisticated behaviors potentially used by more
sophisticated intruders that are likely to cause greater damage
to the target network, its contents, or its owners.

Graph engines are one of the engine types available to
security professionals performing behavioral analysis. Graph
engines have been implemented using different
computational architectures, including supercomputing
shared-system image and “cloud” or distributed cluster. Each
of these implementations has different performance
characteristics when using different types of graph
algorithms on various sizes and types of graphs.

Graph algorithms are applicable to computer network data
analysis[1] and identifying behaviors present in the computer
networks. One of these algorithms, Betweenness
Centrality[2], identifies the central nodes in a network
component. Central nodes are the nodes that have the most
paths passing through them. These central nodes are the ones
that most “connect” the component together. Identifying
these central nodes enables the identification of key files,
websites, or network traffic nodes that correspond a number
of intruder behavioral models.

This paper outlines graph analysis, its suitability to
computer network data analysis, the expected models of
intruder behavior, a large computer network and its data,
betweenness centrality as an applicable algorithm, its
performance on Cray Graph Engine and Apache GraphX on
a Cray Urika-GX, and the validated security outcomes
enabled by this analysis.

II. BACKGROUND
This section outlines graph analysis, intruder behavior

models, betweenness centrality, and the potential roles of
graph nodes identified by betweenness centrality in intruder
behavior models.

A. Graph analysis
Graph theory supports advanced analytics that uncover

insights within complex networks, especially in the domain
of computer and network security. Connectivity, centrality,
and structural similarity provide deep insight into network
traffic behavior that other analytical methods cannot provide.
The standard representation is nodes represent network

entities and edges represent a semantic networking
relationship between hosts. This topology makes it easy to
represent pairwise relationships in the network. Further
analysis can lead to uncovering insights about relationships
through analytical techniques.

Graph processing is a common computational framework
for modeling and analyzing complex relationships. Recent
advances in social media, inexpensive storage, distributed
data processing, and cloud computing created a demand for
graph processing frameworks that scale to extremely large
graphs with more than 106 nodes. The Facebook social graph
reportedly is over an order of magnitude larger [3].

Several efforts produced software libraries, tools, and
databases that promise to provide graph processing at scale.
Some notable examples are Sandia’s MTGL[4], Apache
Giraph, Google’s Pregel, Apache Spark’s GraphX, Titan, and
Neo4j. Concurrently, high performance computing
companies and organizations developed parallel systems to
solve highly complex scientific problems in intelligence
analysis, physics, and genomics.

B. The Cyber Kill-Chain
Network behavioral analysis looks for indicators of

network intrusion, malware, scanning, and other malicious or
anomalous events. A human in the loop identifies these
behaviors through analysis of network traffic indicators.
Behavioral analysis differs from signature-based analysis
because it supports detection of previously unidentified
traffic patterns and behaviors associated with anomalous or
malicious activity.

Sophisticated cyberattacks are analyzed in the context of a
framework known as the cyber kill chain [5]. The cyber kill
chain segments attacks into distinct stages that occur in
sequence:

1. Reconnaissance. The attacker researches and
identifies a target. Activities in this phase may
include mapping a network or conducting research
on social media platforms.

2. Weaponization. The attacker chooses a remote
access exploit based on the target and packages it
into a deliverable payload. An example may be an
executable packaged within a PDF file to exploit an
Adobe Reader vulnerability.

3. Delivery. Payload is transmitted to the target,
commonly through an email attachment or website
download.

4. Exploitation. After the payload is delivered, the
attacker’s code is executed. This may be actively
triggered by the user or auto-executed by the
operating system.

5. Installation. The remote access payload is installed
onto the target machine to allow the attacker to
maintain persistence in the environment.

6. Command and Control(C2). Compromised hosts
beacon outbound to a controlling server with the

ultimate objective of giving the attacker remote
control of activities inside the target environment.

7. Actions on Objectives. After completing the above
six steps, the attacker can begin to execute on their
ultimate objectives. This may be data exfiltration or
compromise of further systems in the network.

Each stage has a set of indicators that identify attempted
or active intrusion. Some examples are:
• An attacker performing reconnaissance on a target

network is identified by multiple IP addresses on the
network experiencing attempted connections across
large numbers of ports from the same originating IP
address.

• An email containing the same hyperlink sent to hundreds
of individuals inside the organization may be phishing
attempts.

• A machine initiating small network connections to a
certain host on a set frequency may be evidence of
beaconing to a C2 server.

Monitoring network traffic for evidence of behaviors that
correspond to various stages of the cyber kill chain help
identify indicators of new infections that have not been
identified by signature-based security tools.

C. Identifying lateral movement within a network
One of these behaviors that can help identify indicators of

intruders at the “Actions on Objectives” step in the cyber kill-
chain is the connection of otherwise disparate groups of nodes
that communicate with each other.

Application users tend to be grouped together in
communities by the nature of the server or data housed on that
server. Users are segregated to specific servers based on a
need to access the data housed on that server. Security
principles including least-privilege access and separation of
duties underlie this segregation. This segregation is visible in
network traffic as groups of clients that are the clients that
connect to certain servers. Network traffic should show a
number of distinct, separate graphs for a given set of
applications or services used within a network. These
networks would not be connected. Also, it is more likely that
a high-value or mission-critical system will be accessible only
to trusted internal clients. High-value or mission-critical
servers would therefore not be directly accessible by clients
external to the network.

An intruder’s pattern for compromising an internal high-
value system is (a) infect an Internet-facing host that likely has
far fewer security restraints (such as a workstation or web
server) and (b) use the infected host to move laterally across
the network toward a higher-value target. The intruder’s
pattern of behavior would likely violate the expected
behaviors of the hosts on the network that it has subverted and
is using surreptitiously. This violation of expected behaviors
is visible from the network, and will be seen as a node
connecting otherwise disparate networks.

It can be difficult to identify hosts violating these expected
behaviors without knowing the roles of servers and services
used on the network and the clients expected to connect to

those servers. A method for detecting clients violating these
expectations and connecting otherwise disparate servers can
use routing-based graph analytics, such as the all-pair shortest
path algorithm and betweenness centrality.

D. Betweenness Centrality
Betweenness centrality is a measure that ranks the

number of paths between any two vertices in a graph, S and
T, that pass through a third vertex in a graph, V. This
evaluation of centrality calculates the shortest paths between
all pairs of vertices within the graph, traditionally using the
Floyd-Warshall algorithm. Betweenness centrality
commonly has a computational complexity of O(|V|3). On
sparse graphs, the number of edges form a significant element
of the computational complexity[6]. Betweenness centrality
assumes graphs are non-directional.

Figure 1: Betweenness centrality calculation

Figure 1 describes the betweenness centrality algorithm. In
this equation, V is the vertex under consideration, S and T are
vertices in the network, sst is the number of shortest paths
between S and T, and sst(v) is the number of shortest paths
that pass through V.

Figure 2: a hub-and-spoke graph

Figure 3: a relaxed clique, where every node is connected to 4

other nodes

Figure 2 shows a 9-vertex graph where the middle node is

connected to every other node, and every other node is only
connected to the middle node. The middle node’s centrality

score will be the highest in the graph. If the middle node is
removed, the graph would cease to exist; no two nodes would
be connected to each other. Figure 2 shows a behavior pattern
seen in computer networks as a client and server model. The
middle vertex is a server, and edge nodes are clients, using an
application like a database or Secure Shell.

Figure 3 shows a 9-vertex graph where every node is
connected to 4 other nodes. In this graph, every node would
have the same centrality score. If any one node was removed,
the graph would remain a graph; ever remaining node would
still be connected other nodes in the graph. Figure 3 shows a
behavior pattern seen in computer networks as a peer-to-peer
model. Every node in the network acts as both a client and a
server. These behaviors are seen in peer-to-peer routing
protocols such as a Distributed Hash Table[9].

Figure 2 is more representative of common behaviors seen
on computer networks than Figure 3. Human behavior tends
to form scale-free graphs, and these behaviors have been
confirmed in computer network graphs. This means that
betweenness centrality scores from computer network graphs
will be more varied than those from graphs similar to those in
Figure 3.

Figure 4: a candidate graph

Figure 4 shows two hub and spoke graphs connected by a
vertex at the bottom of the figure. This bottom vertex would
have the highest centrality of any vertex in the graph; higher
than the hubs also present in the graph. This bottom node is
representative of a client connecting to two servers that are
otherwise disconnected.

This client could be connecting to these two servers for a
variety of reasons. The client is shared between two people
who occupy different roles in the organization. The client is
used by a single person who switches job roles during the
period of observation of network traffic from which the graph
was built. The client is scanning for servers or applications on
a network. The client is being used by an intruder to log into
a server not ordinarily interacted with by the client’s expected
user. Two of these candidate behaviors are expected and
benign on a network; the other two are suspicious and
potentially malicious. Human analysis is required to
determine which behavior is present within a graph when
betweenness centrality identifies central nodes such as that
shown in Figure 4.

III. ENVIRONMENT
This section describes the operational environment that is

the basis for this study. This description includes the network
monitoring technology used to monitor the network, the
network under analysis, a description of Deloitte’s Cray
Urika-GX Big Data Appliance, and a discussion of the graph
engines in use by the Apache GraphX and Cray Graph
Engine.

A. BRO
Bro1 is an open-source passive network security monitor

for packet capture, metadata extraction, sessionization, and
human friendly output files. Bro’s open source nature allows
security professionals to customize it to meet their own
needs, including writing custom analyzers. Bro contains 70+
network protocol analyzers out of the box, including
analyzers for web, email, and DNS traffic. We deploy Bro
2.4 on commercially-available R-Scope PACE BRO sensors
developed by Reservoir Labs, which are capable of ingesting
network packets up to 20 Gbps and producing a variety of
metadata types that describe network connection, metadata,
and application details from the OSI network stack layers 3-
7. Bro generates these records for all packets that it observes;
Reservoir Lab’s R-Scope PACE sensors are powerful enough
to observe all packets up to 20 Gbps and generate a variety of
log types.

This study utilizes the connection log type (referred to
hereafter as conn.log) to extract and represent our network
graphs. The conn.log analyzer contains basic information on
the session, such as originating and responding hosts, ports,
bytes, and packets exchanged.2 Other common Bro log file
types are http.log (e.g. target domain, URI, and user agent
string), ssl.log (e.g. certificate and encryption scheme), and
dns.log (e.g. TTL and requested domain).

B. Network under discussion
The network generating the traffic analyzed in this paper

is a very large network with over 500,000 endpoints
generating traffic from dozens of physical locations through
four Internet gateways. BRO network sensors at each of these
four gateways monitor all outbound traffic leaving the
network and all inbound traffic that has passed through the
firewall rules and generate a record of all traffic successfully
entering, successfully leaving, or attempting to leave the
network This network contains a number of simultaneous
behaviors including Windows, MacOS, Linux, and mobile
operating systems and desktops, laptops, tablets, other mobile
devices, servers, embedded devices, and special purpose
hardware.

Figure 5, below, show the number of collected records
each month.

1 https://www.bro.org

Figure 5: connection logs collected each month

This network is large enough and is comprised of a wide

variety of endpoint types running a variety of operating
systems and applications to generate representative traffic
and analytic results that can be applied to other networks.

C. Cray Urika-GX
Our data analysis is performed on a Cray Urika-GX Big

Data Appliance. This platform supports large-scale memory-
intensive workloads across a cluster of 25 compute nodes
each with 32 cores of Intel processors, 256 GB of RAM, and
a shared file system. These compute nodes are connected by
the Cray Aries network interconnect.

The Urika-GX platform supports common open source,
big data technologies such as Apache Hadoop, Apache Spark,
Apache Mesos, Lustre, and Python. The Hadoop File System
(HDFS) distributes shares files across Urika-GX’s blades to
make data available to Spark. The platform includes Cray
Graphics Engine for graph analytics. The underlying
operating system is Linux CentOS.

D. Apache Spark and GraphX
Apache Spark is an open source, distributed data

processing framework that supports interactive queries,
streaming data, machine learning, and graph processing.
Spark extends MapReduce by generalizing in-memory
operations, transformations, and aggregations in a directed
acyclic graph representation. Spark’s primary programming
environment is Scala with strong data science support for
Python and R. This study focuses exclusively on Spark’s
graph processing library, GraphX.

GraphX utilizes the inherent scalability of Spark to
analyze very large graphs across a compute cluster. It
integrates seamlessly into an analytic workflow, from ETL to
graph theoretic algorithms to analysis. A fundamental
limitation to GraphX is memory available to store a graph for
processing and analysis. Kabiljo et al found performance and

2 Originating and responding hosts correspond generally to source and
destination hosts.

0

2E+10

4E+10

6E+10

8E+10

1E+11

Connection	Logs	Per	Month

scalability issues with GraphX on extremely large graphs, as
well [4].

Our Urika-GX installation uses Spark 1.5. Since Spark is
built upon the Hadoop File System (HDFS), we treat each
blade as a Spark worker-node with distributed access to our
data set. Up to 6.4 TB of RAM is available for parallel
processing. GraphX includes a few graph functions in its
distribution: PageRank, Triangle Counting, and Connected
Components.

E. Cray Graph Engine (CGE) and SPARQL
CGE enables performing advanced analytics on the

largest and most complex graph problems, and features
highly optimized support for inference, deep graph analysis,
and pattern-based queries. CGE is a highly-optimized
software application for searching and querying very large,
graph-oriented databases based on the industry-standard RDF
graph data format and the SPARQL graph query language.
CGE was designed from the ground up to run on Cray high
performance platforms, such as the Urika-GX.

CGE is comprised of a front-end query engine and a back-
end computational engine written in C++. The front-end
engine parses and RDF description of a graph, loads into in
in-memory representation, and evaluates SPARQL queries
against the memory-resident database.

CGE ships with a library of built-in graph functions:
BadRank, Betweenness Centrality, PageRank, Label
Propagation, S-T Connectivity, S-T Set Connectivity,
Triangle Counting, Triangle Finding, and Vertex Triangle
Counting [10].

IV. METHODOLOGY
This section describes the experimental approach and
method, the graph preparation for both CGE and GraphX,
and a discussion of the composition of the generated
network

A. Approach
As discussed in II.C and II.D, this paper is focused on
conducting an experiment computing betweenness centrality
on a number of graphs built from traffic generated by the
network described in III.B. The experiment changes a
number of variables to determine the performance
characteristics of CGE and Apache GraphX while executing
betweenness centrality. These variables include the size of
graph under analysis and the number of Urika-GX compute
nodes used to calculate betweenness centrality over that
graph.

B. Method
As discussed in III.D and III.E, CGE ships with an

implementation of betweenness centrality and Apache
GraphX does not ship with betweenness centrality.
Therefore, to conduct the experiment detailed in IV.A, we
needed to implement betweenness centrality on Apache

GraphX. This implementation was not straightforward, and a
majority of our time was spent tailoring a version that
functioned in the Spark paradigm. Our experiences are
shared by others. Implementing betweenness centrality
within the Apache GraphX framework to execute on Apache
Spark clusters has been a documented challenge [8].

C. Data Preparation
Bro conn.log entries are records of network behavior that

must be processed into a graph before betweenness centrality
can be computed over it. CGE and Apache GraphX require
different input formats and therefore require different data
preparation workflows.

Figure 5 shows the CGE RDF graph data preparation
workflow that was implemented in Scala scripts. At the top,
a number of Bro conn.log entries are represented. Uid1
represents the BRO uid for the record, ts1 represents the
timestamp for the record, orig represents the originating IP
address for the record, and resp represents the responding IP
address for the record. The Bro conn.log records contain
more field which are omitted for clarity.

These conn.log records are first converted to RDF, which
is represented in the next portion of Figure 5. The RDF
representation shows how the three notional Bro conn.log
records would appear in an RDF representation.

CGE uses SPARQL CONSTRUCT statements to induce
subgraphs over which native CGE algorithms are executed.
The last two portions of Figure 5 show how that
CONSTRUCT query would convert the original RDF
representation into a more-sparse representation, one where
the details of the distinct connections between orig and resp
are summarized into a single record. This conversion reduces
the theoretical computational complexity of the
betweennness centrality implementation executing across the
summarized graph. Additionally, betweenness centrality is
designed to execute against undirected graphs, and SPARQL
CONSTRUCT statements induce directed graphs. Initial
experimental executions on CGE produced meaningless
results. Discussions with Cray indicated that the appropriate
workaround would be to insert all edges into the graph twice;
once in the original direction, and once in the reverse
direction. CGE results from graphs using this workaround
produced meaningful results, however it would also impact
the theoretical computational complexity by doubling the
number of paths considered during algorithm execution.

Apache GraphX requires a different data preparation
workflow which was also implemented in Scala scripts. The
betweenness centrality implementation that was used in this
experiment requires to be defined by a node data frame and
an edge data frame. The first contains the information
pertaining to the nodes with associated look-up keys. The
second contains two look-up keys, one for each connected
node and edge data. The data preparation workflow takes Bro
conn.log entries, which are contained in a different data frame
and converts it into these two required data frames.

The data preparation workflows contain a number of
conversion steps detailed above which require time to
execute. This time is not representative of the algorithm
execution, and that time is not included in this experiment.

Figure 5: CGE data preparation process

D. Graph composition
The graphs used in this experiment are comprised of

nodes which represent IP addresses and edges which
represent TCP/IP traffic between the IP addresses. These
graphs were generated from a number of days of traffic from
the network discussed in III.B.

The network traffic that was used to build these graphs
were restricted to successful connections on TCP ports 20-
23, 123, 445, and 3389. These restrictions were used to focus
the induced graphs on behaviors of interest to security
professionals. Successful TCP connections are those that
have passed through the three-way TCP handshake[7]. These

connections are then ready to pass content that is accessible
to the operating system and hosted applications listening on
that port. These successful connections represent
approximately 55% of the total connections. This restriction
serves to reduce the noise present in the induced graphs.

Restricting network traffic to TCP ports 20-23, 123, 445,
3306, and 3389 serves to focus network traffic to applications
that are known to bear interactive traffic and are commonly
used for interacting with servers over the network. These
ports represent a small portion of the traffic present on the
network; the vast majority of the network traffic present on
the network use TCP ports 80 and 443, which commonly
carry web traffic and is not interactive in nature. This
restriction also serves to reduce the noise present in the
induced graphs by removing expected client-server web
traffic.

Using these filtering criteria identifies a set of network
traffic that can be used to generate a graph. This traffic was
then subject to two variations to build graphs of different
sizes to illustrate performance differences between CGE and
Apache GraphX. These variations are the number of days of
network traffic and the number of records from a set of days.

Figure 6: total edge count per day

 Figure 6 shows the total number of unique graph edges
per day for 21 days from February 2017. The unique edge
count is expected to grow as the clients and servers on the
network are active and observed by the BRO sensors. Once
the clients connect to their servers, usually over a time period
of several weeks, the total number of unique graph edges
should level off. As Figure 6 does not fully level off, it
suggests that the client and server interactions have not been
fully-sampled in the 21 days of data used to construct graphs
for these experiments. The flattening of slop in days 15-19
compared to days 1-5 suggests that sampling may be
happening. The flat periods present at days 5, 12, and 19
correspond with weekends during which the network has
fewer active users.

0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

5.E+06

6.E+06

0 5 10 15 20 25

#	of	distinct	IP	pairs

The network traffic from February 2017 was chosen for
this paper due to the validated scanning activity present in the
network during that time range. This data set contained
representative graph structure to exercise CGE and Apache
GraphX and show performance difference without occupying
Apache Urika-GX compute nodes needed by security
professionals.

TABLE I. GRAPH SIZES

Vertices Edges

5,419 11,726

15,359 52,042

42,687 125,564

66,955 369,720

115,276 1,281,918

The fourth restriction is reducing the number of input
records from a given date range. Table I outlines the graphs
generated from 100,000 and 10,000,000 transactional records
from a twenty one day range in February 2017. These records
were selected from the set of available transactions in time
order, operating functionally as a FIFO queue. Table I details
vertices and edges rather than records as graph size rather
than transaction size drives the computational complexity of
the algorithm. The transactions included multiple
connections between the same systems on the same ports,
which is why the edge count is lower than the transaction
count.

These filtering steps produced graphs are much smaller
than expected. 60 billion connection log entries from 21 days
in February transformed into 1,281,918 edges, as seen on
Table I.

V. RESULTS
This section discusses GraphX and CGE execution times
and their implications.

A. Execution
We tested the both graph engines on multiple graphs

detailed in Table I. For each of the resulting graphs, we ran
the respective functions on 1, 8, and 16 compute nodes using
all available cores on each compute node. Results can be
found in Table II and Table III.

TABLE II. CRAY GRAPH ENGINE RESULTS

Time for Compute Vertices Edges

1 Node 8 Nodes 16 Nodes

2.61 s 29.38 s 29.27 s 5,419 11,726

77.7 s 653 s 718 s 15,359 52,042

353.89s 1643.29 s 1891.25 s 42,687 125,564

938 s 4730 s 6600 s 66,955 369,720

Time for Compute Vertices Edges

1 Node 8 Nodes 16 Nodes

2.61 s 29.38 s 29.27 s 5,419 11,726

3205 s 15068 s none 115,276 1,281,918

TABLE III. GRAPHX RESULTS

Time for Compute Vertices Edges

1 Node 4 Nodes 8 Nodes

53.96 s 50.09 s 71.80 s 5,419 11,726

N/A N/A N/A 42,687 125,564

Table II details CGE execution times. A number of features
present themselves in the execution times. The 1 node
execution times are reasonable at 2.61 seconds for the first,
smallest graph and then grow larger in an unexpected way,
requiring nearly an hour to process. These run times suggest
that the underlying graph topology is not strictly scale-free or
small world and is wider than expected. Scaling these graphs
to multiple nodes was not required for additional memory;
even the largest graphs fit into the 256 GB of RAM present
on a single node. Scaling to multiple nodes gave the
algorithm more cores to use when executing the betweenness
centrality algorithm. The observed runtimes did not reflect
that expectation. Adding additional compute nodes actually
resulted in longer algorithm execution times. This suggests
there are inefficiencies present in the network
communication between nodes that would have been
exacerbated by any deviation from the scale-free or small-
world model. Discussions of these execution times with Cray
engineers indicated that they were aware of additional
efficiencies available in the betweenness centrality
implementation, and development is ongoing.
Table III details GraphX execution times. There were fewer
execution times to report as GraphX did not complete in
under 24 hours for any graph larger than the smallest graph
used in this experiment. Adding additional nodes to the
computation also resulted in inconsistent results. Given the
network communication-heavy nature of GraphX being
based on Spark, inefficiencies in network communication
likely explain the inconsistent results seen when adding
additional nodes. The inability of the GraphX
implementation to run to completion on only the smallest
graph in the experiment indicates that it is likely not ready for
production use.

We examined the betweenness centrality results for scanners
identified through other means and located some present
within the more central nodes identified by the algorithm.
The most central nodes did not appear to be scanners.
Discussions with security professionals as the behaviors
shown by the most central nodes are ongoing.

VI. CONCLUSION
Our tests indicated, in the case of using betweenness

centrality as a graph function, that Cray Graph Engine was
not only faster, but easier to implement than Apache Spark’s
GraphX. Cray’s implementation of SPARQL had a version
of betweenness centrality to use out-of-the-box while a
custom version of distributed betweeness centrality had to be
leveraged to achieve similar functionality. Additionally,
GraphX does not include a query language, like SPARQL,
requiring Scala programming, increasing the technical
aptitude required to use the engine. CGE’s SPARQL also
came with significantly more graph functions than GraphX.
Additionally, for GraphX, when dealing with larger graphs,
the need to copy information about the graph to each compute
node causes a constraint problem which we attributed to
GraphX failing on our larger graph test cases.

VII. ACKNOWLEGMENTS
This document contains general information only and
Deloitte Advisory is not, by means of this document,
rendering accounting, business, financial, investment, legal,
tax, or other professional advice or services. This document
is not a substitute for such professional advice or services, nor
should it be used as a basis for any decision or action that may
affect your business. Before making any decision or taking
any action that may affect your business, you should consult
a qualified professional advisor.
Deloitte Advisory shall not be responsible for any loss
sustained by any person who relies on this document.

As used in this document, “Deloitte Advisory” means
Deloitte & Touche LLP, which provides audit and enterprise
risk services; Deloitte Financial Advisory Services LLP,
which provides forensic, dispute, and other consulting
services; and its affiliate, Deloitte Transactions and Business

Analytics LLP, which provides a wide range of advisory and
analytics services. Deloitte Transactions and Business
Analytics LLP is not a certified public accounting firm. These
entities are separate subsidiaries of Deloitte LLP. Please see
www.deloitte.com/us/about for a detailed description of the
legal structure of Deloitte LLP and its subsidiaries. Certain
services may not be available to attest clients under the rules
and regulations of public accounting.

REFERENCES
[1] E. Dull. “Cyberthreat analytics using graph analysis.” CUG 2015

[2] U. Brandes, “A faster algorithm for betweenness centrality,” J.
Mathematical Sociology, vol. 25, no. 2, pp. 163-177, 2001.

[3] J. Berry and G. Mackey “The MultiThreaded Graph Library,” CASS-MT
2009. http://cass-mt.pnnl.gov/docs/sc09_mtgl_presentation.pdf

[4] M. Kabiljo, D. Logothetis, S. Edunov, and A. Ching, “A comparison of
state-of-the-art graph processing systems,” unpublished.

[5] E. Hutchins, J. Cloppert, and R. Amin, “Intelligence-driven computer
network defense informed by analysis of adversary campaigns and intrusion
kill chains,” unpublished.

[6] D. Marcous, “Distributed K-Betweenness (Spark),”, unpublished.

[7] J Postal. RFC 793 – Transmission Control Protocol. 1981.

[8] Apache Spark mailing list http://apache-spark-user-
list.1001560.n3.nabble.com/All-pairs-shortest-paths-td3297.html

[9] M. Castro, P. Druschel, Y. Charlie Hu, A. Rowstron, “Exploiting
Network Proximity in Distributed Hash Tables,” Published in International
Workshop on Future Directions in Distributed Computing (FuDiCo), 2002.
https://www.microsoft.com/en-us/research/publication/exploiting-network-
proximity-in-distributed-hash-tables/

[10] Cray® Graph Engine (CGE) User Guide (S-3010-1000).

