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Abstract—	Graph analytics are useful for overcoming real-world 
analytic challenges such as detecting cyber threats.  Our Urika-GX 
system is configured to use both the Cray Graph Engine (CGE) and 
Apache Spark for developing and executing hybrid workflows 
utilizing both Spark and Graph analytic engines. Spark allows us to 
quickly process data, stored in HDFS, powering flexible analytics in 
addition to graph analytics for cyber threat detection.  Apache 
Spark’s GraphX library offers an alternative graph engine to 
CGE.  In this paper, we will compare the available algorithms, 
challenges, and performance of both CGE and GraphX engines in 
the context of a real-world client use case utilizing 40 billion RDF 
triples. (Abstract) 

Keywords: Graph engines, Cray Graph Engine, Apache 
GraphX, computer network security, BRO, Betweenness 
centrality, Urika-GX 

I. INTRODUCTION 
Detecting intruders inside of a computer network requires 

a variety of security tools and analytic techniques used 
together along lines of analysis thought.  Signature-based 
security tools detect previously-identified malicious files, 
websites and network traffic.  These tools cannot identify 
currently-unknown malicious files, websites, and network 
traffic which are used by adversaries to vary their tactics, 
techniques, and procedures.  Detecting these variations in 
files, websites, and network traffic used by adversaries is 
enabled by the use of behavioral analytic data science tools 
and engines with data science techniques, statistic methods 
and models of intruder behaviors.  Once security 
professionals detect anomalous or suspicious files, websites, 
and network traffic that could be in use by intruders to 
infiltrate and exploit a target network, they perform manual 
analysis to validate that the identified files, websites, or 
network traffic are malicious.  Security professionals then use 
streaming analytic engines and signature-based security tools 
to detect the validated files, websites, or network traffic going 
forwards. 

There are a number of analytic engines that can be used in 
performing these behavioral analytic, including interactive, 
batch, and streaming engines.  Each engine is architecturally 
suited to perform a different type of analysis.  These engines 
can be used together in a “hybrid architecture” to execute 
different parts of a larger data science workflow.  Using 
“hybrid architectures” allow multi-step analytic workflows to 

be more efficiently executed over more data in less time, 
enabling security professionals to identify more-
sophisticated behaviors potentially used by more 
sophisticated intruders that are likely to cause greater damage 
to the target network, its contents, or its owners. 

Graph engines are one of the engine types available to 
security professionals performing behavioral analysis.  Graph 
engines have been implemented using different 
computational architectures, including supercomputing 
shared-system image and “cloud” or distributed cluster.  Each 
of these implementations has different performance 
characteristics when using different types of graph 
algorithms on various sizes and types of graphs. 

Graph algorithms are applicable to computer network data 
analysis[1] and identifying behaviors present in the computer 
networks.  One of these algorithms, Betweenness 
Centrality[2], identifies the central nodes in a network 
component.  Central nodes are the nodes that have the most 
paths passing through them.  These central nodes are the ones 
that most “connect” the component together.  Identifying 
these central nodes enables the identification of key files, 
websites, or network traffic nodes that correspond a number 
of intruder behavioral models. 

This paper outlines graph analysis, its suitability to 
computer network data analysis, the expected models of 
intruder behavior, a large computer network and its data, 
betweenness centrality as an applicable algorithm, its 
performance on Cray Graph Engine and Apache GraphX on 
a Cray Urika-GX, and the validated security outcomes 
enabled by this analysis. 

II. BACKGROUND  
This section outlines graph analysis, intruder behavior 

models, betweenness centrality, and the potential roles of 
graph nodes identified by betweenness centrality in intruder 
behavior models. 

A. Graph analysis 
Graph theory supports advanced analytics that uncover 

insights within complex networks, especially in the domain 
of computer and network security. Connectivity, centrality, 
and structural similarity provide deep insight into network 
traffic behavior that other analytical methods cannot provide. 
The standard representation is nodes represent network 



entities and edges represent a semantic networking 
relationship between hosts. This topology makes it easy to 
represent pairwise relationships in the network. Further 
analysis can lead to uncovering insights about relationships 
through analytical techniques. 

Graph processing is a common computational framework 
for modeling and analyzing complex relationships.  Recent 
advances in social media, inexpensive storage, distributed 
data processing, and cloud computing created a demand for 
graph processing frameworks that scale to extremely large 
graphs with more than 106 nodes. The Facebook social graph 
reportedly is over an order of magnitude larger [3]. 

Several efforts produced software libraries, tools, and 
databases that promise to provide graph processing at scale. 
Some notable examples are Sandia’s MTGL[4], Apache 
Giraph, Google’s Pregel, Apache Spark’s GraphX, Titan, and 
Neo4j.  Concurrently, high performance computing 
companies and organizations developed parallel systems to 
solve highly complex scientific problems in intelligence 
analysis, physics, and genomics.  

B. The Cyber Kill-Chain 
Network behavioral analysis looks for indicators of 

network intrusion, malware, scanning, and other malicious or 
anomalous events. A human in the loop identifies these 
behaviors through analysis of network traffic indicators. 
Behavioral analysis differs from signature-based analysis 
because it supports detection of previously unidentified 
traffic patterns and behaviors associated with anomalous or 
malicious activity. 

Sophisticated cyberattacks are analyzed in the context of a 
framework known as the cyber kill chain [5]. The cyber kill 
chain segments attacks into distinct stages that occur in 
sequence: 

1. Reconnaissance. The attacker researches and 
identifies a target. Activities in this phase may 
include mapping a network or conducting research 
on social media platforms. 

2. Weaponization. The attacker chooses a remote 
access exploit based on the target and packages it 
into a deliverable payload. An example may be an 
executable packaged within a PDF file to exploit an 
Adobe Reader vulnerability. 

3. Delivery. Payload is transmitted to the target, 
commonly through an email attachment or website 
download. 

4. Exploitation. After the payload is delivered, the 
attacker’s code is executed. This may be actively 
triggered by the user or auto-executed by the 
operating system.  

5. Installation. The remote access payload is installed 
onto the target machine to allow the attacker to 
maintain persistence in the environment.  

6. Command and Control(C2). Compromised hosts 
beacon outbound to a controlling server with the 

ultimate objective of giving the attacker remote 
control of activities inside the target environment. 

7. Actions on Objectives. After completing the above 
six steps, the attacker can begin to execute on their 
ultimate objectives. This may be data exfiltration or 
compromise of further systems in the network. 

Each stage has a set of indicators that identify attempted 
or active intrusion. Some examples are: 
• An attacker performing reconnaissance on a target 

network is identified by multiple IP addresses on the 
network experiencing attempted connections across 
large numbers of ports from the same originating IP 
address. 

• An email containing the same hyperlink sent to hundreds 
of individuals inside the organization may be phishing 
attempts. 

• A machine initiating small network connections to a 
certain host on a set frequency may be evidence of 
beaconing to a C2 server. 

Monitoring network traffic for evidence of behaviors that 
correspond to various stages of the cyber kill chain help 
identify indicators of new infections that have not been 
identified by signature-based security tools. 

C. Identifying lateral movement within a network  
One of these behaviors that can help identify indicators of 

intruders at the “Actions on Objectives” step in the cyber kill-
chain is the connection of otherwise disparate groups of nodes 
that communicate with each other.   

Application users tend to be grouped together in 
communities by the nature of the server or data housed on that 
server.  Users are segregated to specific servers based on a 
need to access the data housed on that server.  Security 
principles including least-privilege access and separation of 
duties underlie this segregation.  This segregation is visible in 
network traffic as groups of clients that are the clients that 
connect to certain servers.  Network traffic should show a 
number of distinct, separate graphs for a given set of 
applications or services used within a network.  These 
networks would not be connected.   Also, it is more likely that 
a high-value or mission-critical system will be accessible only 
to trusted internal clients.  High-value or mission-critical 
servers would therefore not be directly accessible by clients 
external to the network. 

An intruder’s pattern for compromising an internal high-
value system is (a) infect an Internet-facing host that likely has 
far fewer security restraints (such as a workstation or web 
server) and (b) use the infected host to move laterally across 
the network toward a higher-value target.  The intruder’s 
pattern of behavior would likely violate the expected 
behaviors of the hosts on the network that it has subverted and 
is using surreptitiously.  This violation of expected behaviors 
is visible from the network, and will be seen as a node 
connecting otherwise disparate networks. 

It can be difficult to identify hosts violating these expected 
behaviors without knowing the roles of servers and services 
used on the network and the clients expected to connect to 



those servers.  A method for detecting clients violating these 
expectations and connecting otherwise disparate servers can 
use routing-based graph analytics, such as the all-pair shortest 
path algorithm and betweenness centrality. 

D. Betweenness Centrality 
Betweenness centrality is a measure that ranks the 

number of paths between any two vertices in a graph, S and 
T, that pass through a third vertex in a graph, V. This 
evaluation of centrality calculates the shortest paths between 
all pairs of vertices within the graph, traditionally using the 
Floyd-Warshall algorithm.  Betweenness centrality 
commonly has a computational complexity of O(|V|3).  On 
sparse graphs, the number of edges form a significant element 
of the computational complexity[6].  Betweenness centrality 
assumes graphs are non-directional. 

 
Figure 1: Betweenness centrality calculation 

Figure 1 describes the betweenness centrality algorithm.  In 
this equation, V is the vertex under consideration, S and T are 
vertices in the network, sst is the number of shortest paths 
between S and T, and  sst(v) is the number of shortest paths 
that pass through V. 

 

 
Figure 2: a hub-and-spoke graph 

 
Figure 3: a relaxed clique, where every node is connected to 4 

other nodes 

 
Figure 2 shows a 9-vertex graph where the middle node is 

connected to every other node, and every other node is only 
connected to the middle node.  The middle node’s centrality 

score will be the highest in the graph.  If the middle node is 
removed, the graph would cease to exist; no two nodes would 
be connected to each other.  Figure 2 shows a behavior pattern 
seen in computer networks as a client and server model.  The 
middle vertex is a server, and edge nodes are clients, using an 
application like a database or Secure Shell.  

Figure 3 shows a 9-vertex graph where every node is 
connected to 4 other nodes.  In this graph, every node would 
have the same centrality score.  If any one node was removed, 
the graph would remain a graph; ever remaining node would 
still be connected other nodes in the graph.  Figure 3 shows a 
behavior pattern seen in computer networks as a peer-to-peer 
model.  Every node in the network acts as both a client and a 
server.  These behaviors are seen in peer-to-peer routing 
protocols such as a Distributed Hash Table[9].  

Figure 2 is more representative of common behaviors seen 
on computer networks than Figure 3.  Human behavior tends 
to form scale-free graphs, and these behaviors have been 
confirmed in computer network graphs.  This means that 
betweenness centrality scores from computer network graphs 
will be more varied than those from graphs similar to those in 
Figure 3. 
 

 
Figure 4: a candidate graph 

Figure 4 shows two hub and spoke graphs connected by a 
vertex at the bottom of the figure.  This bottom vertex would 
have the highest centrality of any vertex in the graph; higher 
than the hubs also present in the graph.  This bottom node is 
representative of a client connecting to two servers that are 
otherwise disconnected.   

This client could be connecting to these two servers for a 
variety of reasons.  The client is shared between two people 
who occupy different roles in the organization.  The client is 
used by a single person who switches job roles during the 
period of observation of network traffic from which the graph 
was built.  The client is scanning for servers or applications on 
a network.  The client is being used by an intruder to log into 
a server not ordinarily interacted with by the client’s expected 
user.  Two of these candidate behaviors are expected and 
benign on a network; the other two are suspicious and 
potentially malicious.  Human analysis is required to 
determine which behavior is present within a graph when 
betweenness centrality identifies central nodes such as that 
shown in Figure 4. 



III. ENVIRONMENT 
This section describes the operational environment that is 

the basis for this study. This description includes the network 
monitoring technology used to monitor the network, the 
network under analysis, a description of Deloitte’s Cray 
Urika-GX Big Data Appliance, and a discussion of the graph 
engines in use by the Apache GraphX and Cray Graph 
Engine.  

A. BRO 
Bro1 is an open-source passive network security monitor 

for packet capture, metadata extraction, sessionization, and 
human friendly output files.  Bro’s open source nature allows 
security professionals to customize it to meet their own 
needs, including writing custom analyzers. Bro contains 70+ 
network protocol analyzers out of the box, including 
analyzers for web, email, and DNS traffic.  We deploy Bro 
2.4 on commercially-available R-Scope PACE BRO sensors 
developed by Reservoir Labs, which are capable of ingesting 
network packets up to 20 Gbps and producing a variety of 
metadata types that describe network connection, metadata, 
and application details from the OSI network stack layers 3-
7.  Bro generates these records for all packets that it observes; 
Reservoir Lab’s R-Scope PACE sensors are powerful enough 
to observe all packets up to 20 Gbps and generate a variety of 
log types. 

This study utilizes the connection log type (referred to 
hereafter as conn.log) to extract and represent our network 
graphs. The conn.log analyzer contains basic information on 
the session, such as originating and responding hosts, ports, 
bytes, and packets exchanged.2 Other common Bro log file 
types are http.log (e.g. target domain, URI, and user agent 
string), ssl.log (e.g. certificate and encryption scheme), and 
dns.log (e.g. TTL and requested domain). 

B. Network under discussion 
The network generating the traffic analyzed in this paper 

is a very large network with over 500,000 endpoints 
generating traffic from dozens of physical locations through 
four Internet gateways. BRO network sensors at each of these 
four gateways monitor all outbound traffic leaving the 
network and all inbound traffic that has passed through the 
firewall rules and generate a record of all traffic successfully 
entering, successfully leaving, or attempting to leave the 
network  This network contains a number of simultaneous 
behaviors including Windows, MacOS, Linux, and mobile 
operating systems and desktops, laptops, tablets, other mobile 
devices, servers, embedded devices, and special purpose 
hardware. 

Figure 5, below, show the number of collected records 
each month. 

                                                             
1 https://www.bro.org 

 
Figure 5: connection logs collected each month 

 
This network is large enough and is comprised of a wide 

variety of endpoint types running a variety of operating 
systems and applications to generate representative traffic 
and analytic results that can be applied to other networks. 

C. Cray Urika-GX 
Our data analysis is performed on a Cray Urika-GX Big 

Data Appliance. This platform supports large-scale memory-
intensive workloads across a cluster of 25 compute nodes 
each with 32 cores of Intel processors, 256 GB of RAM, and 
a shared file system.  These compute nodes are connected by 
the Cray Aries network interconnect.  

The Urika-GX platform supports common open source, 
big data technologies such as Apache Hadoop, Apache Spark, 
Apache Mesos, Lustre, and Python. The Hadoop File System 
(HDFS) distributes shares files across Urika-GX’s blades to 
make data available to Spark. The platform includes Cray 
Graphics Engine for graph analytics. The underlying 
operating system is Linux CentOS.  

D. Apache Spark and GraphX 
Apache Spark is an open source, distributed data 

processing framework that supports interactive queries, 
streaming data, machine learning, and graph processing. 
Spark extends MapReduce by generalizing in-memory 
operations, transformations, and aggregations in a directed 
acyclic graph representation. Spark’s primary programming 
environment is Scala with strong data science support for 
Python and R. This study focuses exclusively on Spark’s 
graph processing library, GraphX. 

GraphX utilizes the inherent scalability of Spark to 
analyze very large graphs across a compute cluster. It 
integrates seamlessly into an analytic workflow, from ETL to 
graph theoretic algorithms to analysis. A fundamental 
limitation to GraphX is memory available to store a graph for 
processing and analysis. Kabiljo et al found performance and 

2 Originating and responding hosts correspond generally to source and 
destination hosts. 

0

2E+10

4E+10

6E+10

8E+10

1E+11

Connection	Logs	Per	Month



scalability issues with GraphX on extremely large graphs, as 
well [4].  

Our Urika-GX installation uses Spark 1.5. Since Spark is 
built upon the Hadoop File System (HDFS), we treat each 
blade as a Spark worker-node with distributed access to our 
data set. Up to 6.4 TB of RAM is available for parallel 
processing. GraphX includes a few graph functions in its 
distribution: PageRank, Triangle Counting, and Connected 
Components. 

E. Cray Graph Engine (CGE) and SPARQL 
CGE enables performing advanced analytics on the 

largest and most complex graph problems, and features 
highly optimized support for inference, deep graph analysis, 
and pattern-based queries. CGE is a highly-optimized 
software application for searching and querying very large, 
graph-oriented databases based on the industry-standard RDF 
graph data format and the SPARQL graph query language. 
CGE was designed from the ground up to run on Cray high 
performance platforms, such as the Urika-GX.  

CGE is comprised of a front-end query engine and a back-
end computational engine written in C++. The front-end 
engine parses and RDF description of a graph, loads into in 
in-memory representation, and evaluates SPARQL queries 
against the memory-resident database. 

CGE ships with a library of built-in graph functions: 
BadRank, Betweenness Centrality, PageRank, Label 
Propagation, S-T Connectivity, S-T Set Connectivity, 
Triangle Counting, Triangle Finding, and Vertex Triangle 
Counting [10]. 
 

IV. METHODOLOGY 
This section describes the experimental approach and 
method, the graph preparation for both CGE and GraphX, 
and a discussion of the composition of the generated 
network  

A. Approach 
As discussed in II.C and II.D, this paper is focused on 
conducting an experiment computing betweenness centrality 
on a number of graphs built from traffic generated by the 
network described in III.B.  The experiment changes a 
number of variables to determine the performance 
characteristics of CGE and Apache GraphX while executing 
betweenness centrality.  These variables include the size of 
graph under analysis and the number of Urika-GX compute 
nodes used to calculate betweenness centrality over that 
graph. 

B. Method 
As discussed in III.D and III.E, CGE ships with an 

implementation of betweenness centrality and Apache 
GraphX does not ship with betweenness centrality.  
Therefore, to conduct the experiment detailed in IV.A, we 
needed to implement betweenness centrality on Apache 

GraphX. This implementation was not straightforward, and a 
majority of our time was spent tailoring a version that 
functioned in the Spark paradigm.  Our experiences are 
shared by others.  Implementing betweenness centrality 
within the Apache GraphX framework to execute on Apache 
Spark clusters has been a documented challenge [8].  

C. Data Preparation 
Bro conn.log entries are records of network behavior that 

must be processed into a graph before betweenness centrality 
can be computed over it.  CGE and Apache GraphX require 
different input formats and therefore require different data 
preparation workflows. 

Figure 5 shows the CGE RDF graph data preparation 
workflow that was implemented in Scala scripts.  At the top, 
a number of Bro conn.log entries are represented.  Uid1 
represents the BRO uid for the record, ts1 represents the 
timestamp for the record, orig represents the originating IP 
address for the record, and resp represents the responding IP 
address for the record.  The Bro conn.log records contain 
more field which are omitted for clarity. 

These conn.log records are first converted to RDF, which 
is represented in the next portion of Figure 5.   The RDF 
representation shows how the three notional Bro conn.log 
records would appear in an RDF representation.   

CGE uses SPARQL CONSTRUCT statements to induce 
subgraphs over which native CGE algorithms are executed.  
The last two portions of Figure 5 show how that 
CONSTRUCT query would convert the original RDF 
representation into a more-sparse representation, one where 
the details of the distinct connections between orig and resp 
are summarized into a single record.  This conversion reduces 
the theoretical computational complexity of the 
betweennness centrality implementation executing across the 
summarized graph.  Additionally, betweenness centrality is 
designed to execute against undirected graphs, and SPARQL 
CONSTRUCT statements induce directed graphs.  Initial 
experimental executions on CGE produced meaningless 
results.  Discussions with Cray indicated that the appropriate 
workaround would be to insert all edges into the graph twice; 
once in the original direction, and once in the reverse 
direction.  CGE results from graphs using this workaround 
produced meaningful results, however it would also impact 
the theoretical computational complexity by doubling the 
number of paths considered during algorithm execution.         

Apache GraphX requires a different data preparation 
workflow which was also implemented in Scala scripts.  The 
betweenness centrality implementation that was used in this 
experiment requires to be defined by a node data frame and 
an edge data frame. The first contains the information 
pertaining to the nodes with associated look-up keys. The 
second contains two look-up keys, one for each connected 
node and edge data.  The data preparation workflow takes Bro 
conn.log entries, which are contained in a different data frame 
and converts it into these two required data frames. 



The data preparation workflows contain a number of 
conversion steps detailed above which require time to 
execute.  This time is not representative of the algorithm 
execution, and that time is not included in this experiment. 

 

 
Figure 5: CGE data preparation process 

D. Graph composition 
The graphs used in this experiment are comprised of 

nodes which represent IP addresses and edges which 
represent TCP/IP traffic between the IP addresses.  These 
graphs were generated from a number of days of traffic from 
the network discussed in III.B. 

The network traffic that was used to build these graphs 
were restricted to successful connections on TCP ports 20-
23, 123, 445, and 3389.  These restrictions were used to focus 
the induced graphs on behaviors of interest to security 
professionals.   Successful TCP connections are those that 
have passed through the three-way TCP handshake[7].  These 

connections are then ready to pass content that is accessible 
to the operating system and hosted applications listening on 
that port.  These successful connections represent 
approximately 55% of the total connections.  This restriction 
serves to reduce the noise present in the induced graphs. 

Restricting network traffic to TCP ports 20-23, 123, 445, 
3306, and 3389 serves to focus network traffic to applications 
that are known to bear interactive traffic and are commonly 
used for interacting with servers over the network.   These 
ports represent a small portion of the traffic present on the 
network; the vast majority of the network traffic present on 
the network use TCP ports 80 and 443, which commonly 
carry web traffic and is not interactive in nature.  This 
restriction also serves to reduce the noise present in the 
induced graphs by removing expected client-server web 
traffic. 

Using these filtering criteria identifies a set of network 
traffic that can be used to generate a graph.  This traffic was 
then subject to two variations to build graphs of different 
sizes to illustrate performance differences between CGE and 
Apache GraphX.  These variations are the number of days of 
network traffic and the number of records from a set of days. 

 

 
Figure 6: total edge count per day 

  Figure 6 shows the total number of unique graph edges 
per day for 21 days from February 2017.  The unique edge 
count is expected to grow as the clients and servers on the 
network are active and observed by the BRO sensors.  Once 
the clients connect to their servers, usually over a time period 
of several weeks, the total number of unique graph edges 
should level off.  As Figure 6 does not fully level off, it 
suggests that the client and server interactions have not been 
fully-sampled in the 21 days of data used to construct graphs 
for these experiments.  The flattening of slop in days 15-19 
compared to days 1-5 suggests that sampling may be 
happening.  The flat periods present at days 5, 12, and 19 
correspond with weekends during which the network has 
fewer active users. 
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The network traffic from February 2017 was chosen for 
this paper due to the validated scanning activity present in the 
network during that time range.  This data set contained 
representative graph structure to exercise CGE and Apache 
GraphX and show performance difference without occupying 
Apache Urika-GX compute nodes needed by security 
professionals.  

TABLE I.  GRAPH SIZES 

Vertices Edges 

5,419 11,726 

15,359 52,042 

42,687 125,564 

66,955 369,720 

115,276 1,281,918 

The fourth restriction is reducing the number of input 
records from a given date range.  Table I outlines the graphs 
generated from 100,000 and 10,000,000 transactional records 
from a twenty one day range in February 2017.  These records 
were selected from the set of available transactions in time 
order, operating functionally as a FIFO queue.  Table I details 
vertices and edges rather than records as graph size rather 
than transaction size drives the computational complexity of 
the algorithm.  The transactions included multiple 
connections between the same systems on the same ports, 
which is why the edge count is lower than the transaction 
count.   

These filtering steps produced graphs are much smaller 
than expected.  60 billion connection log entries from 21 days 
in February transformed into 1,281,918 edges, as seen on 
Table I. 

 

V. RESULTS 
This section discusses GraphX and CGE execution times 
and their implications. 

A. Execution 
We tested the both graph engines on multiple graphs 

detailed in Table I.  For each of the resulting graphs, we ran 
the respective functions on 1, 8, and 16 compute nodes using 
all available cores on each compute node.  Results can be 
found in Table II and Table III. 

TABLE II.  CRAY GRAPH ENGINE RESULTS 

Time for Compute  Vertices Edges 

1 Node 8 Nodes 16 Nodes   

2.61 s 29.38 s 29.27 s 5,419 11,726 

77.7 s 653 s 718 s 15,359 52,042 

353.89s 1643.29 s 1891.25 s 42,687 125,564 

938 s 4730 s 6600 s 66,955 369,720 

Time for Compute  Vertices Edges 

1 Node 8 Nodes 16 Nodes   

2.61 s 29.38 s 29.27 s 5,419 11,726 

3205 s 15068 s none 115,276 1,281,918 

 

TABLE III.  GRAPHX RESULTS 

Time for Compute  Vertices Edges 

1 Node 4 Nodes 8 Nodes   

53.96 s 50.09 s 71.80 s 5,419 11,726 

N/A N/A N/A 42,687 125,564 

 
Table II details CGE execution times.  A number of features 
present themselves in the execution times.  The 1 node 
execution times are reasonable at 2.61 seconds for the first, 
smallest graph and then grow larger in an unexpected way, 
requiring nearly an hour to process.  These run times suggest 
that the underlying graph topology is not strictly scale-free or 
small world and is wider than expected.  Scaling these graphs 
to multiple nodes was not required for additional memory; 
even the largest graphs fit into the 256 GB of RAM present 
on a single node.  Scaling to multiple nodes gave the 
algorithm more cores to use when executing the betweenness 
centrality algorithm.  The observed runtimes did not reflect 
that expectation. Adding additional compute nodes actually 
resulted in longer algorithm execution times.  This suggests 
there are inefficiencies present in the network 
communication between nodes that would have been 
exacerbated by any deviation from the scale-free or small-
world model.  Discussions of these execution times with Cray 
engineers indicated that they were aware of additional 
efficiencies available in the betweenness centrality 
implementation, and development is ongoing. 
Table III details GraphX execution times.  There were fewer 
execution times to report as GraphX did not complete in 
under 24 hours for any graph larger than the smallest graph 
used in this experiment.  Adding additional nodes to the 
computation also resulted in inconsistent results.  Given the 
network communication-heavy nature of GraphX being 
based on Spark, inefficiencies in network communication 
likely explain the inconsistent results seen when adding 
additional nodes.  The inability of the GraphX 
implementation to run to completion on only the smallest 
graph in the experiment indicates that it is likely not ready for 
production use. 
 
We examined the betweenness centrality results for scanners 
identified through other means and located some present 
within the more central nodes identified by the algorithm.  
The most central nodes did not appear to be scanners.  
Discussions with security professionals as the behaviors 
shown by the most central nodes are ongoing. 



 

VI. CONCLUSION 
Our tests indicated, in the case of using betweenness 

centrality as a graph function, that Cray Graph Engine was 
not only faster, but easier to implement than Apache Spark’s 
GraphX.  Cray’s implementation of SPARQL had a version 
of betweenness centrality to use out-of-the-box while a 
custom version of distributed betweeness centrality had to be 
leveraged to achieve similar functionality. Additionally, 
GraphX does not include a query language, like SPARQL, 
requiring Scala programming, increasing the technical 
aptitude required to use the engine. CGE’s SPARQL also 
came with significantly more graph functions than GraphX. 
Additionally, for GraphX, when dealing with larger graphs, 
the need to copy information about the graph to each compute 
node causes a constraint problem which we attributed to 
GraphX failing on our larger graph test cases.  

VII. ACKNOWLEGMENTS 
This document contains general information only and 
Deloitte Advisory is not, by means of this document, 
rendering accounting, business, financial, investment, legal, 
tax, or other professional advice or services. This document 
is not a substitute for such professional advice or services, nor 
should it be used as a basis for any decision or action that may 
affect your business.  Before making any decision or taking 
any action that may affect your business, you should consult 
a qualified professional advisor. 
Deloitte Advisory shall not be responsible for any loss 
sustained by any person who relies on this document. 
 
As used in this document, “Deloitte Advisory” means 
Deloitte & Touche LLP, which provides audit and enterprise 
risk services; Deloitte Financial Advisory Services LLP, 
which provides forensic, dispute, and other consulting 
services; and its affiliate, Deloitte Transactions and Business 

Analytics LLP, which provides a wide range of advisory and 
analytics services. Deloitte Transactions and Business 
Analytics LLP is not a certified public accounting firm. These 
entities are separate subsidiaries of Deloitte LLP.  Please see 
www.deloitte.com/us/about for a detailed description of the 
legal structure of Deloitte LLP and its subsidiaries. Certain 
services may not be available to attest clients under the rules 
and regulations of public accounting. 
 
 

REFERENCES 
[1] E. Dull.  “Cyberthreat analytics using graph analysis.”  CUG 2015 
 
[2] U. Brandes, “A faster algorithm for betweenness centrality,” J. 
Mathematical Sociology, vol. 25, no. 2, pp. 163-177, 2001. 
 
[3] J. Berry and G. Mackey “The MultiThreaded Graph Library,” CASS-MT 
2009. http://cass-mt.pnnl.gov/docs/sc09_mtgl_presentation.pdf 
 
[4] M. Kabiljo, D. Logothetis, S. Edunov, and A. Ching, “A comparison of 
state-of-the-art graph processing systems,” unpublished. 
 
[5] E. Hutchins, J. Cloppert, and R. Amin, “Intelligence-driven computer 
network defense informed by analysis of adversary campaigns and intrusion 
kill chains,” unpublished. 
 
[6] D. Marcous, “Distributed K-Betweenness (Spark),”, unpublished. 
 
[7] J Postal.  RFC 793 – Transmission Control Protocol. 1981. 
 
[8] Apache Spark mailing list http://apache-spark-user-
list.1001560.n3.nabble.com/All-pairs-shortest-paths-td3297.html 
 
[9] M. Castro, P. Druschel, Y. Charlie Hu, A. Rowstron, “Exploiting 
Network Proximity in Distributed Hash Tables,” Published in International 
Workshop on Future Directions in Distributed Computing (FuDiCo), 2002. 
https://www.microsoft.com/en-us/research/publication/exploiting-network-
proximity-in-distributed-hash-tables/ 
 
[10] Cray® Graph Engine (CGE) User Guide (S-3010-1000). 
 
 

 
 
 

 


