
Extending	CLE6	to	a	multi-
supercomputer	OS

Douglas	Jacobsen
NERSC

Cray	User	Group	Meeting	2017

Motivation
• NERSC	operates	four	Cray	XC	machines

• Two	well	known	production	machines:	cori (XC40)	and	edison (XC30)
• Two	less	well	known	TDS	machines:	gerty (XC40-AC)	and	alva (XC30-AC)

• We	have	many	people	contributing	to	the	software	configuration	of	the	system
• Seven	Site	Administrators	in	the	Computational	Systems	Group
• Three	Cray-Ons providing	Software	Support
• Five	or	more	from	other	teams	directly	manipulating	parts	of	the	system	configuration

Goals:
• TDS	should	model	as	perfectly	as	possible	the	production	machine	for	development	and	
reproducing	system	problems,	validating	hardware

• TDS	should	be	experimental	and	possible	to	wildly	change	configurations	ahead	of	the	production	
machine	to	validate	new	work

• Expense/effort	invested	in	configurations	should	be	directly	transferrable	to	all	systems
• All	changes	should	be	trackable,	traceable,	revert-able,	reviewable

Rhine	Management
Package	Collections

Recipes

Zypper Repos

Lists	of	rpm	names

Images

Lists	(ordered)	of:
• pkgcoll
• zypper repos
• Recipes
• more

Binary	RPMS

initrd files
or

directories

global

p0

p0_test

Config Sets NIMS

Nodes
NodesNodesNodes

Nodes

CLE6	Management
Config Sets

config

worksheets

dist

ansible

files
Image
Ansible

Plays/Facts

cray-
ansible

Booted,	
Configured	

Node

systemd

Co-Managing	Multiple	Systems

• All	platforms	run	exactly	the	same	site-provided	ansible plays
• Plays	operate	on	platform-specialized	variable/fact	trees

• All	platforms	use	identical	Package	Collections
• All	platforms	use	identical	Recipes
• All	platforms	use	mostly the	same	RPMs	in	same-named	zypper repos
• Co-manage	worksheets	across	all	platforms	(not	identical	in	some	cases)
• Avoid	simple-sync	except	for	credential	(munge/certificate)	distribution
• Do	everything	possible the	Rhine/CLE6/SLES	way

• Means	that	we	prefer	to	add	process	and	a	few	simple	tools	to	achieve	all	this
• Prefer	RPM	installation	/	LiveUpdates to	network	fs	installation	for	system	software

Ansible
• All	plays	need	to	work	on	all	machines
• Achieved	by	handling	machine-specific	settings	with	machine-specific	variables,	
and	ensuring	we	have	correct-type	defaults	in	role-specific	defaults/main.yaml

dmj@corismw1:~/git/corenerscansible/roles/slurm-redis> find .
.
./defaults
./defaults/main.yaml
./handlers./handlers/main.yaml
./tasks
./tasks/main.yaml
./templates./templates/slurm-redis.conf.j2
./vars
./vars/alva.yaml
./vars/alva_secrets.yaml
./vars/cori.yaml
./vars/cori_secrets.yaml
./vars/gerty_secrets.yaml

Example	Role:

Ansible-Vault	encrypted
files

Ansible
• All	plays	need	to	work	on	all	machines
• Achieved	by	handling	machine-specific	settings	with	machine-specific	variables,	
and	ensuring	we	have	correct-type	defaults	in	role-specific	defaults/main.yaml
• Make	heavy	use	of	templating

- include_vars: "{{nersc.machineName}}.yaml"
- include_vars: "{{nersc.machineName}}_secrets.yaml”
no_log: true

- file: path=/etc/redis state=directory mode=0755 owner=root
- template: src=slurm-redis.conf.j2 dest=/etc/redis/slurm-redis.conf

owner=redis group=redis mode=0600
- file: path={{slurmRedisSaveStateDir}} state=directory

owner=redis group=redis mode=0700
- file: path=/var/run/redis state=directory

owner=redis group=redis mode=0700
- service: name=redis@slurm-redis enabled=yes

Example	role	tasks/main.yaml:

Ansible Fact	Tree	Customization

• Inject	facts	into	configset-based	facts	tree

• These,	like	all	files	in	cfgset config/*yaml files,	gets	linked	to	
/etc/ansible/host_vars/localhost/<integer>.yaml
• Accessible	in	ansible plays	using	dictionary	naming,	i.e.,	
nersc.machineName
• The	configurator	will	ignore	so	long	as	missing	_config in	filename

corismw1:/var/opt/cray/imps/config/sets/global/config # cat nersc_vars.yaml

nersc:

machineName: cori
machineMailingList: <retracted>@nersc.gov

Ansible Fact	Tree	Customization

• Add	python	script	that	outputs	dynamically	discoverable	variables	in	
/etc/ansible/facts.d
• Variables	accessible	in	ansible_local.<filename_no_ext>

• We	used	this	capability	to	make	node_groups work	on	XC	and	eLogin in	
UP01.		The	NERSC-provided	node_groups variable	is	less	useful	in	UP03	
since	UP03	provides	similar	capabilities	(and	more)
• Having	own	fact	tree	did	allow	us	to	migrate	our	plays	extremely	quickly	
since	our	interface	remained	unchanged
• Installed	in	all	images	using	a	common	PkgColl installing	a	machine-specific	
RPM	(nersc-ansible-sec)

boot-cori:~ # /etc/ansible/facts.d/nersc.fact
{"node_groups": ["boot_nodes", "bootnodes"], "machineName": "cori"}
boot-cori:~ #

Ansible Vault

• Encrypts	sensitive	information	with	AES-256	encryption
• Allows	us	to	securely	check-in	“lesser”	passwords	(encrypted)	into	our	on-
site	BitBucket git (more	on	that	later)
• Relies	on	a	key	embedded	in	all	images

• postbuild_copy/postbuild_chroot to	copy	key	from	SMW	during	image	construction
• Relies	on	a	modification	to	/etc/ansible/ansible.cfg (before	ansible runs)

• Post-install	scriptlet in	nersc-ansible-sec-<machineName>.rpm	adds:
vault_password_file=/path/we/use/to/ansible.hash

• Separate	keys	(and	secrets)	for	all	platforms,	prevents	accidental	crosstalk	
between	systems
• Vault	files	only	editable	on	SMW

Recipes

dmj@corismw1:~/git/nersc-cle6/imps> recipe show nersc-compute-production…
nersc-compute-production-cle_6.0up03_sles_12_x86-64_ari:
name: nersc-compute-production-cle_6.0up03_sles_12_x86-64_ari
created: 2016-06-08T08:55:45
repositories:
common_cle_6.0up03_sles_12_x86-64_ari_updates
sle-sdk_12_x86-64
…
sle-module_legacy_12_x86-64
sles_12_x86-64_updates
nersc-slurm
common_cle_6.0up03_sles_12_x86-64_ari

recipes:
nersc-seed_common_6.0up03_sles_12_x86-64
compute-large_cle_6.0up03_sles_12_x86-64_ari
…
…

package_collections:
nersc-slurm-build-deps
slurm-build_cle_6.0up03_sles_12
cray-bootlog
nersc-initrd-addons
nersc-base-compute
nersc-blcr
nersc-slurm-compute
nersc-ansible
nersc-vtune-kmod
nersc-base

path: /etc/opt/cray/imps/image_recipes.d/image_recipes.local.json

• Recipes	(and	package	
collections)	are	stored	in	json
files	under	/etc/opt/cray/imps

• We	store	these	files	in	git (later)
• We	copy	the	json files	and	

maintain	exactly	the	same	
recipes,	pkgcoll on	all	systems

• “diff_imps.py”		(custom	tool)	is	
used	to	detect	changes

Detecting	changes	to	Recipes/Pkgcoll
dmj@gertsmw:~/git/nersc-cle6/imps> git checkout abcdef01 -- image_recipes.local.json
dmj@gertsmw:~/git/nersc-cle6/imps> ./diff_imps.py
sys recipe:nersc-service-production-cle_6.0up03_sles_12_x86-
64_ari:postbuild_chroot:sed -i
's/groups|(network="hsn")/groups|grps2hosts(network="hsn")/g'
/etc/ansible/roles/ntp/tasks/ntp.yaml
sys recipe:nersc-admin-production-cle_6.0up03_sles_12_x86-64_ari:postbuild_chroot
sys recipe:nersc-epurge-production-cle_6.0up03_sles_12_x86-
64_ari:postbuild_chroot:echo -e '#!/bin/bash\nexit 0' > /etc/opt/cray/pre-
pivot.d/32ConfigNetworkUdevRules.sh

Computes	diffs	and	displays	either	“sys”	or	“git”	to	tell	us	what	is	changed	in	recipes
(like	diff	“<“	or	“>”)
Helper	scripts	keep	git and	system	in-sync

Worksheet/Config files	in	cfgsets

• Worksheets	are	stored	in	git (not	config yaml)	files
• 36	worksheets	are	identical	for	all	platforms
• 11	are	customized	for	specific	platforms	(cori_cray_net_worksheet.yaml,	
etc)
• Update	worksheets	either	singly	or	en masse:

• cfgset update -w nersc-cle6/imps/n8_worksheets/gerty_cray_network_worksheet.yaml --
no-scripts p0

dmj@gertsmw:~/git/nersc-cle6/imps> ./update_worksheets ./n8_worksheets p0
skipping alva_cray_auth_worksheet.yaml
…
skipping cori_cray_net_worksheet.yaml
run: cfgset update -w "/tmp/tmpcsSZbL/*yaml" --no-scripts p0
dmj@gertsmw:~/git/nersc-cle6/imps>

or

finally
cfgset update p0

Detecting	Changes	to	worksheets

• During	patchset installations	/	etc,	values	in	cfgsets may	be	changed.		
After	running	cfgset update,	or	installing	patches,	check	for	diffs:

dmj@gertsmw:~/git/nersc-cle6/imps> ./diff_worksheet.py n8_worksheets p0
skipping alva_cray_auth_worksheet.yaml
…
worksheets in n8_worksheets but not in cfgset p0: set([])
worksheets in cfgset p0 but not in n8_worksheets: set([])
…
n8_worksheets/gerty_cray_dws_worksheet.yaml /var/opt/cray/imps/config/sets/p0/worksheets/cray_dws_worksheet.yaml
values differ between git and cfgset for keys: ['cray_dws.settings.dwmd.data.dwmd_conf']
git: cray_dws.settings.dwmd.data.dwmd_conf, ['iscsi_initiator_cred_path: /etc/opt/cray/dws/iscsi_target_secret',

'iscsi_target_cred_path: /etc/opt/cray/dws/iscsi_initiator_secret', \
'capmc_os_cacert: /etc/pki/trust/anchors/certificate_authority.pem']

cfg: cray_dws.settings.dwmd.data.dwmd_conf, ['iscsi_initiator_cred_path: /etc/opt/cray/dws/iscsi_target_secret',
'iscsi_target_cred_path: /etc/opt/cray/dws/iscsi_initiator_secret',
'capmc_os_cacert: /etc/pki/trust/anchors/certificate_authority.pem', \
'xfs_mnt_opt: \\"allocsize=1m,nodiscard\\"']

Git Process
Git Repos:
CoreNerscAnsible – has	all	ansible plays,	roles,	variables
nersc-cle6 – has	pkgcol,	recipes,	worksheets	for	all	systems
nersc-slurm – slurm configurations	and	deployments

Branching:
cle6.0up01
cle6.0up02
cle6.0up03
MyDevelopmentBranchForAwesomeFeature
release/cle6.0up01
release/cle6.0up02
release/cle6.0up03

All	content	created,	committed,	and	pushed
by	“regular”	uids.		root	has	read-only	pull	
permissions	on	repos

”ansible”	directory	in	cfgsets is	a	direct	clone
of	CoreNerscAnsible

IMPs	components	are	updated	in-place	on
the	system

Future	Directions

• We	still	manage	zypper repos	with	rsync and	manual	calls	to	”repo	
update	<reponame”
• Plan	to	implement	remote	metarepo with	git-supported	lists	of	RPMs	
that	are	to	be	included	in	each
• This	work	has	not	been	initiated

• We	are	currently	updating	alva to	cle6.0up03
• Edison	will	move	(with	these	techniques)	to	cle6.0up04	in	short	order

Conclusions
• These	techniques	allowed	us	to	upgrade	TDS	(gerty)	from	up01	to	
up03	in	one	week.
• We	concurrently	updated	cori cfgset on the	gerty smw

• Stored,	identical	values	for	ansible,	images,	worksheets,	allowed	us	to	
perform	upgrade	of	cori in	a	single	day
• (if	btrfs on	the	SMW	hadn’t	melted	we	would	have	been	early!)

• Group	is	still	learning	and	refining	git skills	and	techniques
• Proven	successful	across	multiple	contributors	though

• We	can	update	systems	with	confidence	by	correctly	performing	
exactly	the	same	operations,	assisted	by	SCM

The	End
Questions?

