
ORNL is managed by UT-Battelle 
for the US Department of Energy

An in-depth 
evaluation of GCC’s 
OpenACC
implementation on 
Cray systems

Verónica G. Vergara Larrea, ORNL
Wael R. Elwasif, ORNL
Oscar Hernandez, ORNL
Cesar Philippidis, Mentor Graphics
Randy Allen, Mentor Graphics



2 CUG 2017

Overview

• OpenACC implementations
• GCC’s OpenACC implementation
• Known Limitations
• An Example
• Evaluating GCC’s OpenACC
• Conclusions
• Future Work



3 CUG 2017

OpenACC implementations

• Relatively new directive-based specification
– Current release is v2.5

• Several implementations already support OpenACC:
– PGI, Cray Compiler Environment, and Pathscale

• Support different targets:
– PGI can offload to both GPUs and multicore targets
– CCE can offload to GPUs (craype-accel-nvidia*), host (craype-accel-

host)
– Pathscale can offload to GPUs and host 

• Recently, GCC started an effort to add support for OpenACC
• Partial support for OpenACC is already available in GCC 6.3
• This work explores the functionality and performance of GCC’s 

OpenACC implementation



4 CUG 2017

GCC’s OpenACC implementation

• Mentor Graphics is developing and maintaining the 
OpenACC implementation in GCC’s gomp-4_0-branch 
development branch

• GCC is widely used, open source, that supports a subset of 
CilkPlus, OpenACC 2.0a, and OpenMP 4.5 programming 
models

• GCC’s support for for OpenACC was built on top of its 
existing support for OpenMP
– Extensive modifications were required to implement OpenACC

efficiently on GPUs
– GCC does not currently offload OpenMP to GPUs, only to Intel MIC 

targets



5 CUG 2017

GCC’s OpenACC Known Limitations

• Only supports NVIDIA GPUs
– Single CPU thread is used if executed on multicore hosts

• No support for nested parallelism, device_type, and bind
clauses

• Dynamic arrays in OpenACC data constructs limitations:
– Pointer-to-arrays not supported
– Target host not supported

• Loop private variables stored in local memory, rather than 
shared

• private and firstprivate clauses do not support 
subarrays

• Unable to detect parallelism inside acc kernels regions
– Fallbacks to single thread execution



6 CUG 2017

Evolution of GCC’s OpenACC implementation

GCC 5
• Highly 

experimental
• Vector 

parallelism

GCC 6
• Gang, worker, 

vector 
parallelism

• Preliminary 
support for 
OpenACC
routines

GCC 6.3 
(upstream)

GCC 6.3 
(gomp4)
• Additional 

OpenACC
functionality

• Enhanced 
performance 
for NVIDIA 
GPUs

GCC 7
• Focuses on 

performance
• Refines support 

for OpenACC
2.0a routines

• Adds support for 
the declare 
directive

GCC 8
• Includes full 

support for 
OpenACC 2.5



An Example: Matrix 
Multiplication



8 CUG 2017

Porting Matrix Multiplication: Parallel



9 CUG 2017

Porting Matrix Multiplication: Parallel Loop



10 CUG 2017

Porting Matrix Multiplication: Parallel Loops + 
Reductions



11 CUG 2017

Porting Matrix Multiplication



Evaluating GCC’s 
OpenACC



13 CUG 2017

Evaluating Compliance: OpenACC V&V

• Used the OpenACC Verification and Validation suite from 
University of Houston

• Validates implementations to the OpenACC v1.0 
specification using microtests
– New version targeting OpenACC v2.5 is expected to be available 

later this year

Compiler Passed Failed CE RE Total
GCC-gomp4 163 17 56 57 293
PGI 17.1 204 19 20 51 294
CCE 8.5.5 158 27 38 72 295



14 CUG 2017

Measuring OpenACC overheads: 
EPCC OpenACC benchmark suite

• The EPCC OpenACC benchmark suite was introduced in 
2013
– The suite has not been updated.

• Designed to measure and compare the performance of 
OpenACC implementations on different architectures

• Contains three levels of tests:
– Level 0: overheads of certain OpenACC constructs
– Level 1: performance of computationally intensive linear algebra 

kernels
– Level 2: kernels from real-world applications

• A few tests produce compilers and runtime errors
– Even with mature compilers like PGI



15 CUG 2017

Measuring OpenACC overheads: 
EPCC OpenACC benchmark suite

Data movement Parallel constructs

GCC-gomp4 fastest GPU -> CPU
PGI fastest CPU -> GPU

Parallel Reduction much slower
with GCC

(varies by type of reduction)



16 CUG 2017

Measuring OpenACC overheads: 
EPCC OpenACC benchmark suite

Linear Algebra Kernels



17 CUG 2017

Measuring OpenACC performance:
SPEC ACCEL OpenACC

• Developed by SPEC High Performance Group to measure 
performance for compute intensive parallel applications on 
accelerators

• Released in September 2015
• Contains two benchmark sets: OpenCL and OpenACC
• OpenACC set contains 15 application kernels: 7 C kernels, 6 

Fortran, 2 combined.
• Three data sets: test, train, ref. Only ref is used to compare 

performance across architectures
• Only three benchmarks that use acc parallel could be used

– The rest use acc kernels and run on a single thread



18 CUG 2017

Measuring OpenACC performance:
SPEC ACCEL OpenACC

Measured Estimates Performance Difference

Benchmark Perf. Diff
304.olbm 11.48%
314.omriq -100.00%
360.ilbdc -51.21%



19 CUG 2017

Measuring OpenACC performance:
KernelGen

• Set of OpenACC codes developed as part of the KernelGen
project

• Evaluates the ability of compilers to exploit “easy” parallelism
• Consists of single precision numerical algorithms in 2D and 

3D grids
• 10 tests use C, 3 use Fortran

– Tests were modified to update OpenACC syntax to latest specification
– Also modified tests to use acc parallel where acc kernels

were used

• Tests executed with and without optimization flags



20 CUG 2017

Measuring OpenACC performance:
KernelGen



21 CUG 2017

Conclusions

• GCC’s OpenACC implementation is now available with 
partial support for OpenACC v2.0a
– Mentor Graphics public GCC branch gomp-4_0-branch has the latest 

updates

• GCC-gomp4 can in some cases outperform more mature 
implementations.
– As was the case with the SPEC ACCEL 304.olbm benchmark
– Overall, GCC is ~47% slower than PGI for SPEC ACCEL measured 

estimates

• Known limitations of the implementation reduce the number 
of tests available for the evaluation



22 CUG 2017

Conclusions (cont’d)

• For portability, OpenACC implementations should support 
many targets
– e.g., PGI achieves good performance on both GPU-based and 

manycore-based systems
– To compare performance, support for additional architectures is 

needed in GCC’s OpenACC implementation

• An open source implementation is useful to expand the 
adoption of OpenACC

• Many of the benchmarks available have not been recently 
updated
– Community involvement could improve and encourage updates to 

benchmarks



23 CUG 2017

Future Work

• Evaluation should be repeated when GCC 7 is released
– And again with GCC 8

• Work on validation benchmarks for OpenACC 2.5 is on-
going

• A larger study including more implementations should be 
conducted once GCC’s OpenACC implementation is more 
mature
– Should include newer hardware as well as additional compilers

• Experiments using a Cray XC40 KNL system were 
conducted using PGI. 
– Need GCC to also support multicore architectures to fully evaluate 

and compare implementations



24 CUG 2017

Thank you!

This research used resources of the Oak Ridge Leadership Computing Facility at 
the Oak Ridge National Laboratory, which is supported by the Office of Science of 

the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Questions?


