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Abstract -  The  current  generation  of  Cray  systems
introduces  two  major  features  impacting  workload
management: DataWarp burst buffers and Intel Knights
Landing (KNL) processors with their variety of NUMA
and  MCDRAM  modes.  DataWarp  provides  a  high-
bandwidth,  cluster-wide  file  storage  system  for
applications  on  Cray  systems.  In  a  typical  use  case,
DataWarp resources are allocated to a job and data is
staged-in before compute resources are allocated to that
job.  Similarly,  DataWarp  resources  are  retained  after
computation is complete for staging-out of data. Knights
Landing  are  the  latest  generation  of  Intel  Xeon  Phi
processors, supporting five different NUMA modes and
three  MCDRAM  modes.  Applications  may  require  a
specific KNL configuration to execute or its performance
may  vary  considerably  depending  upon  processor
configuration  used.  If  KNL resources  with  the  desired
configuration  are  not  available  for  pending  work,  the
overhead of rebooting compute nodes must be weighed
against  running  the  application  in  a  less  than  ideal
configuration  or  waiting  for  processors  already  in  the
desired  configuration  to  become  available.  These  are
some of the issues faced on the Cori system at National
Energy Research Scientific Computing Center (NERSC),
with  2,004  Xeon  Haswell  processor  nodes,  9,688  KNL
nodes  and  1.5  PetaBytes  of  DataWarp  storage.  This
paper  will  present  the  algorithms  used  by  the  Slurm
workload manager with respect to DataWarp and KNL
scheduling, a statistical  analysis of NERSC’s workload,
and experiences with Slurm’s management of DataWarp
and KNL. Topics covered will include core specialization,
task  affinity,  zonesort,  failure  management  and
scalability. The paper will conclude with identification of
areas  where  Slurm  and  Cray  infrastructure  might  be
improved to increase system fault tolerance, scalability,
and utilization.

OVERVIEW OF INTEL KNIGHTS LANDING

Knights  Landing  (KNL)  is  the  name  of  Intel’s  second
generation  Many  Integrated  Core  (MIC)  architecture.  It
contains  up  to  72  Airmont  (Atom)  cores  with  a  two
dimensional mesh interconnect [1]. Each core contains four
threads. KNL contains up to 16 GB of MCDRAM, a version
of high bandwidth memory (or on-package memory), which

can  be  configured  as  “cache”  -  allowing  transparent
migration of pages between main memory (DRAM) and the
MCDRAM,  or  "flat",  allowing  the  application  to  directly
address  the  MCDRAM with  no  transparent  caching,  or  a
combination of the these two extremes. The NUMA modes
adjust the relationship between the many cores to optimize
internal  communication  depending  on  an  application's
requirements.  An important feature of KNL is the ability to
modify it’s NUMA and/or MCDRAM configuration at boot
time  as  shown  in  Table  1.   This  mode  change  is
accomplished  by dynamically  reconfiguring  and  rebooting
nodes during live operation of the system and is fully under
the control  of  the user  within some limits  granted by the
workload manager.

Table 1: NUMA and MCDRAM modes available on KNL.

OVERVIEW OF DATAWARP

DataWarp is Cray’s implementation of burst buffers, direct-
attached  solid-state  disk  (SSD)  storage  providing  higher
bandwidth than an external parallel file system [2]. Like an
external file system, DataWarp storage is made available as a
global  file  system rather  than  storage bound to individual
compute  nodes.  Two  modes  of  use  are  supported:  job-
specific and persistent.  As the name suggests,  job-specific
allocations  are  bound  to  a  specific  job  allocation.  The
lifetime of  a job-specific  allocation typically  extends both
before and after the job’s allocation of  compute resources
(i.e. CPUs and memory) in order to stage-in and stage-out
files  as  needed.  Persistent  allocations  are  not  tied  to  any
specific job, but can be used by multiple jobs. Access to a



persistent  allocation  can  be  requested  by  any  job  and
controlled  using POSIX file  permissions  on its  individual
files and directories. Persistent allocations must be explicitly
created and destroyed.

The  DataWarp  implementation  on  NERSC’s  Cori  system
contains 288 DataWarp servers containing 576 Intel SSDs,
with a total of 1.5 PBs of storage.  The DataWarp software
(DWS) combined with Slurm, provides users with a wide
variety  of  choices  to  configure  and  access  this  high
performance I/O subsystem.  Cori’s DataWarp performance
has been measured at ~1.6 TB/sec. and up to ~12.5 million
IOPS.

NERSC’s current layout takes advantage of Slurm’s support
for multiple alternate DataWarp pools to offer the choice of
three separate pools. The default wlm_pool is comprised of
200  DW-servers,  with  an  allocation  size  of  85  GB
(granularity). The sm_pool is comprised of 80 servers with a
granularity of 20 GB, allowing for wider striping at smaller
space  allocations.  The  dev_pool  is  comprised  of  the
remaining 8 DW-servers and is reserved for testing different
configurations and DWS features (ex. transparent cache).

Presently DW-servers provide filesystem I/O services only,
with no concurrent compute functionality. This capability is
currently under development by both Cray and SchedMD.
This  functionality  will  be  useful  to  a  number  of  user
workflows to offload additional  overhead of  I/O from the
compute nodes in a job.

OVERVIEW OF SLURM

Slurm is an open source, fault-tolerant, and highly scalable
cluster management and job scheduling system [3] in use on
roughly  half  of  the  Top-500  systems [4]  including  the
NERSC Cori system [5]. Some of the capabilities provided
by Slurm include accounting, advanced reservations, backfill
scheduling,  fair-share  scheduling,  a  multitude  of  resource
limits,  and  sophisticated  job  prioritization  algorithms.
Approximately 60% of Slurm’s code is in a common kernel
with  the  remainder  in  various  plugins.  Slurm  includes
approximately 130 different plugins designed to support  a
wide variety of architectures and configurations. The plugins
are  either  identified  in  a  Slurm  configuration  file  or
command  line  option  and  loaded  when  the  daemon  or
command is started. For example Slurm network topology
plugins  available  include  “tree”,  “hypercube”  and
“3d_torus”. Other plugin selections are user controlled, such
as the MPI implementation used for a particular job.

While Slurm can operate as  a scheduler  on top of  Cray’s
ALPS resource  manager  [6].  On  most  systems,  including
Cori,  Slurm uses  Cray APIs  to  interface directly  with the
underlying Cray infrastructure in order to eliminate the need
for ALPS. Such a configuration makes use of several Slurm
plugins designed specifically for Cray systems and a Slurm
daemon  running  on  each  compute  node,  responsible  for

launching  the  user  application  and  binding  it  to  the
appropriate resources. Of particular note, this configuration
provides the ability to run multiple applications belonging to
multiple users on each compute node.

Cray provides several commands used by Slurm to manage
KNL  and  DataWarp.  The  cnselect command  reports
currently active MCDRAM and NUMA modes on the KNL
nodes.  The  capmc command  identifies  KNL nodes,  node
states, available MCDRAM and NUMA modes on each node
plus the MCDRAM and NUMA mode to be used on next
node reboot (not necessarily the modes currently in effect).
Capmc provides  a  mechanism  to  change  a  node’s
MCDRAM and  NUMA mode  and  reboot  the  node.  Also
used  by  Slurm,  but  outside  of  this  paper’s  scope,  capmc
provides options to monitor and manage each node’s power
consumption. The dw_wlm_cli command provides DataWarp
status information, the ability to create burst buffers, stage-in
and stage-out files, and later delete burst buffers.

Slurm provides  support  for  KNL including  the  ability  for
user’s  to modify the KNL MCDRAM and NUMA modes
and reboot the nodes [7].  At Slurm startup, it  uses Cray’s
capmc and  cnselect commands  to  determine  which  nodes
include  a  KNL  processor,  their  current  and  available
MCDRAM and  NUMA modes,  and  total  high  bandwidth
memory. This information is recorded in Slurm’s node state
information,  making  use  of  “Active  Features”  and
“Available Features” fields to record the current MCDRAM
and  NUMA modes  plus  the  modes  which  can  be  made
available  through  node  reboot.  The  MCDRAM  mode  is
recorded and managed as a Slurm Generic Resource [8].

Slurm configuration parameters specific to KNL include:
• MCDRAM and NUMA modes which can be made

available (possibly a submit of the MCDRAM and
NUMA modes  which  are  possible  on  the  KNL
nodes)

• Identification  of  users  allowed  to  modify
MCDRAM or NUMA modes (all users by default)

• Expected node boot time
• Path to Cray’s capmc and cnselect programs
• Various  timeouts  and  failure  recovery  retry

intervals

When a user  submits  a  job to  Slurm, he can identify the
required  MCDRAM  and/or  NUMA  modes  as  job
constraints.  If  specified,  the job will  not  be initiated until
those  modes  are  active  on  the  nodes  to  be  allocated.  If
necessary,  and the user has the appropriate  authentication,
nodes  will  be  booted  into the appropriate  MCDRAM and
NUMA modes required by the job. Since the time required
to  boot  nodes  can  be  significant,  Slurm’s  configuration
includes  an  expected  boot  time for  optimizing  scheduling
decisions.  If  resources  are  expected  to  be  available  for
allocation  to  a  pending  job  in  a  more  timely  fashion  by
waiting for resources to become available as running jobs



terminate rather than rebooting currently available nodes, the
job will remain pending. The process of rebooting a node
can not start until after all jobs currently allocated on that
node have terminated. If accounting is configured, the job
will be charged for not only its execute time, but also the
time consumed for rebooting nodes. However, the boot time
will not count against the job’s time limit.

When a node reboot completes and the Slurm daemon starts
on  the  node,  it’s  current  MCDRAM,  NUMA  and  high
bandwidth memory configuration are validated and the job
initiated.  If  the  reboot  of  any  allocated  nodes  fails,  the
affected  node  will  be  drained  and  the  job  requeued.  The
requeued  job  will  be  allocated  a  new  set  of  resources,
possibly including previously allocated resources, and begin
execution when possible.

Slurm  provides  several  mechanisms  for  managing  task
layout  on  the  allocated  nodes.  Slurm  provides  options  to
specify the number of tasks per node, per NUMA or socket,
per  core,  and  per  thread  (--ntasks-per-node,  --ntasks-per-
socket,  --ntasks-per-core  and  --ntasks-per-thread
respectively).  Slurm also provides  options to manage how
task ranks are distributed at each level of resource hierarchy,
either  using  explicit  information  from  the  user  or  in  an
automated fashion using simple directives. For example the
option  “--distribution=block:cyclic:cyclic”  indicates  that
ranks should be consecutive  on each  node (from the  first
“block”), then sequentially across the NUMA of each node
(the first “cyclic”), then sequentially across each core of the
NUMA  (the  second  “cyclic”).  A  Slurm  option  is  also
available to perform the specified distribution on groups of
consecutive ranks rather than individual ranks (i.e. allocate 2
tasks on each core before cycling to the next core) [9].

Once  a  task  is  allocated  to  some  resource,  it  can  be
implicitly  bound  to  that  resource  using  cpusets  or  Linux
cgroups. By default tasks are bound to the appropriate entity
based up the ratio of tasks to NUMA, cores or threads. For
example if  a  job has  one task per  core,  each task will  be
bound to a core. User options are available to bind tasks at a
different level. For example, one can easily bound each task
to an individual thread even if there is one task per core.

Given  the  number  of  threads  on  a  KNL,  the  compute
resources consumed by the operating system and daemons
(including Slurm) may adversely impact user applications.
This may be addressed by reserving some count of threads
or cores on each node for system use, which is referred to in
Slurm as thread or core specialization [10]. Memory can also
be reserved for system use, which is referred to as memory
specialization.  These  resources  are  removed  from
availability  to  user  applications,  and  in  the  case  of
specialized threads, system processes are explicitly bound to
those resources.

Memory  resources  are  managed  in  a  similar  fashion  to
compute resources. Users can specify the desired memory on
a per-node or per-CPU basis. The application is bound to the
allocated  memory  using  Linux  cgroups.  User  options  are
available to bind each task to the memory in its local NUMA
or to prefer its local NUMA. Application performance can
be  adversely  impacted  on  KNL if  the  free  pages  are  not
regularly  sorted  [11].  Slurm  has  an  option  which  will
automatically  perform  a  sort  on  allocated  NUMA  at
application start (“--mem_bind=sort”). 

SCHEDULING A HETEROGENEOUS SYSTEM

The NERSC Cori  system operates  a  very  demanding  and
heterogeneous workload including data-intensive jobs on the
2004  Haswell  nodes  as  well  as  a  more  traditional  HPC
workload  on  the  primary  capacity  of  ~9600  KNL nodes.
The  Haswell  nodes  are  collectively  considered  the  “data
partition” by NERSC and have been configured to provide
High  Throughput  Computing-friendly  queues,  including
both node-exclusive and single-core scheduling as well  as
advanced  capabilities,  such  as  Shifter  for  virtualized
environments,  to  enable  many  non-traditional  HPC
workflows.  The KNL nodes, on the other hand, are more
focused on the HPC workload.  That said, both Haswell and
KNL are available and accessible for scientists to perform
any  relevant  calculation  within  their  DOE-assigned
allocation.

Slurm  is  critical  infrastructure  for  supporting  this  hybrid
workload, both as a scheduler as well as a resource manager.
As a resource manager, Slurm grants NERSC the ability to
run as many jobs as there are cores on the nodes, which is
used provide support large serial job arrays on the Haswell
nodes.  In addition, the plugin architecture enables NERSC
to  operate  a  number  of  custom  job-control  plugins  to
customize  the  node  environment  to  match  user-
specifications.    As  a  scheduler,  Slurm  provides  flexible
backfill  scheduling  enabling  many  different  fine-grain
policies  to  be  adopted  while  still  effectively  performing
future planning for hundreds of jobs (resource reservations),
and  allowing  many  thousands  of  jobs  access  to  backfill
capacity.

NERSC has a number of early science participants on the
KNL partitions  as  part  of  its  NERSC  Exascale  Science
Applications Program (NESAP).  The NESAP codes have
been updated collaboratively between the code development
team, NERSC, Cray, and Intel to prepare for the Many Core
architecture of KNL.  These users were granted early access
to  KNL,  enabling  both  higher  priority,  larger  scale  and
longer walltimes for those users, while general general users
only have access to relatively smaller allocations.  This is
achieved  by  setting  different  resource  limits  in  different
Slurm Qualities  of  Service (QoS),  and then mapping jobs
and users to specific QoS based on both the user status as
well  as  the  resource  requests.   Slurm  is  capable  to
specifically allow certain users access to some QoS, but not



others.  The ability to gate access to KNL will be maintained
even  into  production  to  ensure  that  large  jobs  that
individually consume vast  system resources  are  proven to
work well on the Cori system.

The  NERSC  Application  Performance  and  Advanced
Technology Groups have identified that the NUMA “quad”,
and MCDRAM “cache” mode are likely to be the best fit for
the NERSC workload, at least for now.  However, there is
much interest from a subset of our users, as well as some
applications  that  have  been  specifically  tuned  for  directly
managing the MCDRAM, making the other possibly KNL
modes (specifically quad/flat) attractive for some users.  To
this end, NERSC does allow users to directly request  any
KNL mode,  and  does permit  some level  of  node reboots.
Because of the delay generated by a node reboot (ranging
from 25 to 50 minutes  on the Cori  system, depending on
quantity being booted and other system conditions), as well
as  the  non-zero  chance  of  node  failure  during  the  boot
process, we do prefer to minimize node boots, and especially
“mode  thrashing”  –  repeatedly  booting  back  and  forth
between two popular modes.  While we are still iterating on
the  specific  parameters  of  the  configuration,  the  general
structure  is  that  the  KNL  nodes  are  split  over  three
overlapping partitions:

• “knl” – all quad/cache jobs are routed here
• “knl_reboot” – all other modes are routed here
• “knl_regularx” – all  large jobs exceeding 85% of

the system are routed here
The “knl” and “knl_regularx” are fully overlapping at this
time,  though  in  the  future  as  more  refined  debug  and
interactive capabilities are added, the “knl” partition will be
made  smaller.   The  “knl_reboot”  fully  overlaps  the  “knl”
partition, representing the final 3,400 nodes of it.  This limits
the maximum scale  of  non-quad/cache jobs,  ensuring that
some mode-changes large enough to potentially disrupt the
system do not occur automatically.  By routing our “default”
mode of quad/cache to KNL, and then granting it most of the
resources,  we  ensure  that  most  jobs  are  able  to  proceed
nominally without the disruption of a mode change.

Staring with Slurm version 17.02, we are able to define a
“delay_boot” parameter which allows a job with sufficiently
high priority to be delayed in order to attempt to make use of
nodes  already  booted  to  the  desired  mode.   We  are  still
refining and tuning our configuration with respect  to this,
but  one  can  think  of  the  “delay_boot”  parameter  as
providing a movable barrier between flexible sub-queues of
the KNL partitions each representing different modes.  It is
best not to think of the “delay_boot” as a delay that a job
would necessarily have to endure, but rather an maximum
wait  time  before  reconfiguring  the  system.   This  should
allow Cori to adopt meta-stable states based on the demand
in the queues without manual intervention by the systems
administrators.   The  delay_boot  parameter  can  be  over-
ridden by users who are in a hurry and don’t mind devoting
their allocation to rebooting nodes.

At  present,  Haswell  and  KNL jobs  are  largely  separate  –
meaning users are required to select either Haswell or KNL,
and no user-accessible partitions allow a job to span the two.
Moving into the future, we do see a growing use-case for
fully heterogeneous jobs, making use of both Haswell and
KNL nodes.  To ensure we have this capability in the future,
Cori is already co-scheduling all Haswell and KNL jobs –
the system is “fully integrated”, meaning that both segments
of the system share the same network and share the same
scheduler instance.  Both sets of jobs use a common priority
scheme and are scheduled using most of the same policies.
Tuning backfill scheduling to handle the volume of requests
has been an ongoing process, but does make use of both new
scheduling  algorithms  created  based  on  NERSC’s
requirements by SchedMD (bf_min_prio_reserve), as well as
NERSC customizations to the backfill scheduling algorithm
(dynamic  priority  management).   With  these  advanced
algorithms for backfill scheduling, NERSC can successfully
backfill many thousands of jobs, guaranteeing every possible
backfill opportunity is found and used. 

DataWarp Scheduling

Aside from the I/O performance provided by DataWarp, the
largest  benefit  for  NERSC  users  is  the  stage-in/stage-out
capabilities  offered  via  a  single  command  line  option  (or
multiples  if  desired)  that  bypass  the  idling  of  precious
compute cycles waiting for data to be copied in to or out of
DataWarp. The compute resources remain available for other
jobs while data is  being staged in.  Likewise,  the compute
resources  become  available  immediately  upon  job
completion, even while data is staged out in the background.
Slurm accepts DataWarp directives in several forms:

1. The directives can be included within a batch script
using a prefix of “#DW” on each line.

2. The directives can be specified in a stand-alone file
using the same “#DW” prefix. The stand-alone file
is  typically  used  for  interactive  jobs,  which
otherwise lack a file.

3. A subset of DataWarp directives can be specified on
the  execute  line  of  the  Slurm  command  used  to
create  the  job  allocation.  This  mechanism  is
typically used for interactive jobs with only simple
directives. Slurm uses these command line options
to construct a file of DataWarp directives as in case
#2 above.

4. In  addition  to  the  standard  DataWarp  directives
with  the  “#DW” prefix  in  a  script,  Slurm uses  a
“#BB”  prefix  for  extended  capabilities.  This
provides  a  mechanism  to  create  and  destroy
persistent allocations.

In all of these instances, Slurm makes use of DataWarp tools
to  perform  resource  allocation,  stage-in,  stage-out  and
deallocation  operations.  Slurm’s  role  is  largely  in  the



scheduling of these operations to optimize the overall system
responsiveness and utilization.

DataWarp resources can be consumed by either job-specific,
persistent  burst  buffers,  swap  and  transparent  cache  from
each of the available DataWarp pools. The current default
user quota is 52 TB and supports quota increases on a per
user basis. Job-specific buffers must be allocated prior to job
execution  in  order  to  potentially  stage-in  files  as  needed.
They typically must also persist after the job execution until
file  stage-out  is  complete.  Persistent  burst  buffers  can  be
created by a user job, but persist until explicitly destroyed,
potentially  by  another  user  job.  In  both  cases,  Slurm’s
scheduling of DataWarp resources is coordinated using these
factors:

1. Slurm’s resource limit, which can be configured on
a per-job, per-user, or per-account

2. Slurm  advanced  reservations,  which  can  reserve
some quantity of DataWarp resources at a specific
time for specific users or accounts

3. The expected initiation time of  pending jobs (i.e.
when compute resource, licenses, etc. are expected
to be available)

NERSC  users  have  taken  advantage  of  Persistent
Reservations (PR) where the data produced or staged-in is
available  to  multiple  jobs  of  the  same  user  or  to  other
collaborating user jobs via POSIX file permission controls.

Slurm will allocate DataWarp resources to the jobs expected
to  be  initiated  soonest.  Once  the  DataWarp  resource
allocation completes, file stage-in begins. The allocation of
compute resources to a pending job will not happen until it’s
DataWarp  resources  have  been  allocated  and  file  stage-in
completes. Since the expected initiation time of pending jobs
can change through time, job-specific DataWarp resources
allocated to pending jobs can be revoked at any time and re-
allocated to other pending jobs which are expected to start
sooner  than  the  job  originally  allocated  the  resources.
Persistent  burst  buffers  are never revoked after  allocation,
even  if  the  job  creating  the  buffer  is  deleted.  The  most
common failure with respect  to DataWarp scheduling is a
failure in the stage-in or stage-out operation. In the case of a
file  stage-in failure,  the  burst  buffer  allocation is  revoked
and  the  job  held  for  review  by  the  user  or  a  system
administrator. In the case of a file stage-out failure, the burst
buffer is retained and the job is kept in a completing state for
investigation by the user and/or system administrator.

Support for KNL mode change (reboot) is fully integrated
with Slurm/DWS.  A job requiring a different mode will first
allocate DataWarp space and stage-in data (if required), once
compute  nodes  are  assigned  and  the  reboot  completed
(spanning multiple minutes) the DataWarp allocation is then
mounted on the compute nodes at job launch.

A job which has not started execution will release DataWarp
resources  without  staging-out  any  files.  Once a  job using
DataWarp has started execution, files will be staged-out at
termination no matter what the reason for termination. The
only exception to this is if the job is explicitly cancelled by
the owner or a system administrator using Slurm’s  scancel
command  with  the  “hurry”  option.  In  that  case,  the
DataWarp resources will be released for use by other jobs
without going through the stage-out process.

Slurm  provides  a  number  of  configuration  control
parameters.  Two  parameters  used  by  NERSC  are;
EnablePersistent  and  TeardownFailure.  EnablePersistent
controls  whether  users  are  allowed  to  create  their  own
Persistent Reservation as opposed to restricting permission
to  system  administrators.  TeardownFailure  releases
DataWarp  allocations  in  the  event  of  a  failure  (job  or
staging).  This  avoids  wasting  DataWarp  resources  while
awaiting failure notification and analysis.

The  Slurm  “scontrol  show  burst”  command  displays  a
summary  of  the  DataWarp  configuration,  availability
(total/free), usage (user, size, jobID, creation time, etc.). A
sample of the scontrol output is shown in Diagram 1.

(Example  diagram:  Named allocations  indicate  a
Persistent Reservation)

(Example  diagram:  Named allocations  indicate  a
Persistent Reservation) scontrol-show-burst

STATISTICAL ANALYSIS OF WORKLOAD AT NERSC

The  general  NERSC  workload  has  been  previously
characterized  in  terms  of  the  distribution  of  applications
[12].   Given  that  the  focus  of  this  paper  is  on  the  new
technologies  accessible  in  Cray  XC40  systems,  we  will
exclusively focus on how NERSC users are making use of
KNL and DataWarp technologies here.

Cori  Haswell  and  KNL  nodes  were  fully  integrated  in
September,  2016,  and  made  available  to  users  in  mid-
October 2017.  The usage data shown here is all early access
data in which the system was being used for a number of
different acceptance, benchmarking, and user activities.  The
usage patterns present are expected to change in the future.
NERSC  has  recommended  the  quad/cache  mode  to  most
users as a very usable and performant default mode.  Based

https://drive.google.com/a/lbl.gov/file/d/0By9kkkaefWGCeU5ocWNEZGFvaEU/view?usp=sharing


on  that  recommendation,  and  scheduling  policies  which
enforce it, users have used quad/cache 91% of the time since
Cori  was  integrated.   Quad/flat  mode  is  the  second  most
popular  with roughly 7.5% of  the  usage,  and  the  balance
being used at extremely small percentages, mostly focused
on performing specific benchmarking tasks or for rare user
requests.

In  the  time  since  Cori  was  integrated,  NERSC  has
progressively allowed more and more users to make use of
KNL, both in a limited fashion (all users can access KNL as
of March, 2017 for short, small jobs), while also admitting
more  and  more  users  to  “full  scale”  access  permissions.
Since NERSC has been continuously been adding users and
adjusting policies it  has been difficult to reliably track the
present overhead of scheduling with respect to node reboots.
At  present,  users  are  using  the  KNL nodes  >97% of  the
possible time, with >98% of that being accessible for user
codes (not rebooting).  Slurm has initiated node reboots over
12,300 times on Cori since KNL was added to the system,
rebooting over 160,000 nodes.  The bulk of these changes
were moving between quad/cache and quad/flat modes.

General  access  to  DataWarp  for  all  NERSC  users  was
enabled  in  December  2016.  For  the  first  quarter  of  2017
users  averaged  500  jobs  per  month  requesting  DataWarp
storage.  There  were  190,351  nodes  with  over  5PBs  of
storage allocation that were requested and scheduled.

Areas for improvement

Ideally there would be options to manage task layout across
five levels  in a  KNL: socket  (if  multiple KNL per node),
NUMA, tile, core, and thread. Options would be available to
control  the  number  of  tasks  at  each  level  in  the  five
resources tiers as well as options to manage how the task
ranks are distributed across each (i.e. cyclic or block at each
tier).  Slurm  has  command  options  and  data  structures  to
manage only  three  tiers  of  compute  resources  on a node:
socket, core and thread. In the case of KNL, each NUMA is
mapped to a socket, which precludes full control over task
layout  on  a  compute  node  containing  multiple  KNL
processors.  There  is  also  no  mechanism  for  managing
resources at a tile level. There are no current plans to address
these shortcomings.

Slurm’s  current  design  assumes  the  number  of  cores  per
socket  (or  NUMA) is  identical  for  all  sockets  on a  node,
which is not the case for all KNL processors in all NUMA
modes. For example 68-core KNL processor configured in
SNC4 NUMA mode will  have two NUMA with 16 cores
each, plus two NUMA with 18 cores each. Slurm computes a
value of 17 cores for each of the 4 NUMA. Addressing this
problem would require major  restructuring of  Slurm logic
and is not currently planned. The best option today would be
to disable snc4 NUMA mode on processors which can not be
configured with 4 identical NUMA.

Slurm can make use of Intel’s zonesort kernel module to sort
pages  at  application  start,  but  does  not  currently  have  a
mechanism to repeat the process on a regular interval. In any
case, that would in most cases best be managed by the user
rather than Slurm in order to coordinate the timing of such
events  so as  to  minimize its  impact  upon the application.
NERSC maintains  a  capability  to  do  this  using  a  custom
SPANK plugin, allowing user management of this aspect of
MCDRAM cache-mode maintenance.

Failure  notifications  from  Cray’s  capmc command  are
detailed  for  some  options,  identifying  specific  nodes  for
which an operation failed with an explanation. The response
for node reboot failures does not identify the nodes affected,
which  complicates  failure  management.  Initially  Slurm
repeated the operation using subsets of the original  list  of
nodes in an effort to identify the specific nodes which could
not be rebooted, but that introduced scalability problems as
the reboot operations would be performed sequentially on
each subset of nodes. Presently Slurm requeues the job and
gathers node status information in an attempt to identify and
drain the faulty node and execute the job on good resources.

Presently  Slurm has  no  time  estimates  for  DataWarp  file
stage-in or stage-out operations. If that information could be
made  available  then  Slurm  could  potentially  coordinate
scheduling to achieve higher resource utilization.

Perhaps  Slurm’s  greatest  shortcoming  is  limitations  in
support of heterogeneous resource allocations. For example,
one job might require 16 KNL nodes in SNC4/flat mode plus
32 Haswell nodes plus two DataWarp nodes with their CPUs
and burst buffer space. This might further be complicated by
different  memory  requirements,  task layouts,  etc.  on each
node type. The best mechanism available in Slurm today to
achieve such a resource allocation is to create three separate
job allocations and then merge those allocations into a single
Slurm job [13]. Work has been in progress for some time to
support fully heterogeneous Slurm jobs, but the time frame
for  deployment  of  this  capability  is  not  currently  known
[14].

Conclusion

The  advanced  capabilities  of  recent  Cray  systems  are
revolutionizing HPC systems, and the NERSC Cori system
integrating all these features along with the Slurm scheduler
to present a highly usable and capable combined HPC and
data-intensive computing system.   Intel  KNL is  providing
unprecedented  power  efficiencies  while  still  maintaining
familiar programming and computing interfaces.  The open
source  nature  of  Slurm  is  highly  valuable  to  the  HPC
provider  both  as  a  vehicle  for  customizing  the  user
experience  as  well  as  increasing  the  efficiency  of
communicating  with  Cray  and  SchedMD.   With  Slurm
version  17.02,  SchedMD  has  delivered  a  scheduling  and
resource  management  technology  specifically  tuned  for



making  all  these  technologies  accessible  to  users  in  a
performant,  configurable,  and  flexible  that  enabling  high
utilization and innovation.  
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