
An in-depth evaluation of GCC’s OpenACC implementation on Cray systems

Verónica G. Vergara Larrea, Wael R. Elwasif, Oscar Hernandez
Computing and Computational Sciences Division

Oak Ridge National Laboratory
Oak Ridge, TN, USA

Email: {vergaravg,elwasifwr,oscar}@ornl.gov

Cesar Philippidis, Randy Allen
Advanced Research Group

Mentor Graphics
Wilsonville, OR, USA

Email: {Cesar Philippidis,Randy Allen}@mentor.com

Abstract—OpenACC is a directive-based API that extends
the C/C++ and Fortran base languages to program accelera-
tors and multicores. Several commercial implementations are
available that support OpenACC including PGI, Cray, and
PathScale. More recently, GCC started adding support for
OpenACC and is expected to fully support the OpenACC 2.0
specification in the upcoming GCC 7 release. However, to our
knowledge, the quality and performance of GCC’s OpenACC
implementation have not been studied in detail.

In this paper, we will perform an in-depth evaluation of
GCC’s OpenACC implementation on Titan, ORNL’s Cray
XK7 supercomputer, and compare it to other commercially
available compiler implementations. We first start by providing
a description of the OpenACC implementation design in GCC,
its runtime, as well as provide an overview of the current
state of OpenACC supported features as described in GCC 6.3.
Then, we we will evaluate the quality and performance of the
GCC 6.x implementation by using the OpenACC Verification
and Validation suite [1] to test the accuracy and correctness of
the implementation, the EPCC OpenACC benchmark suite [2]
to measure performance, and the SPEC ACCEL benchmark [3]
OpenACC suite to exercise the implementation. We believe that
the results presented in this study will be useful for the larger
community interested in using and evaluating new OpenACC
implementations.

Keywords-OpenACC; compiler evaluation;

I. INTRODUCTION

OpenACC is a relatively new directive-based specification
to program accelerators and for that reason, its compiler im-
plementations are still maturing. Several commercial imple-
mentations support the OpenACC standard including PGI,
Cray, and PathScale. More recently, GCC started adding
support for OpenACC in an effort to fully support the Open-
ACC 2.0 specification. The latest release of GCC is GCC 6.3
and it already includes partial support for OpenACC, with
full-support for OpenACC expected to be available in the

Notice of Copyright. This manuscript has been authored by UT-
Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S.
Department of Energy. The United States Government retains and the
publisher, by accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the DOE Public
Access Plan (http://energy.gov/downloads/doe-public-access-plan).

upcoming GCC 7 release. GCC 8 will include support for
OpenACC 2.5. However, to our knowledge, the quality and
performance of the GCC OpenACC implementation have
not been explored in detail.

Several benchmark suites have been developed to evaluate
OpenACC using different compilers on different architec-
tures such as: the SPEC ACCEL benchmark suite [3], the
EPCC OpenACC benchmark suite [2], the University of
Houston’s Verification and Validation OpenACC suite [1],
the KernelGen performance test suite for OpenACC [4]
compilers, among others. These benchmarks are developed
to understand the level of specification support, its quality
(e.g. overheads), and to measure its performance against
other implementations, which in turn allows researchers to
compare compilers on different architectures.

When looking at the two main architectural trends, at-
tached accelerators and many-core processors, it is clear that
high-level programming models, such as OpenACC 2.5 and
OpenMP 4.5, should be able to support both trends well
for performance portability. As of today, implementations
like PGI support both offloading to an accelerator, and self-
offloading where OpenACC parallel regions and/or kernels
are launched on the host rather than on an accelerator. It
is not understood how well these two modes are supported
by the compilers and whether they can produce performant
code. Because of this, and keeping performance portability
in mind, this study briefly discusses experiments conducted
on ORNL’s Cray XC40 Intel Knights Landing system using
supported compilers for self-offloading.

In this paper, we first start by providing a description of
the OpenACC implementation design in GCC, its runtime,
as well as provide an overview of the current state of
OpenACC supported features as described in GCC 6.3
and those available in the gomp-4 0-branch branch main-
tained by Mentor Graphics, a Siemens company. In order
to evaluate the quality and performance of the GCC 6.3
implementation, we will first use the OpenACC Verification
and Validation suite [1] to test the accuracy and correctness
of the implementation. We will also use the EPCC OpenACC
benchmark suite to measure the performance of OpenACC
functions (e.g. the time it takes to copy data to or from
the device, overheads of using the private and firstprivate

clauses), and the performance of compute intensive kernels.
Furthermore, we will use the SPEC ACCEL OpenACC
benchmark suite [3] to exercise the GCC implementation us-
ing application-based benchmarks and compare these against
published SPEC ACCEL results. The experiments for this
evaluation will be conducted on Titan, ORNL’s Cray XK7
flagship supercomputer. We believe that the OpenACC re-
sults presented in this study will be useful to the community
in general given the fact that GCC is widely available on
multiple platforms and Linux distributions. At the end of the
paper we will have a discussion on how having an OpenACC
implementation in GCC makes it easier to support OpenMP
4.5 (offload) as both can share the same runtimes, which in
turn may help the interoperability of both specifications or
leverage one from the other.

A. Accelerator Programming Model using Directives

OpenACC implements a programming model that has
a host with one or more attached accelerators. The user
application begins execution on the host and accelerated
regions are offloaded to the accelerator device under control
of the host (offload execution). The host is typically a
general purpose processor (CPU) that can offload code
to other devices or, in some implementations, that can
offload code to itself. The device executes OpenACC parallel
and kernels regions, which typically contain work-sharing
regions of the code executed as accelerated kernels. The
host coordinates the execution of the accelerated kernels
by allocating memory on the accelerator device, initiating
data transfer, sending the code to the accelerator, passing
arguments to the accelerated region, queuing the device
code, waiting for completion, transferring results back to
the host, and deallocating memory. The host can queue one
or more sequences of accelerated kernels to be executed
on the device, either sequentially, one after the other, or
asynchronously.

B. Accelerator Memory Model

OpenACC has a copy-in and copy-out memory model that
is synchronized with the host memory. All data movement
between host and device memory is performed by the
host through runtime library calls that move data between
memories (e.g. host and accelerator memories). However,
from the user’s perspective, most of the data mapping is
handled either implicitly by the compiler or explicitly via
data clauses. OpenACC provides data regions to scope the
data that is going to be copied-in, updated, and copied-out
to or from the accelerator.

C. Accelerator Execution Model

OpenACC expresses the levels of parallelism via gang,
worker, and vector threads. Each gang contains one or
more workers. Each worker can contain one or more vector
threads. Users can specify the size of gangs, workers, and

vectors or allow the compiler to select them automatically.
When an acc parallel or acc kernels region is launched, a
group of gangs, workers, and vector threads are created on
the device. All start executing in gang-redundant, worker-
single, and vector-single mode until work-sharing constructs
are encountered (e.g. an OpenACC loop) indicating that
work should be distributed among the different threads. In
OpenACC, the acc parallel directive begins the execution
of a single accelerator kernel on the device. OpenACC
also provides an acc kernels directive. Like acc parallel,
acc kernels denotes a region of code to be offloaded to
an accelerator. However, whereas acc parallel requires the
user to explicitly mark independent loops with acc loop
directives, some compilers can often automatically detect
and parallelize independent loops inside acc kernels regions.
The acc parallel directive gives the user a finer grain of
parallelism, which is necessary to achieve good performance
on a given architecture when the compiler cannot automat-
ically parallelize a given region. Both OpenACC parallel
or kernels regions can be executed as asynchronous on the
device(s) using the async clauses and synchronized with
the wait directive. OpenACC also allows nested parallelism
where an OpenACC parallel region spawns another parallel
region on a device to achieve more levels of parallelism.
However, support for nested parallelism is not currently
available in the implementations used in this work.

II. OVERVIEW OF OPENACC SUPPORT IN GCC

This section presents a high level overview of the support
for OpenACC in GCC. GCC is a widely used, open source,
retargetable compiler that supports the C, C++, Fortran, Go,
and Ada programming languages. As of GCC 6, it supports
a large subset of CilkPlus, OpenACC 2.0a, and OpenMP 4.5
parallel programming methodologies.

Part of the benefit of being an open source project is that
a lot of functionality is shared between various components.
In fact, GCC’s support for OpenACC was built on top of its
existing support for OpenMP. Note however that, due to the
vastly different organizations of GPU and CPU hardware,
including SIMD vs. SIMT type of parallelism differences,
limited stack size and local memory; extensive modifications
were required to implement OpenACC efficiently on GPUs.
While that functionality is not currently enabled in OpenMP
4.5 target offloading, there are no technical barriers prevent-
ing anyone from leveraging from the OpenACC work to do
so in the future.

Mentor Graphics is currently maintaining the OpenACC
port in GCC and Oak Ridge National Laboratory is provid-
ing feedback on Mentor Graphics implementations [5]. The
first GCC release that included support for OpenACC 2.0a
was version 5. Support for OpenACC in that version was
highly experimental and restricted all parallelism to vectors.

In GCC 6, Mentor Graphics contributed a more complete
execution model that supports gang, worker, and vector level

parallelism inside OpenACC parallel regions, in addition to
preliminary support for OpenACC routines. For GCC 7,
Mentor Graphics has started focusing on performance, in
addition to refining the support for OpenACC 2.0a routines
and the declare directive. Looking ahead, the GCC 8 release
will include support for OpenACC 2.5. Mentor Graphics
is also focusing on making the OpenACC experience more
user friendly by extending GCC with enhanced compiler
diagnostics to inform the user of any potential parallelism
enhancements, which is something that GCC currently lacks.

As of the time of this writing, users interested in eval-
uating GCC’s support for OpenACC are highly recom-
mended to obtain a release based on the gomp-4 0-branch
branch. That branch is currently based on GCC 6.3 and
it contains additional OpenACC functionality and enhanced
performance on NVIDIA GPUs. Details on how to obtain a
GCC toolchain using that branch can be found in [6].

A. Known limitations in GCC

While the current release of GCC does support OpenACC
2.0a, there are still several limitations. First, GCC only
supports OpenACC offloading on NVIDIA GPUs. Any other
target (e.g. multicore host) falls back to executing on a single
host CPU thread.

The following is a list of the current known limitations:
• Nested parallelism is not supported, i.e. parallel con-

structs cannot nest inside other parallel constructs.
• While GCC is able to automatically partition inde-

pendent acc loops across gang, worker, and vector
dimensions, at times, this optimization can be too
aggressive. When that happens, executables generated
by GCC may fail at runtime with errors involving
insufficient hardware resources.

• GCC supports dynamic arrays in C and C++ inside
OpenACC data clauses with the following limitations.

– The pointer-to-arrays case is not supported yet, e.g.
int (*a)[100].

– Host fallback does not work yet, i.e.
ACC DEVICE TYPE=host will generate a
segmentation fault.

• All OpenACC loop private clauses allocate storage for
variables in local (i.e. thread-private) storage. They will
utilize shared memory storage in a future release.

• GCC does not support the device type clause.
• vector length is fixed to 32 for NVIDIA targets, and 1

for everything else.
• The bind clause has not been implemented yet.
• The private and firstprivate clauses do not support

subarrays.
Unlike more mature OpenACC compilers, GCC is fre-

quently unable to detect parallelism inside OpenACC ker-
nels regions. The parallelism obtained from adding the acc
kernels directive is strictly implementation dependent, and

therefore when the compiler is able to detect parallel loops,
better performance will be achieved. The GCC implemen-
tation does not currently support auto-parallelization, and
because of that kernel regions will result in slower perfor-
mance. With GCC, better performance will be obtained by
replacing kernel regions with parallel regions [6]. If the
compiler fails to detect any parallelism inside a kernels
region, it falls back to executing that region on a single host
thread. Furthermore, because GCC does not support auto-
parallelization, lower performance may be obtained when
using acc parallel loops without more specific directives
that indicate the level of parallelism (e.g. gang, worker, and
vector) of a region [6].

III. OPENACC IMPLEMENTATION IN GCC

GPUs are organized vastly different from conventional
out-of-order CPUs. For starters, they often have a small stack
size which limits recursions and function call depth. GPUs
also have limited interprocess communication capabilities
which impacts thread synchronization, and have a minuscule
amount of local memory when compared to the CPU. Per-
haps, most significantly, they form a heterogeneous parallel
environment when combined with the host processor, which
necessitates managing data in discrete memory address
spaces. Furthermore, as is the case of OpenCL and CUDA,
end users have to use runtime libraries to explicitly manage
the data mappings of variables. In addition, while these
programming environments are largely compatible with C
and C++, they frequently require language extensions to
invoke functions that are to be executed on the accelerator.

OpenACC was designed early on to map the existing C,
C++, and Fortran programming language semantics to GPU
computing through the use of compiler directives. Conse-
quently, this enables a well-formed OpenACC program to
generate identical results when it was built with and without
OpenACC enabled by the compiler. One key advantage is
that OpenACC programs can still be built with compilers
that do not support those directives, which improves code
portability.

A. Implementing OpenACC to target GPUs

As described in previous sections, OpenACC provides
three levels of parallelism: gang, worker, and vector. Each
level may operate in two modes; gangs can operate in
redundant or partitioned mode, whereas workers and vectors
can run in single or partitioned mode. Partitioned mode
maps each gang, worker, or vector unit to a single loop
iteration. Worker and vector single modes only use one of
the available worker or vector units, respectively, when they
execute code, i.e. the worker and vector units as a whole are
treated as an entity containing a single processor. In gang
redundant mode, all the gangs execute the code without any
synchronization in a redundant fashion.

The justification for gang redundant mode stems from the
fact that some accelerators, like GPUs, often have limited
interprocess communication facilities. GPU hardware is de-
signed to execute thousands of threads concurrently. In order
to scale the hardware from handheld devices, such as cell-
phones and tablets, to powerful supercomputers, hardware
vendors partitioned their GPUs into multiprocessor clusters
(MPC). The more powerful GPUs have more MPC units,
whereas handheld devices have fewer. In NVIDIA hardware,
an MPC is called a Streaming Multiprocessor (SM). Each
MPC consists of an array of tightly connected processors.
While each processor has its own instruction pointer register,
for optimal performance, it is better if all processors in an
MPC execute a common instruction. When the processors
within an MPC execute different instructions, the MPC is
said to be divergent. Finally, each individual MPC processor
is typically capable of executing multiple threads, hence the
name single instruction multiple threads (SIMT). Because
there is no requirement for each MPC to be convergent
with one another, GPU hardware often omit intra-MPC
synchronization mechanisms. In fact, sometimes different
MPCs execute different kernels to more effectively utilize
the GPU hardware. CUDA does not provide a function to
synchronize CUDA blocks, where each thread inside a block
gets assigned to a single MPC. Note that an MPC may
execute multiple blocks.

When developing parallel code, the developer must be
aware of how the compiler maps the available OpenACC
parallelism to the underlying hardware. GCC uses the fol-
lowing:

• Gangs are mapped to CUDA thread blocks.
• Workers are mapped to CUDA warps.
• Vectors are mapped to CUDA threads.

A CUDA block consists of a collection of CUDA warps.
Each CUDA warp contains a fixed amount of CUDA threads.
Current NVIDIA hardware has a warp size of 32 threads.
As a consequence of this mapping, GCC fixes vector length
to the size of the warp, i.e. 32 threads. Each CUDA block
has its own resources which are shared among the warps
and threads within it. One such resource is shared memory,
which GCC uses for gang-local variables, worker reductions,
and some internal state management.

While GCC can generate code for NVIDIA accelerators
with little to no modifications inside parallel regions, the
user can often greatly assist the compiler explicitly by
adding OpenACC loop directives as the following examples
illustrate.

B. Porting Matrix Multiplication to OpenACC

Consider the matrix multiplication example shown in
Listing 1, where a, b, and c are one dimensional arrays,
n is the matrix dimension and is set to 2,048, and at is the
macro defined as shown in Listing 2.

for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
int t = 0;

for (k = 0; k < n; k++)
t += at(i, k, a) * at(k, j, b);

at(i, j, c) = t;
}

}

Listing 1: Matrix Multiplication

#define at(y, x, mat) (mat[y*n + x])

Listing 2: at macro definition

On Titan using the GCC-gomp4 compiler, this loop takes
approximately 180.11 seconds to execute using a single host
thread. Note how this is significantly slower than the host
CPU.

OpenACC provides two ways to accelerate this code,
using parallel or kernels regions. Throughout this example,
we will only utilize OpenACC parallel regions.

1) Adding parallel regions: Simply adding acc parallel
will direct GCC to generate code for the host and accelerator.
The resulting code is shown in Listing 3.

#pragma acc parallel
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
int t = 0;

for (k = 0; k < n; k++)
t += at(i, k, a) * at(k, j, b);

at(i, j, c) = t;
}

}

Listing 3: Matrix multiplication using the acc parallel con-
struct

Notice that this loop nest does not contain any explicit
acc loops. By default, GCC will execute this parallel region
with 1 gang, and 32 vectors operating in vector-single mode,
i.e. this entire parallel region will be executed using a
single CUDA thread. Note that if the user explicitly sets
num gangs to a number greater than one, the resulting
binary will yield unpredictable results because the entire
parallel region will execute in gang redundant mode.

On Titan using GCC-gomp4, this version of the code takes
approximately 3210.56 seconds to execute.

2) Adding parallel loops: Explicitly marking independent
loops inside OpenACC parallel regions with acc loop is
required to activate any partitioned mode inside a parallel
region using GCC. The acc loop construct enables sharing
work among gangs, workers, and vector threads. GCC does

not attempt to automatically parallelize parallel regions. It
does, however, attempt to assign gang, worker, and vector
parallelism to independent loops. Furthermore, it also sets
minimum default values for num gangs, num workers, and
vector length. If the parallel region only contains one inde-
pendent loop without any explicit gang, worker, or vector
directive, GCC will automatically assign gang and vector
parallelism to the region. On the other hand, if a parallel
region contains multiple loops, the innermost loop will be
assigned vector level parallelism, and the outermost loops
will be assigned gang and worker level parallelism [7]. GCC
will report the assigned level parallelism using the -fopt-info-
note-omp flag.

Listing 4 shows the matrix multiplication example with
the addition of the acc loop construct immediately following
the acc parallel construct. Here, GCC assigned gang and
vector level parallelism to the acc loop automatically.
#pragma acc parallel
#pragma acc loop
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
int t = 0;

for (k = 0; k < n; k++)
t += at(i, k, a) * at(k, j, b);

at(i, j, c) = t;
}

}

Listing 4: Matrix multiplication using acc parallel and acc
loop constructs

On Titan using GCC-gomp4, this change reduces the
execution time to 4.25 seconds.

3) Adding multiple parallel loops and specialized con-
structs: In Listing 4, only one parallel loop was added, so
effectively, GCC only utilized one level of parallelism. In
Listing 5, two more acc loops are added, and one of them
contains a reduction.
#pragma acc parallel present (a[0:n*n], \
b[0:n*n], c[0:n*n])
#pragma acc loop
for (i = 0; i < n; i++)
{
#pragma acc loop
for (j = 0; j < n; j++)
{
int t = 0;

#pragma acc loop reduction (+:t)
for (k = 0; k < n; k++)

t += at(i, k, a) * at(k, j, b);

at(i, j, c) = t;
}

}

Listing 5: Matrix multiplication using acc parallel, acc
loops, and vector reduction.

Here, the GCC compiler applied gang partitioning to the
outermost loop, worker partitioning to the middle loop, and
vector partitioning to the innermost loop containing the
reduction. On Titan using GCC-gomp4, this version of the
matrix multiplication code takes only 1.83 seconds. Table I
summarizes all the results for the different versions of the
code.

Code version Time (s)
Sequential 180.11

Parallel 3210.56
Parallel Loop 4.25

Parallel Loops/Reduction 1.83

Table I: Matrix Multiplication timings on Titan using the
GCC-gomp4 compiler.

In order to compare the behavior of the compilers used in
this study, the same procedure was repeated with GCC 6.3
upstream and PGI 17.1 on Titan. While a comparison using
a more modern GPU (e.g. P100) would be more appropriate,
ORNL does not currently have a P100-based Cray system.
The timings obtained with each tested compiler are shown in
Figure 1. The speedups obtained at each step of the porting
process measured on Titan relative to the sequential timing
are shown in Figure 2. The results show that on all cases
except for experiments run on Titan using PGI 17.1, adding
an acc parallel region without acc loop directives results
in slower code. This is due to the fact that GCC does not
autoparallelize the code. The highest speedup is obtained
with GCC-gomp4 after the code is fully ported to OpenACC.
On Titan, GCC-gomp4 was also able to achieve the fastest
version of the code. It is also worth noting that adding an acc
parallel section resulted in code approximately 20x slower
than the serial version. This is due to the fact that in GCC,
without the acc loop construct, the entire block is executed
by a single CUDA thread.

Figure 1: Timings of matrix multiplication code versions on
Titan using GCC gomp4, GCC 6.3 upstream, and PGI 17.1.

Figure 2: Speedup of matrix multiplication code versions on
Titan using GCC gomp4, GCC 6.3 upstream, and PGI 17.1.

IV. EXPERIMENTS

Several benchmark suites were used in this study in
order to evaluate GCC’s OpenACC implementation or GCC-
gomp4. Ideally, the evaluation should be able to measure:
how well (or poorly) does the compiler follow the most
current OpenACC specification, what is the performance of
the compiler constructs when compared to mature compilers,
and what is the impact in performance of kernels and
applications when the compiler is used. To meet the first
criterion, University of Houston’s OpenACC Verification &
Validation suite was used. The EPCC OpenACC benchmark
suite was used to measure and compare overheads for
common OpenACC constructs. Finally, the SPEC ACCEL
OpenACC benchmark suite and the KernelGen performance
suite were used to look at the performance of the compiler.
This section provides a description of each suite used and
explains the choices of tests made.

For all the experiments, Titan [8], ORNL’s flagship Cray
XK7 supercomputer was used. Compute nodes on Titan
contain a 16-core AMD Interlagos processor with a peak
flop rate of 140.2 GF and a peak memory bandwidth of
51.2 GB/s, and an NVIDIA Kepler K20X GPU with a
peak single/double precision flop rate of 3.935/1.311 TF and
a peak memory bandwidth of 250 GB/s. For experiments
on Titan three compilers were used: Mentor Graphics’
GCC gomp4 0-branch (GCC-gomp4), GCC 6.3.0 upstream
release (GCC 6.3-up), and PGI 17.1.

Experiments were also ran on Percival, ORNL’s XC40
Intel Knights Landing system using the PGI 17.1 compiler
and the -ta=multicore flag. However, given that GCC’s
OpenACC implementation does not currently support mul-
ticore architectures, we have not included Percival results in
this study.

A. OpenACC Validation & Verification Suite

The OpenACC validation test suite [1] is a suite of micro-
tests that aims at validating OpenACC implementations of

various OpenACC directives against the specification. The
suite consists of test cases for all directives supported in
version 1.0 of the OpenACC specification and many of
the directives included in version 2.0 of the specification.
This suite is currently being updated to reflect the changes
and additions to the OpenACC specification that are part of
version 2.5, however this updated version is expected to be
released later this year and so it was not used in this paper.

B. EPCC OpenACC Benchmark Suite

The EPCC OpenACC Benchmark Suite introduced in
2013 was designed to measure and compare the perfor-
mance of OpenACC compilers running on different archi-
tectures [2].

The suite contains three different levels of kernels. Level
0 tests measure overheads introduced when using certain
OpenACC constructs. Level 1 tests measure the perfor-
mance of 13 distinct computationally intensive linear algebra
kernels. Lastly, the suite also contains 3 kernels that are
representative of real-world applications that form the Level
2 tests. All the kernels and tests in the suite are written in C.
The suite has been used in the past to evaluate performance
of OpenACC implementations [9].

Because the suite has not been updated recently, there
were a few tests that did not work correctly with the
compilers used in this evaluation. All Level 2 tests resulted
in runtime errors, even with the PGI compiler which is
the more mature implementation among the three tested.
Furthermore, because of known limitations of the GCC-
gomp4 compiler, seven Level 1 tests were excluded. The
Parallel private and Parallel 1stprivate tests were not used
because GCC-gomp4 does not yet support subarrays within
the private or firstprivate clauses. In addition, all tests that
use the acc kernels directive were excluded.

C. SPEC ACCEL Benchmark Suite

The SPEC ACCEL benchmark was developed by the
Standard Performance Evaluation Corporation (SPEC) High
Performance Group (HPG) to measure the performance of
compute intensive parallel applications on accelerators. The
latest version of the SPEC ACCEL benchmark is v1.1 and
was released in September 2015 and contains two separate
benchmark sets. The first set contains 19 application kernels
that use OpenCL, and the second contains 15 application
kernels that use OpenACC. In this work, we will only look
at the latter.

The SPEC ACCEL OpenACC suite is comprised of seven
C, six Fortran, and two combined C and Fortran application
kernels. The OpenACC suite includes tests from the NAS
Parallel Benchmarks [10], the SPEC OMP2012 OpenMP
benchmark suite [11], and other representative applications
from the high performance computing (HPC) community.

Each benchmark comes with three distinct data sets:
test, train, and reference (ref). The reference data set is

used to compare the performance of benchmarks across
architectures.

Due to the known limitations of GCC’s OpenACC imple-
mentation described in Section II, only three benchmarks
part of the SPEC OpenACC suite were used: 304.olbm,
314.omriq, and 360.ilbdc. The remaining 12 application
kernels make use of features not currently supported by the
GCC gomp4 compiler, namely acc kernels.

1) 304.olbm: The 304.olbm benchmark is written in C
and it implements the Lattice Boltzmann Method (LBM).
The benchmark was derived from the SPEC CPU2006 [11]
470.lmb and Parboil 2.5 benchmarks [12].

2) 314.omriq: The 314.omriq benchmark is written in
C. It was derived from the MRI-Q benchmark part of the
Parboil benchmark suite [12], [13]. The benchmark performs
an MRI reconstruction.

3) 360.ilbdc: The 360.ilbdc benchmark is written in
Fortran and was ported to OpenACC from the SPEC
OMP2012 [11] 360.ilbdc benchmark. The kernel implements
the collision-propagation routine of an advanced 3D LBM
solver.

D. KernelGen OpenACC Performance Suite

The KernelGen performance test suite [4] is a suite of
OpenACC codes that was developed as part of the Kernel-
Gen project [14] that aimed at developing a prototype of
auto-parallelizing Fortran/C compiler for NVIDIA GPUs,
targeting numerical modeling code. The KernelGen project
itself appears to be dormant, however the performance test
suite continues to be a useful tool for evaluating the ability
of compilers to exploit “easy” parallelism in numerical code.

The suite [4] consists of several typical single precision
numerical algorithms on 2D or 3D regular grids. Each
algorithm is performed in 2-3 parallel spatial loops enclosed
into a non-parallel time iterations loop. Tests are partially
adopted from [15]. We used a modified version of the suite
that can be found at [16]. The test suite consists of the
following tests along with the programming language used
for the implementation

• divergence: 3-D divergence operator code (C).
• gameoflife Implementation of Conway’s game of

life (C).
• gaussblur 25-point Gaussian blur approximation

(C).
• gradiaent 3-D gradient operator code (C).
• jacobi Jacobi method iterations (Fortran)
• lapgsrb 25-point approximation of Laplace operator

(C)
• matmul Matrix-matrix multiplication (Fortran)
• sincos 3D implementation for z = sin(x) + cos(x)

(Fortran)
• tricubic Tricubic interpolation (C)
• tricubic2 Tricubic interpolation with alt values

grouping (C)

• uxx1 Variant of scheme for second derivative (C)
• vecadd Array sum (C)
• wave13pt 13-point 2-time levels explicit scheme for

wave equation (C).
The tests were modified slightly to update OpenACC

syntax that is not supported in the 2.5 version of the
specification (e.g. the use of gang(65535) clause) and to
address any compiler errors due to incomplete specification
of variables in acc parallel regions. Furthermore, the use of
acc kernels was changed into acc parallel to accommodate
the existing limitations in the GCC compiler as outlined in
Section II.

V. RESULTS

A. OpenACC V&V Results

Table II shows the results obtained from running the
OpenACC Verification and Validation suite v1.0 using GCC-
gomp4, PGI 17.1, and CCE 8.5.5.

Passed Failed CE RE Total
GCC-gomp4 163 17 56 57 293

PGI 17.1 204 19 20 51 294
CCE 8.5.5 158 27 38 72 295

Table II: Results from OpenACC Verification & Validation
suite.

While a complete analysis of all failures is beyond the
scope of this paper, we note that GCC-gomp4 performs
roughly on par with the Cray compiler in terms of total
successful tests. Many of the errors reported by GCC-gomp4
reflect a sometimes stricter interpretation of the OpenACC
specification. For example 18 compile time errors originate
from code such as that shown in Listing 6.
int A[N],B[N],C[N], D[N];
#pragma acc declare \
pcopy(A[0:N], B[0:N], C[0:N], D[0:N])

Listing 6: Array Sections in acc declare.

Where GCC-gomp4 flags the use of array sections A[0:N],
B[0:N] and D[0:N] in the acc declare directive. The PGI
compiler does not flag the same code, indicating a possible
different reading of the specification. The inclusion of GCC
into the mix of compilers that support OpenACC, and
the development of an updated version of the OpenACC
validation suite would help to clarify ambiguities in the
specification and fill any gaps that may exist in their testing.

Another source of GCC-gomp4 runtime errors stems
from the compiler’s sometimes aggressive optimization,
which may result in over allocation of resources on the
GPU. This results in error messages such as libgomp:
The Nvidia accelerator has insufficient resources to launch
’routine with name $ omp fn$0’; recompile the program
with ’num workers = 24’ on that offloaded region or ’-
fopenacc-dim=-:24’. This error is responsible for 4 runtime

errors in Table II, and better resource management during
optimization is one of the current development thrust areas
of the compiler.

B. EPCC OpenACC Benchmark Results

Figure 3 shows the results obtained from executing Level
0 data movement centric tests on Titan using the default
data size transfer of 2MB. When copying contiguous data,
the PGI compiler spends the least amount of time in the data
region for the three data sizes tested. Both GCC-gomp4 and
GCC 6.3 upstream, take a similar amount of time to transfer
the data from the host to the device, and vice-versa. For the
non-contiguous cases, however, GCC-gomp4 results in the
fastest time when copying data from the GPU to the host;
whereas PGI results in the fastest time when copying data
from the host to the GPU.

Figure 3: EPCC OpenACC benchmark: Data movement
overheads from host to device, and device to host on Cray
XK7 system. Lower values represent better performance.

For the remaining Level 0 tests, the benchmark suite re-
ports the time difference between two slightly different con-
structs. For example, in the case of the Parallel Reduction
test shown in Listing 7. The test reports the difference
between computing a acc parallel loop and computing a acc
parallel loop reduction construct. A negative value indicates
that the first construct took longer than the first.

#pragma acc data copyin(a[0:n])
{
t1_start = omp_get_wtime();

#pragma acc parallel loop reduction(+:z)
for (i=0;i<n;i++){
z += a[i];

}
t1_end = omp_get_wtime();

t2_start = omp_get_wtime();
#pragma acc parallel loop
for (i=0;i<n;i++){
z += a[i];

}
t2_end = omp_get_wtime();

}
...

return((t2_end-t2_start) - (t1_end-t1_start));
}

Listing 7: Code snippet from Parallel Reduction test

Results obtained from executing the remaining Level 0
tests are shown in Figure 4. In the case of Parallel If,
GCC-gomp4 incurs in a smaller overhead than the other
two compilers. The same behavior is repeated for all data
sizes tested because additional time is spent in the loop
as the loop increases in size. For the Parallel Combined
test, the GCC-gomp4 compiler shows the least overhead,
closely followed by the PGI compiler. The GCC upstream
compiler shows an order of magnitude higher overhead
for this test. The results from the Update Host test show
that GCC gomp4 has greatly improved the performance
of the operation in comparison with GCC upstream. The
PGI compiler shows the smallest amount of overhead when
using the acc update host. For the Parallel Invocation test,
the overhead increases proportionally with the data size for
both the GCC-gomp4 and the PGI compilers. The PGI com-
piler shows the smallest overhead, and the GCC upstream
compiler the largest. The Parallel Reduction test shows that
all compilers incur in additional overhead when using a
reduction operation. The GCC-gomp4 compiler incurs the
highest overhead among the three compilers, in fact, it is
consistently an order of magnitude larger than the other
two compilers. Among the three, PGI incurs in the smallest
overhead. The overhead is explained due to the fact that
reductions require and additional step to collect the results
from all the private versions of the reduction variable. In
GCC-gomp4, the overhead will vary depending on the type
of reduction used. gang and worker reductions utilize CUDA
atomics operations, whereas vector reductions use CUDA
warp shuffle instructions which are faster.

Figure 4: EPCC OpenACC benchmark: Parallel constructs
overheads on Cray XK7 system. The figure shows the
difference in time between two regions or loops.

Results obtained from executing Level 1 tests on Titan
using the GCC gomp4, GCC 6.3 upstream, and PGI 17.1

compilers are shown in Figure 5. For all compute intensive
linear algebra kernels, the PGI 17.1 compiler performed the
best, followed by GCC-gomp4.

The results from Level 1 tests also demonstrate the
improvements available in the GCC-gomp4 branch of the
compiler when compared to the latest release.

C. SPEC ACCEL OpenACC Suite Results

Three benchmarks part of the SPEC ACCEL OpenACC
suite were used to measure the performance of GCC-gomp4
against that of the GCC 6.3-up and PGI 17.1 compilers. Fig-
ure 6 shows the timings obtained from running benchmarks
304.olbm, 314.omriq, and 360.ilbdc using the reference data
sets. Please note that these timings are measured estimates.

The estimates measured show that the performance of
GCC-gomp4 against the PGI 17.1 compiler for the SPEC
ACCEL OpenACC benchmarks on Titan. Table III summa-
rizes the impact in performance observed when comparing
the two compilers.

Benchmark Perf. Diff. Ref
304.olbm 11.48%
314.omriq -100.00%
360.ilbdc -51.21%

Table III: Performance difference between the PGI 17.1 and
the GCC-gomp4 compiler. A positive number means GCC-
gomp4 performs better than PGI 17.1.

D. KernelGen OpenACC Suite Results

The performance results for the KernelGen performance
suite are shown in Figure 7. In addition to the software
environment described in Section IV, the suite was executed
using with the “standard” optimization flag (-O3) enabled
and disabled for PGI 17.1 compiler and GCC-gomp4. The
mainline GCC 6.3 was executed using with the optimization
flag enabled. In these runs, the mainline GCC 6.3 failed to
successfully run the lapgsrb and uxx1 tests while the
tests were successfully completed using the GCC-gomp4
version. Furthermore, the plot shows the performance im-
provements that have been implemented in the GCC-gomp4
branch, and which will be reflected in the upcoming GCC
7.0 release. One observation is that enabling optimization
makes a bigger difference with the GCC-gomp4 compiler
than with PGI. This is because PGI enables -O2 by default,
whereas GCC uses -O0.

VI. DISCUSSION

The results presented here clearly show the performance
improvements that have been added to GCC in the gomp-
4 0-branch. The GCC-gomp4 compiler outperformed PGI
when running the 304.olbm (ref data sets) SPEC ACCEL
OpenACC test on the NVIDIA K20X GPUs. GCC-gomp4

was also able to achieve the highest speedup for the sim-
ple matrix multiplication example presented in Section III.
There are several features that are not currently available in
GCC-gomp4 described in Section V. As the implementation
continues to mature and more features are added, a full
feature evaluation could be conducted.

One particular advantage of the GCC OpenACC imple-
mentation is that it relies on the gomp4 runtime which
is shared with the OpenMP 4.5 implementation. In the
paper [17] we describe the differences between OpenMP
4.5 and OpenACC 2.5. The majority of directives expressed
in OpenACC 2.5 can be lowered to OpenMP 4.5 as an
intermediate translation, which then can be lowered to a
common runtime. The Cray compiler, for example, uses the
same OpenMP and OpenACC runtimes. This is beneficial
because any bug fixes or improvements that may be done in
the runtime to support OpenACC, will also have a positive
impact in the OpenMP 4.5 implementation.

A. OpenACC benchmarks

As it was highlighted in the description of tests in
Section IV, several benchmarks including the EPCC Open-
ACC benchmark suite, and OpenACC V&V suite have
not been updated recently. While there is a clear need to
be able to validate and verify an implementation against
the specification, as the OpenACC V&V suite attempts to
do, if the benchmark is not kept current with the latest
specification, the tests become less valuable. Furthermore, as
described in Section V, as the specification changes, some
tests will inevitably become not compliant with the current
specification.

Benchmark suites must also be regularly tested. As evi-
denced by the results from the EPCC OpenACC benchmark
suite, all Level 2 tests produced CUDA errors. This could
point to a bug in the implementation tested, but it could also
be a bug with the test. Because SPEC ACCEL OpenACC
tests can serve as substitutes of real-world kernels, excluding
EPCC OpenACC Level 2 tests did not greatly impact this
evaluation. However, it highlighted the fact that the suite
does not run out of the box with the compilers tested.

It is also worth noting, than in some cases, benchmarks are
only available for one programming language. For instance,
the EPCC OpenACC benchmark suite has tests exclusively
in C, whereas other suites like SPEC ACCEL OpenACC,
attempt to include cases that use both C, Fortran, and a
combination of both. Furthermore, the majority of tests
in the SPEC ACCEL OpenACC benchmark use the acc
kernels directive which is not well supported in GCC. In
real applications, OpenACC parallel is used because it is
more prescriptive than kernels and more tunable for a target
architecture. One suggestion would be to encourage bench-
mark maintainers, like SPEC HPG, to revise benchmarks
so they give preference to the more commonly used acc
parallel directive.

Figure 5: EPCC OpenACC benchmark: Execution time of matrix kernels on the Cray XK7 system.

Figure 6: SPEC ACCEL OpenACC: Measured estimates for
eference data sets.

VII. CONCLUSION

This study presents an overview of the design and imple-
mentation of GCC’s OpenACC compiler. The latest version

Figure 7: KernelGen Performance Comparison.

of the Mentor Graphics public branch of GCC, namely
GCC-gomp4, was used to evaluate the performance and
correctness of the implementation in its current state. The
paper details the known limitations of the compiler, which
in part determined the experiments choices made along the
way, as well as how the compiler maps certain commonly

used OpenACC constructs onto the hardware.
The results show that the GCC-gomp4 compiler can in

some cases outperform mature OpenACC compilers like
PGI, as observed in the case of the 304.olbm benchmark for
the ref data sets. Overall, for the SPEC ACCEL OpenACC
benchmarks used, for example, the GCC-gomp4 compiler is
on average approximately 47% slower than PGI for the ref
data set. Due to the fact that some OpenACC features are
not yet implemented in GCC, the set of tests that can be
executed without modification is limited.

Having additional compilers that support OpenACC is an
important requirement in order for developers to continue
adopting OpenACC. In addition, it is important to note
that the different architectural trends in HPC, make it a
requirement for compilers to be able to support more than
one target. The PGI compiler already provides the option to
build OpenACC code for manycore architectures in addition
to GPUs, and our results on Percival showed that it performs
well on both architectures. For the comparison to be fair,
support for more architectures is needed in GCC and other
OpenACC implementations.

Another important finding from this work is that Open-
ACC test suites do not currently help to verify and validate
the latest OpenACC specification. Several of the benchmarks
utilized here have not been updated since OpenACC v1.0
which further limits researchers’ ability to comprehensively
evaluate OpenACC compilers. Additional work is needed to
ensure that benchmarks are updated to use the latest features
and also to keep up with changes to the semantics of the
specification. One such subtle change in the behavior of the
copy directive occurred between version 2.0 and 2.5. Such
changes need to be tracked closely and reflected in the test
suites.

VIII. FUTURE WORK

As work on the GCC-gomp4 branch progresses and
changes are included in a future GCC release, this study
should be repeated to include benchmarking of a wider range
of features in OpenACC. This study can also be expanded
to perform a comprehensive evaluation and comparison of
current OpenACC compilers.

In addition, tests used in this evaluation should be ex-
panded to include features introduced in the latest version
of the OpenACC specification.

ACKNOWLEDGMENT

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Labora-
tory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.

REFERENCES

[1] C. Wang, R. Xu, S. Chandrasekaran, B. Chapman, and
O. Hernandez, “A validation testsuite for openacc 1.0,” in
2014 IEEE International Parallel Distributed Processing
Symposium Workshops, May 2014, pp. 1407–1416.

[2] N. Johnson, “EPCC OpenACC benchmark suite,”
https://www.epcc.ed.ac.uk/research/computing/
performance-characterisation-and-benchmarking/
epcc-openacc-benchmark-suite, 2013.

[3] “SPEC ACCEL Benchmark Suite,” https://www.spec.org/
accel/.

[4] “The kernelgen performance test suite,” https:
//hpcforge.org/plugins/mediawiki/wiki/kernelgen/index.
php/Performance Test Suite.

[5] “OLCF Lends Expertise for Introducing GPU Accelerator
Programming to Popular Linux GCC Compiler,” https://www.
olcf.ornl.gov/2013/11/14/olcf-lends-expertise-for-introducing
-gpu-accelerator-programming-to-popular-linux-gcc-compiler/.

[6] “GCC OpenACC Wiki,” https://gcc.gnu.org/wiki/OpenACC.

[7] “GCC OpenACC Wiki: Loop Partitioning,” https://gcc.gnu.
org/wiki/OpenACC#Automatic Loop Partitioning.

[8] W. Joubert, R. K. Archibald, M. A. Berrill, W. M. Brown,
M. Eisenbach, R. Grout, J. Larkin, J. Levesque, B. Messer,
M. R. Norman, and et al., “Accelerated application de-
velopment: The ORNL Titan experience,” Computers and
Electrical Engineering, vol. 46, May 2015.

[9] L. Grillo, F. de Sande, and R. Reyes, “Performance evaluation
of openacc compilers,” in Parallel, Distributed and Network-
Based Processing (PDP), 2014 22nd Euromicro International
Conference on. IEEE, 2014, pp. 656–663.

[10] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning,
R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson,
T. A. Lasinski, R. S. Schreiber et al., “The NAS parallel
benchmarks,” The International Journal of Supercomputing
Applications, vol. 5, no. 3, pp. 63–73, 1991.

[11] “SPEC OMP2012 Benchmark Suite,” https://www.spec.org/
omp2012/.

[12] “SPEC ACCEL Benchmark Suite Documentation,” https://
www.spec.org/auto/accel/Docs.

[13] “Parboil Benchmarks,” http://impact.crhc.illinois.edu/parboil/
parboil.aspx.

[14] D. Mikushin, N. Likhogrud, E. Z. Zhang, and C. Bergström,
“Kernelgen – the design and implementation of a next
generation compiler platform for accelerating numerical
models on gpus,” in Proceedings of the 2014 IEEE
International Parallel & Distributed Processing Symposium
Workshops, ser. IPDPSW ’14. Washington, DC, USA: IEEE
Computer Society, 2014, pp. 1011–1020. [Online]. Available:
http://dx.doi.org/10.1109/IPDPSW.2014.115

[15] M. Christen, O. Schenk, and Y. Cui, “Patus for convenient
high-performance stencils: Evaluation in earthquake simula-
tions,” in High Performance Computing, Networking, Storage
and Analysis (SC), 2012 International Conference for, Nov
2012, pp. 1–10.

[16] “Performance test suite for openacc compiler, intel mic,
patus and single-core cpu,” https://github.com/pathscale/
OpenACC-benchmarks.

[17] G. Juckeland, O. Hernandez, A. C. Jacob, D. Neilson,
V. G. V. Larrea, S. Wienke, A. Bobyr, W. C. Brantley,
S. Chandrasekaran, M. Colgrove, A. Grund, R. Henschel,
W. Joubert, M. S. Müller, D. Raddatz, P. Shelepugin,
B. Whitney, B. Wang, and K. Kumaran, From Describing to
Prescribing Parallelism: Translating the SPEC ACCEL Open-
ACC Suite to OpenMP Target Directives. Cham: Springer
International Publishing, 2016, pp. 470–488. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-46079-6 33

