
Scheduler Optimization for Current Generation
Cray Systems

Morris Jette
SchedMD, jette@schedmd.com

Douglas M. Jacobsen, David Paul
NERSC, dmjacobsen@lbl.gov, dpaul@lbl.gov

Abstract - The current generation of Cray systems
introduces two major features impacting workload
management: DataWarp burst buffers and Intel Knights
Landing (KNL) processors with their variety of NUMA
and MCDRAM modes. DataWarp provides a high-
bandwidth, cluster-wide file storage system for
applications on Cray systems. In a typical use case,
DataWarp resources are allocated to a job and data is
staged-in before compute resources are allocated to that
job. Similarly, DataWarp resources are retained after
computation is complete for staging-out of data. Knights
Landing are the latest generation of Intel Xeon Phi
processors, supporting five different NUMA modes and
three MCDRAM modes. Applications may require a
specific KNL configuration to execute or its performance
may vary considerably depending upon processor
configuration used. If KNL resources with the desired
configuration are not available for pending work, the
overhead of rebooting compute nodes must be weighed
against running the application in a less than ideal
configuration or waiting for processors already in the
desired configuration to become available. These are
some of the issues faced on the Cori system at National
Energy Research Scientific Computing Center (NERSC),
with 2,004 Xeon Haswell processor nodes, 9,688 KNL
nodes and 1.5 PetaBytes of DataWarp storage. This
paper will present the algorithms used by the Slurm
workload manager with respect to DataWarp and KNL
scheduling, a statistical analysis of NERSC’s workload,
and experiences with Slurm’s management of DataWarp
and KNL. Topics covered will include core specialization,
task affinity, zonesort, failure management and
scalability. The paper will conclude with identification of
areas where Slurm and Cray infrastructure might be
improved to increase system fault tolerance, scalability,
and utilization.

OVERVIEW OF INTEL KNIGHTS LANDING

Knights Landing (KNL) is the name of Intel’s second
generation Many Integrated Core (MIC) architecture. It
contains up to 72 Airmont (Atom) cores with a two
dimensional mesh interconnect [1]. Each core contains four
threads. KNL contains up to 16 GB of MCDRAM, a version
of high bandwidth memory (or on-package memory), which

can be configured as “cache” - allowing transparent
migration of pages between main memory (DRAM) and the
MCDRAM, or "flat", allowing the application to directly
address the MCDRAM with no transparent caching, or a
combination of the these two extremes. The NUMA modes
adjust the relationship between the many cores to optimize
internal communication depending on an application's
requirements. An important feature of KNL is the ability to
modify it’s NUMA and/or MCDRAM configuration at boot
time as shown in Table 1. This mode change is
accomplished by dynamically reconfiguring and rebooting
nodes during live operation of the system and is fully under
the control of the user within some limits granted by the
workload manager.

Table 1: NUMA and MCDRAM modes available on KNL.

OVERVIEW OF DATAWARP

DataWarp is Cray’s implementation of burst buffers, direct-
attached solid-state disk (SSD) storage providing higher
bandwidth than an external parallel file system [2]. Like an
external file system, DataWarp storage is made available as a
global file system rather than storage bound to individual
compute nodes. Two modes of use are supported: job-
specific and persistent. As the name suggests, job-specific
allocations are bound to a specific job allocation. The
lifetime of a job-specific allocation typically extends both
before and after the job’s allocation of compute resources
(i.e. CPUs and memory) in order to stage-in and stage-out
files as needed. Persistent allocations are not tied to any
specific job, but can be used by multiple jobs. Access to a

persistent allocation can be requested by any job and
controlled using POSIX file permissions on its individual
files and directories. Persistent allocations must be explicitly
created and destroyed.

The DataWarp implementation on NERSC’s Cori system
contains 288 DataWarp servers containing 576 Intel SSDs,
with a total of 1.5 PBs of storage. The DataWarp software
(DWS) combined with Slurm, provides users with a wide
variety of choices to configure and access this high
performance I/O subsystem. Cori’s DataWarp performance
has been measured at ~1.6 TB/sec. and up to ~12.5 million
IOPS.

NERSC’s current layout takes advantage of Slurm’s support
for multiple alternate DataWarp pools to offer the choice of
three separate pools. The default wlm_pool is comprised of
200 DW-servers, with an allocation size of 85 GB
(granularity). The sm_pool is comprised of 80 servers with a
granularity of 20 GB, allowing for wider striping at smaller
space allocations. The dev_pool is comprised of the
remaining 8 DW-servers and is reserved for testing different
configurations and DWS features (ex. transparent cache).

Presently DW-servers provide filesystem I/O services only,
with no concurrent compute functionality. This capability is
currently under development by both Cray and SchedMD.
This functionality will be useful to a number of user
workflows to offload additional overhead of I/O from the
compute nodes in a job.

OVERVIEW OF SLURM

Slurm is an open source, fault-tolerant, and highly scalable
cluster management and job scheduling system [3] in use on
roughly half of the Top-500 systems [4] including the
NERSC Cori system [5]. Some of the capabilities provided
by Slurm include accounting, advanced reservations, backfill
scheduling, fair-share scheduling, a multitude of resource
limits, and sophisticated job prioritization algorithms.
Approximately 60% of Slurm’s code is in a common kernel
with the remainder in various plugins. Slurm includes
approximately 130 different plugins designed to support a
wide variety of architectures and configurations. The plugins
are either identified in a Slurm configuration file or
command line option and loaded when the daemon or
command is started. For example Slurm network topology
plugins available include “tree”, “hypercube” and
“3d_torus”. Other plugin selections are user controlled, such
as the MPI implementation used for a particular job.

While Slurm can operate as a scheduler on top of Cray’s
ALPS resource manager [6]. On most systems, including
Cori, Slurm uses Cray APIs to interface directly with the
underlying Cray infrastructure in order to eliminate the need
for ALPS. Such a configuration makes use of several Slurm
plugins designed specifically for Cray systems and a Slurm
daemon running on each compute node, responsible for

launching the user application and binding it to the
appropriate resources. Of particular note, this configuration
provides the ability to run multiple applications belonging to
multiple users on each compute node.

Cray provides several commands used by Slurm to manage
KNL and DataWarp. The cnselect command reports
currently active MCDRAM and NUMA modes on the KNL
nodes. The capmc command identifies KNL nodes, node
states, available MCDRAM and NUMA modes on each node
plus the MCDRAM and NUMA mode to be used on next
node reboot (not necessarily the modes currently in effect).
Capmc provides a mechanism to change a node’s
MCDRAM and NUMA mode and reboot the node. Also
used by Slurm, but outside of this paper’s scope, capmc
provides options to monitor and manage each node’s power
consumption. The dw_wlm_cli command provides DataWarp
status information, the ability to create burst buffers, stage-in
and stage-out files, and later delete burst buffers.

Slurm provides support for KNL including the ability for
user’s to modify the KNL MCDRAM and NUMA modes
and reboot the nodes [7]. At Slurm startup, it uses Cray’s
capmc and cnselect commands to determine which nodes
include a KNL processor, their current and available
MCDRAM and NUMA modes, and total high bandwidth
memory. This information is recorded in Slurm’s node state
information, making use of “Active Features” and
“Available Features” fields to record the current MCDRAM
and NUMA modes plus the modes which can be made
available through node reboot. The MCDRAM mode is
recorded and managed as a Slurm Generic Resource [8].

Slurm configuration parameters specific to KNL include:
• MCDRAM and NUMA modes which can be made

available (possibly a submit of the MCDRAM and
NUMA modes which are possible on the KNL
nodes)

• Identification of users allowed to modify
MCDRAM or NUMA modes (all users by default)

• Expected node boot time
• Path to Cray’s capmc and cnselect programs
• Various timeouts and failure recovery retry

intervals

When a user submits a job to Slurm, he can identify the
required MCDRAM and/or NUMA modes as job
constraints. If specified, the job will not be initiated until
those modes are active on the nodes to be allocated. If
necessary, and the user has the appropriate authentication,
nodes will be booted into the appropriate MCDRAM and
NUMA modes required by the job. Since the time required
to boot nodes can be significant, Slurm’s configuration
includes an expected boot time for optimizing scheduling
decisions. If resources are expected to be available for
allocation to a pending job in a more timely fashion by
waiting for resources to become available as running jobs

terminate rather than rebooting currently available nodes, the
job will remain pending. The process of rebooting a node
can not start until after all jobs currently allocated on that
node have terminated. If accounting is configured, the job
will be charged for not only its execute time, but also the
time consumed for rebooting nodes. However, the boot time
will not count against the job’s time limit.

When a node reboot completes and the Slurm daemon starts
on the node, it’s current MCDRAM, NUMA and high
bandwidth memory configuration are validated and the job
initiated. If the reboot of any allocated nodes fails, the
affected node will be drained and the job requeued. The
requeued job will be allocated a new set of resources,
possibly including previously allocated resources, and begin
execution when possible.

Slurm provides several mechanisms for managing task
layout on the allocated nodes. Slurm provides options to
specify the number of tasks per node, per NUMA or socket,
per core, and per thread (--ntasks-per-node, --ntasks-per-
socket, --ntasks-per-core and --ntasks-per-thread
respectively). Slurm also provides options to manage how
task ranks are distributed at each level of resource hierarchy,
either using explicit information from the user or in an
automated fashion using simple directives. For example the
option “--distribution=block:cyclic:cyclic” indicates that
ranks should be consecutive on each node (from the first
“block”), then sequentially across the NUMA of each node
(the first “cyclic”), then sequentially across each core of the
NUMA (the second “cyclic”). A Slurm option is also
available to perform the specified distribution on groups of
consecutive ranks rather than individual ranks (i.e. allocate 2
tasks on each core before cycling to the next core) [9].

Once a task is allocated to some resource, it can be
implicitly bound to that resource using cpusets or Linux
cgroups. By default tasks are bound to the appropriate entity
based up the ratio of tasks to NUMA, cores or threads. For
example if a job has one task per core, each task will be
bound to a core. User options are available to bind tasks at a
different level. For example, one can easily bound each task
to an individual thread even if there is one task per core.

Given the number of threads on a KNL, the compute
resources consumed by the operating system and daemons
(including Slurm) may adversely impact user applications.
This may be addressed by reserving some count of threads
or cores on each node for system use, which is referred to in
Slurm as thread or core specialization [10]. Memory can also
be reserved for system use, which is referred to as memory
specialization. These resources are removed from
availability to user applications, and in the case of
specialized threads, system processes are explicitly bound to
those resources.

Memory resources are managed in a similar fashion to
compute resources. Users can specify the desired memory on
a per-node or per-CPU basis. The application is bound to the
allocated memory using Linux cgroups. User options are
available to bind each task to the memory in its local NUMA
or to prefer its local NUMA. Application performance can
be adversely impacted on KNL if the free pages are not
regularly sorted [11]. Slurm has an option which will
automatically perform a sort on allocated NUMA at
application start (“--mem_bind=sort”).

SCHEDULING A HETEROGENEOUS SYSTEM

The NERSC Cori system operates a very demanding and
heterogeneous workload including data-intensive jobs on the
2004 Haswell nodes as well as a more traditional HPC
workload on the primary capacity of ~9600 KNL nodes.
The Haswell nodes are collectively considered the “data
partition” by NERSC and have been configured to provide
High Throughput Computing-friendly queues, including
both node-exclusive and single-core scheduling as well as
advanced capabilities, such as Shifter for virtualized
environments, to enable many non-traditional HPC
workflows. The KNL nodes, on the other hand, are more
focused on the HPC workload. That said, both Haswell and
KNL are available and accessible for scientists to perform
any relevant calculation within their DOE-assigned
allocation.

Slurm is critical infrastructure for supporting this hybrid
workload, both as a scheduler as well as a resource manager.
As a resource manager, Slurm grants NERSC the ability to
run as many jobs as there are cores on the nodes, which is
used provide support large serial job arrays on the Haswell
nodes. In addition, the plugin architecture enables NERSC
to operate a number of custom job-control plugins to
customize the node environment to match user-
specifications. As a scheduler, Slurm provides flexible
backfill scheduling enabling many different fine-grain
policies to be adopted while still effectively performing
future planning for hundreds of jobs (resource reservations),
and allowing many thousands of jobs access to backfill
capacity.

NERSC has a number of early science participants on the
KNL partitions as part of its NERSC Exascale Science
Applications Program (NESAP). The NESAP codes have
been updated collaboratively between the code development
team, NERSC, Cray, and Intel to prepare for the Many Core
architecture of KNL. These users were granted early access
to KNL, enabling both higher priority, larger scale and
longer walltimes for those users, while general general users
only have access to relatively smaller allocations. This is
achieved by setting different resource limits in different
Slurm Qualities of Service (QoS), and then mapping jobs
and users to specific QoS based on both the user status as
well as the resource requests. Slurm is capable to
specifically allow certain users access to some QoS, but not

others. The ability to gate access to KNL will be maintained
even into production to ensure that large jobs that
individually consume vast system resources are proven to
work well on the Cori system.

The NERSC Application Performance and Advanced
Technology Groups have identified that the NUMA “quad”,
and MCDRAM “cache” mode are likely to be the best fit for
the NERSC workload, at least for now. However, there is
much interest from a subset of our users, as well as some
applications that have been specifically tuned for directly
managing the MCDRAM, making the other possibly KNL
modes (specifically quad/flat) attractive for some users. To
this end, NERSC does allow users to directly request any
KNL mode, and does permit some level of node reboots.
Because of the delay generated by a node reboot (ranging
from 25 to 50 minutes on the Cori system, depending on
quantity being booted and other system conditions), as well
as the non-zero chance of node failure during the boot
process, we do prefer to minimize node boots, and especially
“mode thrashing” – repeatedly booting back and forth
between two popular modes. While we are still iterating on
the specific parameters of the configuration, the general
structure is that the KNL nodes are split over three
overlapping partitions:

• “knl” – all quad/cache jobs are routed here
• “knl_reboot” – all other modes are routed here
• “knl_regularx” – all large jobs exceeding 85% of

the system are routed here
The “knl” and “knl_regularx” are fully overlapping at this
time, though in the future as more refined debug and
interactive capabilities are added, the “knl” partition will be
made smaller. The “knl_reboot” fully overlaps the “knl”
partition, representing the final 3,400 nodes of it. This limits
the maximum scale of non-quad/cache jobs, ensuring that
some mode-changes large enough to potentially disrupt the
system do not occur automatically. By routing our “default”
mode of quad/cache to KNL, and then granting it most of the
resources, we ensure that most jobs are able to proceed
nominally without the disruption of a mode change.

Staring with Slurm version 17.02, we are able to define a
“delay_boot” parameter which allows a job with sufficiently
high priority to be delayed in order to attempt to make use of
nodes already booted to the desired mode. We are still
refining and tuning our configuration with respect to this,
but one can think of the “delay_boot” parameter as
providing a movable barrier between flexible sub-queues of
the KNL partitions each representing different modes. It is
best not to think of the “delay_boot” as a delay that a job
would necessarily have to endure, but rather an maximum
wait time before reconfiguring the system. This should
allow Cori to adopt meta-stable states based on the demand
in the queues without manual intervention by the systems
administrators. The delay_boot parameter can be over-
ridden by users who are in a hurry and don’t mind devoting
their allocation to rebooting nodes.

At present, Haswell and KNL jobs are largely separate –
meaning users are required to select either Haswell or KNL,
and no user-accessible partitions allow a job to span the two.
Moving into the future, we do see a growing use-case for
fully heterogeneous jobs, making use of both Haswell and
KNL nodes. To ensure we have this capability in the future,
Cori is already co-scheduling all Haswell and KNL jobs –
the system is “fully integrated”, meaning that both segments
of the system share the same network and share the same
scheduler instance. Both sets of jobs use a common priority
scheme and are scheduled using most of the same policies.
Tuning backfill scheduling to handle the volume of requests
has been an ongoing process, but does make use of both new
scheduling algorithms created based on NERSC’s
requirements by SchedMD (bf_min_prio_reserve), as well as
NERSC customizations to the backfill scheduling algorithm
(dynamic priority management). With these advanced
algorithms for backfill scheduling, NERSC can successfully
backfill many thousands of jobs, guaranteeing every possible
backfill opportunity is found and used.

DataWarp Scheduling

Aside from the I/O performance provided by DataWarp, the
largest benefit for NERSC users is the stage-in/stage-out
capabilities offered via a single command line option (or
multiples if desired) that bypass the idling of precious
compute cycles waiting for data to be copied in to or out of
DataWarp. The compute resources remain available for other
jobs while data is being staged in. Likewise, the compute
resources become available immediately upon job
completion, even while data is staged out in the background.
Slurm accepts DataWarp directives in several forms:

1. The directives can be included within a batch script
using a prefix of “#DW” on each line.

2. The directives can be specified in a stand-alone file
using the same “#DW” prefix. The stand-alone file
is typically used for interactive jobs, which
otherwise lack a file.

3. A subset of DataWarp directives can be specified on
the execute line of the Slurm command used to
create the job allocation. This mechanism is
typically used for interactive jobs with only simple
directives. Slurm uses these command line options
to construct a file of DataWarp directives as in case
#2 above.

4. In addition to the standard DataWarp directives
with the “#DW” prefix in a script, Slurm uses a
“#BB” prefix for extended capabilities. This
provides a mechanism to create and destroy
persistent allocations.

In all of these instances, Slurm makes use of DataWarp tools
to perform resource allocation, stage-in, stage-out and
deallocation operations. Slurm’s role is largely in the

scheduling of these operations to optimize the overall system
responsiveness and utilization.

DataWarp resources can be consumed by either job-specific,
persistent burst buffers, swap and transparent cache from
each of the available DataWarp pools. The current default
user quota is 52 TB and supports quota increases on a per
user basis. Job-specific buffers must be allocated prior to job
execution in order to potentially stage-in files as needed.
They typically must also persist after the job execution until
file stage-out is complete. Persistent burst buffers can be
created by a user job, but persist until explicitly destroyed,
potentially by another user job. In both cases, Slurm’s
scheduling of DataWarp resources is coordinated using these
factors:

1. Slurm’s resource limit, which can be configured on
a per-job, per-user, or per-account

2. Slurm advanced reservations, which can reserve
some quantity of DataWarp resources at a specific
time for specific users or accounts

3. The expected initiation time of pending jobs (i.e.
when compute resource, licenses, etc. are expected
to be available)

NERSC users have taken advantage of Persistent
Reservations (PR) where the data produced or staged-in is
available to multiple jobs of the same user or to other
collaborating user jobs via POSIX file permission controls.

Slurm will allocate DataWarp resources to the jobs expected
to be initiated soonest. Once the DataWarp resource
allocation completes, file stage-in begins. The allocation of
compute resources to a pending job will not happen until it’s
DataWarp resources have been allocated and file stage-in
completes. Since the expected initiation time of pending jobs
can change through time, job-specific DataWarp resources
allocated to pending jobs can be revoked at any time and re-
allocated to other pending jobs which are expected to start
sooner than the job originally allocated the resources.
Persistent burst buffers are never revoked after allocation,
even if the job creating the buffer is deleted. The most
common failure with respect to DataWarp scheduling is a
failure in the stage-in or stage-out operation. In the case of a
file stage-in failure, the burst buffer allocation is revoked
and the job held for review by the user or a system
administrator. In the case of a file stage-out failure, the burst
buffer is retained and the job is kept in a completing state for
investigation by the user and/or system administrator.

Support for KNL mode change (reboot) is fully integrated
with Slurm/DWS. A job requiring a different mode will first
allocate DataWarp space and stage-in data (if required), once
compute nodes are assigned and the reboot completed
(spanning multiple minutes) the DataWarp allocation is then
mounted on the compute nodes at job launch.

A job which has not started execution will release DataWarp
resources without staging-out any files. Once a job using
DataWarp has started execution, files will be staged-out at
termination no matter what the reason for termination. The
only exception to this is if the job is explicitly cancelled by
the owner or a system administrator using Slurm’s scancel
command with the “hurry” option. In that case, the
DataWarp resources will be released for use by other jobs
without going through the stage-out process.

Slurm provides a number of configuration control
parameters. Two parameters used by NERSC are;
EnablePersistent and TeardownFailure. EnablePersistent
controls whether users are allowed to create their own
Persistent Reservation as opposed to restricting permission
to system administrators. TeardownFailure releases
DataWarp allocations in the event of a failure (job or
staging). This avoids wasting DataWarp resources while
awaiting failure notification and analysis.

The Slurm “scontrol show burst” command displays a
summary of the DataWarp configuration, availability
(total/free), usage (user, size, jobID, creation time, etc.). A
sample of the scontrol output is shown in Diagram 1.

(Example diagram: Named allocations indicate a
Persistent Reservation)

(Example diagram: Named allocations indicate a
Persistent Reservation) scontrol-show-burst

STATISTICAL ANALYSIS OF WORKLOAD AT NERSC

The general NERSC workload has been previously
characterized in terms of the distribution of applications
[12]. Given that the focus of this paper is on the new
technologies accessible in Cray XC40 systems, we will
exclusively focus on how NERSC users are making use of
KNL and DataWarp technologies here.

Cori Haswell and KNL nodes were fully integrated in
September, 2016, and made available to users in mid-
October 2017. The usage data shown here is all early access
data in which the system was being used for a number of
different acceptance, benchmarking, and user activities. The
usage patterns present are expected to change in the future.
NERSC has recommended the quad/cache mode to most
users as a very usable and performant default mode. Based

https://drive.google.com/a/lbl.gov/file/d/0By9kkkaefWGCeU5ocWNEZGFvaEU/view?usp=sharing

on that recommendation, and scheduling policies which
enforce it, users have used quad/cache 91% of the time since
Cori was integrated. Quad/flat mode is the second most
popular with roughly 7.5% of the usage, and the balance
being used at extremely small percentages, mostly focused
on performing specific benchmarking tasks or for rare user
requests.

In the time since Cori was integrated, NERSC has
progressively allowed more and more users to make use of
KNL, both in a limited fashion (all users can access KNL as
of March, 2017 for short, small jobs), while also admitting
more and more users to “full scale” access permissions.
Since NERSC has been continuously been adding users and
adjusting policies it has been difficult to reliably track the
present overhead of scheduling with respect to node reboots.
At present, users are using the KNL nodes >97% of the
possible time, with >98% of that being accessible for user
codes (not rebooting). Slurm has initiated node reboots over
12,300 times on Cori since KNL was added to the system,
rebooting over 160,000 nodes. The bulk of these changes
were moving between quad/cache and quad/flat modes.

General access to DataWarp for all NERSC users was
enabled in December 2016. For the first quarter of 2017
users averaged 500 jobs per month requesting DataWarp
storage. There were 190,351 nodes with over 5PBs of
storage allocation that were requested and scheduled.

Areas for improvement

Ideally there would be options to manage task layout across
five levels in a KNL: socket (if multiple KNL per node),
NUMA, tile, core, and thread. Options would be available to
control the number of tasks at each level in the five
resources tiers as well as options to manage how the task
ranks are distributed across each (i.e. cyclic or block at each
tier). Slurm has command options and data structures to
manage only three tiers of compute resources on a node:
socket, core and thread. In the case of KNL, each NUMA is
mapped to a socket, which precludes full control over task
layout on a compute node containing multiple KNL
processors. There is also no mechanism for managing
resources at a tile level. There are no current plans to address
these shortcomings.

Slurm’s current design assumes the number of cores per
socket (or NUMA) is identical for all sockets on a node,
which is not the case for all KNL processors in all NUMA
modes. For example 68-core KNL processor configured in
SNC4 NUMA mode will have two NUMA with 16 cores
each, plus two NUMA with 18 cores each. Slurm computes a
value of 17 cores for each of the 4 NUMA. Addressing this
problem would require major restructuring of Slurm logic
and is not currently planned. The best option today would be
to disable snc4 NUMA mode on processors which can not be
configured with 4 identical NUMA.

Slurm can make use of Intel’s zonesort kernel module to sort
pages at application start, but does not currently have a
mechanism to repeat the process on a regular interval. In any
case, that would in most cases best be managed by the user
rather than Slurm in order to coordinate the timing of such
events so as to minimize its impact upon the application.
NERSC maintains a capability to do this using a custom
SPANK plugin, allowing user management of this aspect of
MCDRAM cache-mode maintenance.

Failure notifications from Cray’s capmc command are
detailed for some options, identifying specific nodes for
which an operation failed with an explanation. The response
for node reboot failures does not identify the nodes affected,
which complicates failure management. Initially Slurm
repeated the operation using subsets of the original list of
nodes in an effort to identify the specific nodes which could
not be rebooted, but that introduced scalability problems as
the reboot operations would be performed sequentially on
each subset of nodes. Presently Slurm requeues the job and
gathers node status information in an attempt to identify and
drain the faulty node and execute the job on good resources.

Presently Slurm has no time estimates for DataWarp file
stage-in or stage-out operations. If that information could be
made available then Slurm could potentially coordinate
scheduling to achieve higher resource utilization.

Perhaps Slurm’s greatest shortcoming is limitations in
support of heterogeneous resource allocations. For example,
one job might require 16 KNL nodes in SNC4/flat mode plus
32 Haswell nodes plus two DataWarp nodes with their CPUs
and burst buffer space. This might further be complicated by
different memory requirements, task layouts, etc. on each
node type. The best mechanism available in Slurm today to
achieve such a resource allocation is to create three separate
job allocations and then merge those allocations into a single
Slurm job [13]. Work has been in progress for some time to
support fully heterogeneous Slurm jobs, but the time frame
for deployment of this capability is not currently known
[14].

Conclusion

The advanced capabilities of recent Cray systems are
revolutionizing HPC systems, and the NERSC Cori system
integrating all these features along with the Slurm scheduler
to present a highly usable and capable combined HPC and
data-intensive computing system. Intel KNL is providing
unprecedented power efficiencies while still maintaining
familiar programming and computing interfaces. The open
source nature of Slurm is highly valuable to the HPC
provider both as a vehicle for customizing the user
experience as well as increasing the efficiency of
communicating with Cray and SchedMD. With Slurm
version 17.02, SchedMD has delivered a scheduling and
resource management technology specifically tuned for

making all these technologies accessible to users in a
performant, configurable, and flexible that enabling high
utilization and innovation.

REFERENCES

[1] https://en.wikipedia.org/wiki/Xeon_Phi
[2] D. Hensler, et. al. “Architecture and Design of Cray

DataWarp” in Proc. Cray Users’ Group Technical
Conference (CUG), 2016.

[3] https://slurm.schedmd.com
[4] https://www.top500.org

[5] http://www.nersc.gov/users/computational-systems/cori
[6] https://cug.org/5-

publications/proceedings_attendee_lists/2006CD/S06_Proce
edings/pages/Authors/Karo-4C/Karo_alps_paper.pdf

[7] https://slurm.schedmd.com/intel_knl.html
[8] https://slurm.schedmd.com/gres.html

[9] https://slurm.schedmd.com/mc_support.html
[10] https://slurm.schedmd.com/core_spec.html

[11] http://registrationcenter-
download.intel.com/akdlm/irc_nas/11177/xppsl_user_guide.

pdf
[12] http://portal.nersc.gov/project/mpccc/baustin/

NERSC_2014_Workload_Analysis_v1.1.pdf
[13] https://slurm.schedmd.com/faq.html#job_size

[14] https://slurm.schedmd.com/SLUG15/
Heterogeneous_Resources_and_MPMD.pdf

http://registrationcenter-download.intel.com/akdlm/irc_nas/11177/xppsl_user_guide.pdf
http://registrationcenter-download.intel.com/akdlm/irc_nas/11177/xppsl_user_guide.pdf
http://registrationcenter-download.intel.com/akdlm/irc_nas/11177/xppsl_user_guide.pdf
https://slurm.schedmd.com/core_spec.html

	References

