Extending CLE6 to a multi-
supercomputer OS

Douglas Jacobsen
NERSC

Cray User Group Meeting 2017

Motivation

NERSC operates four Cray XC machines
* Two well known production machines: cori (XC40) and edison (XC30)
* Two less well known TDS machines: gerty (XC40-AC) and alva (XC30-AC)

We have many people contributing to the software configuration of the system
e Seven Site Administrators in the Computational Systems Group
* Three Cray-Ons providing Software Support
* Five or more from other teams directly manipulating parts of the system configuration

Goals:

TDS should model as perfectly as possible the production machine for development and
reproducing system problems, validating hardware

TDS should be experimental and possible to wildly change configurations ahead of the production
machine to validate new work

Expense/effort invested in configurations should be directly transferrable to all systems
All changes should be trackable, traceable, revert-able, reviewable

Rhine Management

Recipes

Package Collections Zypper Repos

Config Sets NIMS

Lists of rom names

Lists (ordered) of: .
Binary RPMS
* pkgcoll
* zZypper repos
* Recipes

more

initrd files
or
directories

Images

CLE6 Management

Config Sets

worksheets Booted,

Configured
Node

ansible

Image
Ansible
Plays/Facts

Co-Managing Multiple Systems

* All platforms run exactly the same site-provided ansible plays
* Plays operate on platform-specialized variable/fact trees

* All platforms use identical Package Collections

* All platforms use identical Recipes

* All platforms use mostly the same RPMs in same-named zypper repos

e Co-manage worksheets across all platforms (not identical in some cases)
* Avoid simple-sync except for credential (munge/certificate) distribution
* Do everything possible the Rhine/CLE6/SLES way

* Means that we prefer to add process and a few simple tools to achieve all this
» Prefer RPM installation / LiveUpdates to network fs installation for system software

Ansible

 All plays need to work on all machines

* Achieved by handling machine-specific settings with machine-specific variables,
and ensuring we have correct-type defaults in role-specific defaults/main.yaml

Example Role:

dmj@corismwl:~/git/corenerscansible/roles/slurm-redis> find

./defaults
./defaults/main.yaml
./handlers./handlers/main.yaml

./tasks

./tasks/main.yaml
./templates./templates/slurm-redis.conf.]
./vars

./vars/alva.yaml
./vars/alva secrets.yaml
./vars/cori.yaml
/vars/cori secrets vaml

Ansible-Vault encrypted
files

Ansible

* All plays need to work on all machines

* Achieved by handling machine-specific settings with machine-specific variables,
and ensuring we have correct-type defaults in role-specific defaults/main.yaml

* Make heavy use of templating

Example role tasks/main.yaml:

- include_vars: "{{nersc.machineName}}.yaml"
- include_vars: "{{nersc.machineName}} secrets.yaml”
no log: true
- file: path=/etc/redis state=directory mode=0755 owner=root
- template: src=slurm-redis.conf.j2 dest=/etc/redis/slurm-redis.conf
owner=redis group=redis mode=0600

- file: path={{slurmRedisSaveStateDir}} state=directory
owner=redis group=redis mode=07/00

- file: path=/var/run/redis state=directory
owner=redis group=redis mode=07/00

- service: name=redis@slurm-redis enabled=yes

Ansible Fact Tree Customization

* Inject facts into configset-based facts tree
corismwl:/var/opt/cray/imps/config/sets/global/config # cat nersc _vars.yaml

nersc:
machineName: cori
machineMailinglList: <retracted>@nersc.gov

* These, like all files in cfgset config/*yaml files, gets linked to
/etc/ansible/host vars/localhost/<integer>.yaml

* Accessible in ansible plays using dictionary naming, i.e.,
nersc.machineName

* The configurator will ignore so long as missing _config in filename

Ansible Fact Tree Customization

* Add python script that outputs dynamically discoverable variables in
/etc/gnsible/facts.d

* Variables accessible in ansible local.<filename no ext>

boot-cori:~ # /etc/ansible/facts.d/nersc.fact
{"node_groups": ["boot nodes", "bootnodes"], "machineName": "cori"}
boot-cori:~ #

* We used this capability to make node groups work on XC and elLogin in
UPO1. The NERSC-provided node_Froups variable is less useful in UPO3
since UPO3 provides similar capabilities (and more)

e Having own fact tree did allow us to migrate our plays extremely quickly
since our interface remained unchanged

* Installed in all images using a common PkgColl installing a machine-specific
RPM (nersc-ansible-sec)

Ansible Vault

* Encrypts sensitive information with AES-256 encryption

* Allows us to securely check-in “lesser” passwords (encrypted) into our on-
site BitBucket git (more on that later)

* Relies on a key embedded in all images
» postbuild _copy/postbuild_chroot to copy key from SMW during image construction

 Relies on a modification to /etc/ansible/ansible.cfg (before ansible runs)

e Post-install scriptlet in nersc-ansible-sec-<machineName>.rpm adds:
vault_password_file=/path/we/use/to/ansible.hash

» Separate keys (and secrets) for all platforms, prevents accidental crosstalk
between systems

 Vault files only editable on SMW

Recipes

Recipes (and package
collections) are stored in json
files under /etc/opt/cray/imps
We store these files in git (later)
We copy the json files and
maintain exactly the same
recipes, pkgcoll on all systems
“diff_imps.py” (custom tool) is
used to detect changes

dmj@corismwl:~/git/nersc-cle6/imps> recipe show nersc-compute-production..
nersc-compute-production-cle 6.0up@3 sles 12 x86-64 ari:
name: nersc-compute-production-cle 6.0up®3 sles 12 x86-64 ari
Created: 2016-06-08T08:55:45
repositories:
common_cle 6.0up0®3 sles 12 x86-64 ari_updates
sle-sdk 12 x86-64

sle-module legacy 12 x86-64

sles 12 x86-64 updates

nersc-slurm

common_cle 6.0up0®3 sles 12 x86-64 ari
recipes:

nersc-seed _common_6.0up0®3 sles 12 x86-64

compute-large cle 6.0up03 sles 12 x86-64 ari

package _collections:
nersc-slurm-build-deps
slurm-build cle 6.0up®3 sles 12
cray-bootlog
nersc-initrd-addons
nersc-base-compute
nersc-blcr
nersc-slurm-compute
nersc-ansible
nersc-vtune-kmod
nersc-base

path: /etc/opt/cray/imps/image recipes.d/image recipes.local.json

Detecting changes to Recipes/Pkgcoll

dmj@gertsmw:~/git/nersc-cle6/imps> git checkout abcdefO@l -- image recipes.local.json
dmj@gertsmw:~/git/nersc-cle6/imps> ./diff_imps.py

Sys recipe:nersc-service-production-cle 6.0up03 sles 12 x86-

64 ari:postbuild chroot:sed -i

's/groups| (network="hsn")/groups|grps2hosts(network="hsn")/g'
/etc/ansible/roles/ntp/tasks/ntp.yaml

Sys recipe:.nersc-admin-production-cle 6.0up03 sles 12 x86-64 ari:postbuild chroot
Sys recipe:.nersc-epurge-production-cle 6.0up03 sles 12 x86-

64 ari:.postbuild chroot:echo -e '"#!/bin/bash\nexit 0' > /etc/opt/cray/pre-
pivot.d/32ConfigNetworkUdevRules.sh

Computes diffs and displays either “sys” or “git” to tell us what is changed in recipes
(like diff “<“ or “>”
Helper scripts keep git and system in-sync

Worksheet/Config files in cfgsets

* Worksheets are stored in git (not config yaml) files
* 36 worksheets are identical for all platforms

¢ 11 ?re customized for specific platforms (cori_cray_net worksheet.yaml,
etc

* Update worksheets either singly or en masse:

« cfgset update -w nersc-cle6/imps/n8_worksheets/gerty cray_network_worksheet.yaml --
no-scripts po

or

dmj@gertsmw:~/git/nersc-cle6/imps> ./update worksheets ./n8 worksheets p0
skipping alva cray_auth worksheet.yaml

skipping cori_cray _net worksheet.yaml
run: cfgset update -w "/tmp/tmpcsSZbL/*yaml" --no-scripts p0
dmj@gertsmw:~/git/nersc-cle6/imps>

finally

cfgset update pO m

Detecting Changes to worksheets

* During patchset installations / etc, values in cfgsets may be changed.
After running cfgset update, or installing patches, check for diffs:

dmj@gertsmw:~/git/nersc-cle6/imps> ./diff_worksheet.py n8 worksheets p0
skipping alva cray_auth_worksheet.yaml

worksheets in n8 worksheets but not in cfgset pO: set([])
worksheets in cfgset p0® but not in n8 worksheets: set([])

n8 worksheets/gerty cray_dws _worksheet.yaml /var/opt/cray/imps/config/sets/p@/worksheets/cray _dws worksheet.yaml
values differ between git and cfgset for keys: ['cray dws.settings.dwmd.data.dwmd conf']
git: cray _dws.settings.dwmd.data.dwmd conf, ['iscsi_initiator_cred path: /etc/opt/cray/dws/iscsi_target secret',
'iscsi_target cred path: /etc/opt/cray/dws/iscsi_initiator_secret', \
'capmc_os_cacert: /etc/pki/trust/anchors/certificate_authority.pem']
cfg: cray _dws.settings.dwmd.data.dwmd _conf, ['iscsi_initiator_cred path: /etc/opt/cray/dws/iscsi_target secret',

'iscsi_target cred path: /etc/opt/cray/dws/iscsi_initiator_secret',
'capmc_os_cacert: /etc/pki/trust/anchors/certificate authority.pem', \
'xfs_mnt_opt: \\"allocsize=1lm,nodiscard\\""]

Git Process

Git Repos:

CoreNerscAnsible — has all ansible plays, roles, variables
nersc-cle6 — has pkgcol, recipes, worksheets for all systems
nersc-slurm — slurm configurations and deployments

Branching:

cle6.0up01

cle6.0up02

cle6.0up03
MyDevelopmentBranchForAwesomeFeature
release/cle6.0up01

release/cle6.0up02

release/cle6.0up03

All content created, committed, and pushed
by “regular” uids. root has read-only pull
permissions on repos

"ansible” directory in cfgsets is a direct clone
of CoreNerscAnsible

IMPs components are updated in-place on
the system

Future Directions

* We still manage zypper repos with rsync and manual calls to "repo
update <reponame”

* Plan to implement remote metarepo with git-supported lists of RPMs
that are to be included in each

* This work has not been initiated

* We are currently updating alva to cle6.0up03
 Edison will move (with these techniques) to cle6.0up04 in short order

Conclusions

* These techniques allowed us to upgrade TDS (gerty) from up01 to
up03 in one week.
* We concurrently updated cori cfgset on the gerty smw

 Stored, identical values for ansible, images, worksheets, allowed us to
perform upgrade of cori in a single day
e (if btrfs on the SMW hadn’t melted we would have been early!)

* Group is still learning and refining git skills and techniques
* Proven successful across multiple contributors though

* We can update systems with confidence by correctly performing
exactly the same operations, assisted by SCM

The End

Questions?

