
Towards Seamless Integration of Data Analytics into Existing HPC Infrastructures

Dennis Hoppe, Michael Gienger,

Thomas Bönisch, Oleksandr Shcherbakov

High Performance Computing Center Stuttgart

Stuttgart, Germany

e-mail: {hoppe, gienger, boenisch,

shcherbakov}@hlrs.de

Diana Moise

Cray Inc.

Basel, Switzerland

e-mail: dmoise@cray.com

Abstract—Customers of the High Performance Computing

Center (HLRS) tend to execute more complex and data-driven

applications, often resulting in large amounts of data of up to

1 Petabyte. The majority of our customers, however, is

currently lacking the ability and knowledge to process this

amount of data in a timely manner in order to extract

meaningful information. We have therefore established a new

project in order to support our users with the task of

knowledge discovery by means of data analytics. We put the

high performance data analytics system, a Cray Urika-GX,

into operation to cope with this challenge. In this paper, we

give an overview about our project and discuss immanent

challenges in bridging the gap between HPC and data analytics

in a production environment. The paper concludes with a case

study about analyzing log files of a Cray XC40 to detect

variations in system performance. We were able to identify

successfully so-called aggressor jobs, which reduce

significantly the performance of other simultaneously running

jobs.

Keywords—High Performance Computing; Big Data; Data

Analytics; Cray XC; Urika GX; Log File Analysis

I. INTRODUCTION

The High Performance Computing Center (HLRS) is a
research and service institution affiliated to the Information
Centre of the University of Stuttgart. It is one of the three
national supercomputing centers in Germany and one of the
three members of the Gauss Centre for Supercomputing [1].
HLRS has strong ties to the industry, where the majority of
industrial users stem from the engineering domain. HLRS
conducts regularly academic workshops and industrial
trainings. Both are targeted towards end-users with limited
knowledge about HPC as well as domain experts. Topics
covered include parallel programming (MPI), performance
optimization and debugging, and introductions to
programming languages for scientific computing such as
Fortran and C++. Although not representative, these topics
reveal that the HPC domain is geared towards maximizing
performance by leveraging very specialized applications,
tools, as well as low-level programming languages and
paradigms.

The first supercomputers were introduced in the early
1960s, and thus current technology and software stacks are
mature. Current HPC systems such as the Cray XC40 [2]

enable end-users to perform not merely more complex
simulations, but rather execute considerably more
simulations in the same period of time. For example,
executing and analyzing a few crash simulations is still easy
to manage. However, with today’s computing power (e.g. the
XC40 system at HLRS has a peak performance of 7.4
PFlops), automotive companies tend to execute several
hundred crash simulations; up to 1 Petabyte of result data can
thus be generated within a single day.

Since it no longer becomes feasible that data is processed
and analyzed manually by domain experts, customers of
HLRS are very interested in solutions to process
automatically large amounts of data. With respect to crash
simulations, analyzing result data of each simulation in near
real-time can help to adjust input parameters for future
simulations. Automotive companies could reduce the number
of simulations from saying 1,000 to 5,000 while leaving out
unwanted simulations. That way, the runtime of jobs could
be reduced, and customers save money. Although a
movement exists to combine HPC with Big Data Analytics,
we believe that very few people are already there: Current
HPC systems are not designed to meet the demands of Big
Data Analytics [3,4].

We have established in 2016 a new project that deals
with the challenge of combining HPC with data analytics for
both academia and industry. Our customers should be
enabled to perform their simulations leveraging the power of
HPC, and then perform seamlessly data analytics on result
data. In an ideal scenario, discovered knowledge is fed back
into applications running on the HPC infrastructure to adapt
future executions. Since the installed HPC system at HLRS
does not fully satisfy requirements listed above, we have put
a high-performance data-analytics system, a Cray Urika-GX
[5], into operation. In the first project phase, both HLRS
systems, the Cray XC40 and the Urika-GX, are operated
independently. Our vision is to combine both in a seamless
manner. However, this means that we have to tackle various
challenges including security aspects, data transfer, and
accounting, to name but a few.

The remainder of this paper is organized as follows.
Section 2 overviews predominant architectures in HPC and
data analytics. Section 3 then highlights some of the main
differences between HPC and performing data analytics.
Section 4 continues to present the motivation for HLRS to

mailto:boenisch,%20shcherbakov%7D@hlrs.de
mailto:boenisch,%20shcherbakov%7D@hlrs.de

emphasize on Big Data. Section 5 then discusses challenges
and opportunities that arise when operating the Urika-GX in
combination with an existing HPC infrastructure. Section 6
presents a first case study, which was done in collaboration
with Cray. Log files of the HPC infrastructure are analyzed
in order to identify performance variations. This paper
concludes with an outlook.

II. BACKGROUND

This section briefly introduces the predominant architectures

available for HPC and data analytics based on four layers:

hardware, file system, resource managers, and programming

model. We kindly refer readers with background knowledge

in both domains to Section 3, which highlights main

requirements of data analytics that are currently hardly

satisfied by HPC architectures.

A. HPC Architectures

HPC is a well-established domain, in which everything
from hardware to software is optimized for performance. It
starts with the hardware, which is based on server-based
components such as the Intel Xeon processor family, and
interconnects that provide high-throughput and low-latency.
A well-known interconnect is InfiniBand. It has a throughput
of up to 10 times higher than a standard 10 Gigabit-Ethernet
(10GigE) connection, and the latency if up to 10 times less
than 10GigE. Figure 1 depicts Hazel Hen [6], HLRS’ Cray
XC40 system, which is composed of more than 7,700
compute nodes interconnected through Aries. Each diskless
compute node has two sockets with an Intel Haswell
processor, yielding nearly 200,000 cores. Furthermore, each
compute node has 128 GB of random access memory
(RAM) installed. Hazel Hen has a peak performance of 7.42
Petaflops, and is currently ranked 14 in the Top500 [7].

As already described, compute nodes are disk-less, and
thus storage is available globally via a distributed parallel
file system such as Lustre [8] or Network File System (NFS).
The Lustre at HLRS provides about 10 PB of storage to its
users. Since the majority of HPC applications are batch jobs,
resource managers for job submission—such as SLURM [9]
or TORQUE [10]—are optimized for large scale.

On the application layer, high performance programming
languages, tools, and libraries are dominant: C/C++ and
Fortran for the development of parallel applications using
libraries such as MPI [11], OpenMP [12], and OpenCL [13].

MPI, for example, is a specification to allow for efficient
communication in heterogeneous environments. It should be
noted that developing for HPC requires a deep understanding
and good knowledge about the underlying architectures,
network topologies, programming environments and
libraries. For instance, MPI-based applications require
knowledge in communication concepts (point-to-point, one
sided, collective, blocking vs non-blocking, …), declarative
concepts (groups and topologies), and process management.
In summary, it is not trivial to develop highly-efficient HPC
applications from scratch. In addition, many HPC centers
provide custom software, libraries and tools to manage jobs
and storage. This often results in a vendor block, because
customers cannot move seamlessly their jobs to other HPC
centers. Thus, training courses and consultancy are often two
activities offered by today’s HPC centers to attract new
customers with limited knowledge.

B. Big Data Architectures

Commodity hardware including x86 processors, Ethernet
interconnects, and local disk-based storage solutions provide
the basis for common data analytics clusters. In comparison
to HPC, data analytics systems often have local storage to be
used for the Hadoop Distributed File System (HDFS). HDFS
is the dominant file system used in the domain of data
analytics. The file system features data replication, fault
tolerance, and streaming data access, to name but a few.
HDFS is further optimized towards storing large file sizes of
up to several terabytes, and thus it is the main building block
of a data analytics system. On top of HDFS reside a vast
amount of frameworks and tools including Apache Hadoop
[14] and Spark [15]. Both frameworks allow for efficient
batch processing of individual jobs. Whereas Hadoop is
based strictly on the well-known MapReduce paradigm
(intermediate data is always stored on disk), Spark allows for
in-memory processing. As a consequence, Spark can process
data sets that fit into memory significantly more efficient.
The Apache project offers also various tools to work with
data stored in HDFS on a high-level; tools include Hive and
Pig, which allow for explorative data analysis. Finally,
developers and data scientists can choose from a rich variety
of applications and libraries. Software is developed mainly in
Java, Python, or GNU R. Available frameworks such as
Apache Mahout as well as Spark’s MLlib, enable developers
to easily perform both unsupervised and supervised machine
learning tasks.

Figure 1. Hazel Hen, a Cray XC40 system, at HLRS premises.

Table 1. Comparison between HPC and Big Data based on four layers.

Layer HPC Big Data

Programming Model C/C++, Fortran

MPI, OpenMP,

OpenCL

Java

Hadoop, Spark

Resource Manager TORQUE,
SLURM

YARN
Mesos, Marathon

File System Lustre, NFS HDFS

Hardware Server components

(e.g. Intel Xeon,
InfiniBand)

Commodity

components
(e.g. GigE)

C. Hybrid Architectures

The trend goes towards merging high performance
technologies such as InfiniBand with Hadoop clusters. This
transition has already taken place with the Cray Urika-GX
platform. The platform incorporates Intel Xeon processors as
well as Cray’s Aries interconnect, both hardware that is
predominant in the HPC domain. HLRS have installed two
systems with a total of 64 compute nodes; each equipped
with 36-cores of Intel’s current Xeon processor generation.
Nodes are staffed with 512 GB RAM, as well as 1.6
terabytes of local SSD memory. Thus, the system is
optimally designed to provide solutions for current and
future challenges of data analytics. The platform has a state-
of-the-art data analytics software stack installed. Moreover,
the special-purpose Cray Graph Engine enhances the
analysis of semantic data, which is commonly present in
biology and chemistry [16]. Here, Cray offers an alternative
to Spark’s GraphX library.

III. WHEN HPC MEETS BIG DATA

HPC is best for demanding simulations that benefit from
embarrassingly parallel computations; simulations typically
generate and analyze data in-situ. As a consequence, the
costly task of moving data around is well avoided. Big Data,
however, introduces several new requirements [17–20].

A. Data Colocation

Data-intensive applications require to pre-process and
read-in large amounts of data. Data movement itself is costly
on current HPC architectures due to the immanent separation
between computation and storage. For example, HLRS’s
Cray XC40 cluster has no local storage, and thus data is
stored globally in the Lustre file system; moving data
between nodes thus significantly depends on bandwidth and
latency. Predominant architectures in data analytics,
however, push the co-location of computation and data to be
on the same node. Hence, data-intensive applications can
benefit from data-locality; data movement in the cluster is

minimized through optimal scheduling strategies that take
locality into account: Required data is ideally already stored
on the node, on which a job will be executed. Frameworks
such as Apache Hadoop deal with data-locality through the
prevailing distributed file system HDFS.

In order to incorporate data analytics with HPC, existing
shared file systems such as Lustre need to support HDFS.
Benefits of direct HDFS support are twofold. First, HPC
centers can avoid to have separate storages for HPC (Lustre)
and data analytics (HDFS). Second, cost-intensive data
movements can be avoided. Recent research proposes
solutions to provide Hadoop extensions for Lustre [21].

Furthermore, a performance gain can be achieved by
integrating MPI with Hadoop MapReduce [17,22,23]. In
[17], the author proposes a framework for Hadoop with
OpenMPI. The optimized MapReduce implementation
leverages MPI-IO for parallel data reads, and both map and
reduce functions are implements as MPI processes. Finally,
output data is also written out via MPI-IO.

B. Recurrent Analysis

A typical workflow (e.g., explorative analysis) or
algorithm (e.g., clustering) in data analytics requires to
process the same dataset several times, and thus will benefit
significantly from data locality, too. In this context, Apache
Spark can maintain data in-memory to allow for efficient
parallel processing of distributed data with iterative
algorithms.

Existing HPC systems such as HLRS’ Cray XC40 have
128 GB RAM per node, and thus are limited compared to
specialized data analytics hardware including the installed
Cray Urika-GX at HLRS, which has 512 GB. Moreover,
Spark allows to dynamically extend in-memory data to local
storage such as SSDs, when RAM is not sufficient to hold
the total amount of data. This mechanism, for example, is not
support on current HPC architectures due to the lack of local
storage. On the other hand, the Urika-GX system can handle
this task with ease. The system also comes with a pre-
installed and regularly updated industry-based software
stack.

C. Everchanging Zoo of Software

The software stack in HPC is in general limited, but very
optimized to perform embarrassingly-parallel tasks. The
operating environment is often based on customized Linux
derivatives (e.g., CentOS), and for development, languages
such as FORTRAN, C, and C++ are supported. In order to
allow for parallel programming, modules such as MPI and
SHMEM are available. Accessing the system is done solely
via the command line through remote access.

In comparison, the software stack in data analytics is
manifold. The spectrum ranges from data ingestion (e.g.,
Apache Kafka, Apache Flume), storage (e.g., HDFS, HBase
and Cassandra), processing (e.g., Apache Hadoop, Apache
Spark), and querying (e.g., Apache Hive). All these
individual tools are interconnected to form custom solutions.
As a consequence, developers need to have the freedom to
choose the best tool for their current problem. The

Table 2. Technical details of the Urika-GX systems installed at HLRS.

 System 1

(Gilgamesch)

System 2

(Enkidu)

Nodes 48 16

Compute nodes 41 9

CPU 2x Intel BDW 18-Core, 2.1 GHz

RAM 512 GB

Local Storage 2 TB HDD; Intel DC P3608 SSD (1.6 TB)

File System Sonexion 900 with 240 TB
4.0 GB/s throughput

Software  YARN, Mesos, Marathon

 Hadoop, Spark, Cray Graph Engine,
GNU R

 Apache Kafka, Cassandra

 Apache Hive

 …

underlying infrastructure should therefore support the
concepts of sandboxing and containerization.

D. Scheduling

Scheduling for HPC is optimized for large-scale batch
jobs. Predominant resource managers are SLURM and
TORQUE. In general, a standard FIFO scheduling strategy is
used in combination with multiple job queues. Thus, a job is
scheduled as soon as required compute resources are
available. Ideally, one would like have at least three different
queues: interactive, batch jobs, heterogeneous jobs. The
difference between the last two queue types is that the latter
requires a heterogeneous set of compute nodes (e.g.,
additional graphic nodes). Moreover, HPC centers can add
another queue to prioritize specific jobs.

Well-established resource managers for Big Data are
YARN and Mesos. YARN is specifically installed to manage
Hadoop jobs, whereas Mesos allocates resources for all other
jobs (e.g., Spark). In this respect, Mesos can be seen as a
global resource manager for the whole infrastructure. As
with SLURM, YARN is implemented for long-running batch
jobs, and does not support interactive jobs. These jobs can be
handled by Mesos, though. On a data analytics platform such
as the Urika-GX, multiple resource managers are required:
Hadoop jobs are served via YARN, Spark jobs are managed
through Mesos, and the Cray Graph Engine uses internally
SLURM. It should be mentioned, that a unified interface
exists. Scheduling policies in YARN and Mesos are
manifold. For example, the fair sharing policy is often used
per default, meaning that all jobs are assigned an equal share
of the available resources.

E. Services

Whereas on HPC infrastructures at most some
monitoring tools collect information on job execution,
performance and power consumption, a big variety of
services and daemons exist while running data analytics
tasks. It starts with resource managers such as YARN or
Mesos, which require to have different services running on
both managing and compute nodes. Each compute node, for
example, has both a YARN node manager running as well as
Mesos slave clients. Furthermore, each compute node
provides access to a Web interfaces for retrieving status
information. On the managing nodes, additional Web
interfaces are installed to allow users to retrieve job-related
information. In addition, the login nodes have more than ten
services running including user interfaces for Zookeeper,
Mesos, Spark, HDFS, Marathon, Hadoop, Hive, to name but
a few. The Urika-GX platform is also shipped with the
Hadoop User Experience (HUE) service, which is a Web UI
that aggregates all individual services. Additional Web
server start when individual jobs are triggered, e.g., a Spark
launches another job monitoring server.

F. Sandboxing

Data scientists usually select a subset of the above
mentioned tools and frameworks in order to build a
customized solution that best tackles a given problem.
Infrastructures can support this flexibility in daily work by

offering containerization support. Containerization is a
virtualization technique to encapsulate software in
containers, that are running in the kernel space of the
operating system. A prominent example are Docker
containers. They are simple to describe and set-up, and thus
can be easily shared and re-used.

The additional requirements imposed by Big Data can
simply be satisfies through a dedicated infrastructure such as
the Cray Urika-GX. It is a more challenging task when an
existing HPC infrastructure should be used for data analytics,
though. In [24], the authors report on their experience with
executing Hadoop and Spark jobs on the Cray XC series.
Whereas good performance could be reported for Spark,
where the jobs could benefit from 32 GB RAM per compute
node1, the performance of Hadoop jobs was, in comparison,
rather poor, because of the frequent read/write requests to the
connected Lustre. In order to support all kinds of jobs with
best performance, HLRS installed dedicated hardware.

1 Please note that Spark performs computation in-memory.

Figure 1. Part of the infrastructure at HLRS.

IV. BIG DATA ANALYTICS AT HLRS

HLRS and Cray have launched an ambitious project to
deal with the challenges of combining HPC with Big Data
analytics. Hazel Hen, the current HPC flag-ship system of
HLRS, is extended with specific data analytics hardware
designed by Cray—a Urika-GX. In the first phase of the
project, the Urika-GX system is operated in two individual
configurations: a larger configuration (48 nodes) for
production and a smaller configuration (16 nodes) for
development and testing. Each configuration comes with an
industry-based Big Data software stack including Apache
Hadoop, Apache Spark, and the Cray Graph Engine as a
means to perform data analytics. By the end of the project, it
planned to merge both individual configurations.

In the project, we are investigating the hardware of the
Urika-GX and its usefulness for our customers. Since the
majority of today’s data analytics algorithms are oriented
towards text processing (e.g., news clustering) and graph
analysis (e.g., social network studies), we are further in need
to evaluate these algorithms with respect to their
applicability to the engineering domain. Thus, we will
examine future concepts for both hardware and software. We
will therefore pursue multiple case studies from divergent
domains throughout the next three years.

The project’s vision is to incorporate the Urika-GX with
the existing HPC system at HLRS. This ambitious goal
requires to tackle various operative challenges including
security aspects, fast and secure data transfer, and
accounting, to name but a few. The project will (a) research
new methodologies and develop frameworks to achieve a
seamless integration of both systems; (b) further pursue
multiple case studies in order to evaluate the applicability of
current technologies to current challenges in both academia
and industry; (c) investigate data analytics in industrial areas.

Our first case study was conducted in collaboration with
Cray. In the past, we have randomly observed performance
variations of our Cray XC40 system, which is composed of
more than 7,000 compute nodes. System administrators tried
to identify the root cause for these performance drops by
manually studying log files of the entire compute cluster.
However, they were unable to extract meaningful insights
from these log files that track individual jobs, including
information about when and where jobs were executed.
Although system health management of IT infrastructures is
a well-established methodology to identify errors in software
or faulty hardware since decades, it is often infeasible for
experts to identify any causes due to the vast amount of
semi-structured data. Thus, monitoring today’s IT
infrastructures has actually become a big data challenge on
its own. When classifying log data into the five V’s of big
data (volume, velocity, veracity, variety, and value), we
argue that value is key with respect to this case study. In
current IT infrastructures, monitoring is performed, large
amounts of log files are stored for long term preservation,
but system administrators are lacking the required time or
expertise to analyze the data accordingly, and to derive from
the results consequences towards future management and

usage of resources. Due to the volume and velocity of the
data, we utilized the Cray Urika-GX system with its pre-
installed data analytics software stack to process and analyze
log files. Before Section 6 reports on the methodology and
first results obtained with respect to the log file analysis,
Section 5 first discusses challenges that arise when
integrating a new data analytics system into existing
infrastructure.

V. INTEGRATION OF HPC WITH BIG DATA ANALYTICS

Making the decision to incorporate an additional system
into existing infrastructure is always challenging. We
therefore discuss next some key tasks that came up while
adding the two new Urika-GX systems to our portfolio.

1) Usage Model
Data analytics platforms per se are targeted for single-

user usage and for small teams that work closely together.
Clusters are often operated in-house. In these cases, strict
user and group permissions as well as access rights for jobs
and data have not the highest priority. From an end user
point of view, it is acceptable that other users from the same
team can see others jobs and data. Users may have even root
permissions to install additional software. However, coming
from the HPC domain, security plays a significant role in
order to maintain system health and data security. At HLRS,
we aim to use the Urika-GX system in a multi-user scenario,
and thus user and group permissions have to be aligned
across the system including the file system. For example,
users need to be prevented from having access to other user’s
data in HDFS.

2) Software
Although the Urika-GX is shipped with a fundamental

set of pre-configured software for performing data analytics,
future end users might request additional software to be
installed on the system. Software components could, for
example, include Google’s TensorFlow or extra databases
such as the well-established NoSQL database MongoDB.
Critical here is that new software components are often
required to be installed for distributed usage, and they also
need to be incorporated into existing software like Spark.
TensorFlow on the Urika-GX, for instance, is started through
a specific Spark kernel which can be loaded interactively and
used in Jupyter notebooks. These are just two examples for
software that is requested by customers. In order to satisfy
most end users and not limit one selves to a handful of
software components, we need to implement a practicable
solution for future software installations. Based on our
experience with HPC, a future model could be composed of
three layers: a) users are allowed to install components
locally, b) Cray maintains a global software repository that
includes supported software such as TensorFlow, and which
is then accessible by all users, and c) HLRS will also
maintain another repository of not supported software
components, which is accessible by selected users.

3) Security
Following the multi-user model, security requirements on

the Urika-GX systems need to satisfy the high security
requirements that HLRS has already implemented on their
HPC systems. This means that the Urika-GX is not directly
connect to the World Wide Web, and that per default Web
server have to be deactivated. As a consequence, some
services mentioned in the previous sections are not available
for end users. Furthermore, the Urika-GX systems have to
undergo a security audit. When the audit is passed, the
systems can be connected with the existing Lustre of HLRS’
Hazel Hen to allow for a seamless data transfer between the
HPC and Big Data infrastructures, as well as to HLRS’
LDAP server to manage user accounts globally. When
operating the Urika-GX independently, one can rely on the
local LDAP server pre-installed on the Urika system.
However, we would like to mount the shared Linux home for
each user, and thus we will need access to the global LDAP.

4) Accounting
Performing proper user accounting on HPC is trivial:

monitor per user the number of compute nodes used as well
as the overall wall-clock time. Pricing is then done per node
hour. While driving a multi-user model on the Urika-GX
systems, accounting is not as straightforward. Users can
allocate resources not just through a single resource
manager, but rather via three different managers. Each
resource manager such as Mesos has a different API and
might not log the required information including cores
allocated and HDFS/Lustre storage used. Mesos also
maintains job information based on a global user, and thus a
job is not directly associated with the user that started the
job. Moreover, the same resources might be used
simultaneously by different users, which subsequently, might
even result in performance loss. An adequate solution might
be to establish an independent resource monitoring tool that
collects the required information as mentioned above. That
way, the solution striven for is then independent of the
resource managers installed on the system.

5) Data Ingestion and Storage
Since the Urika-GX systems are not directly connected to

the Internet, the system cannot directly support applications
or services that perform real-time analytics based on
streaming data. Sources for streaming data could be social
networks, for example. However, the focus of HLRS is on
the engineering domain, where streaming data is not as
prevalent as in other research domains. The lack of direct
Internet access for data ingestion can be solved by an extra
proxy node, on which specific services and ports are
activated. More important for HLRS is the connection to the
existing Lustre storage, so that data produced by applications
on the HPC cluster can be transferred to the Urika-GX own
Lustre storage or directly into HDFS.

VI. CASE STUDY: LOG FILE ANALYSIS

Performance variability on HPC platforms is a critical
issue with serious implications on the users: irregular
runtimes prevent users from correctly assessing performance
and from efficiently planning allocated machine time. The
hundreds of applications, which are sharing thousands of
resources concurrently, escalate the complexity of
identifying the causes of runtime variations. On production
systems, implementing trial-and-error approaches is
practically impossible. On that account, making use of
existing information represents a preferable path to solution.
Cray systems collect large amounts of data related to user
applications, data that can be highly valuable for
understanding performance variability. Novel analytics tools
enable the exploring of ways to use the data for identifying
and understanding performance variability. In this context,
we have developed a Spark-based tool for analyzing system
logs with the goal of identifying applications that show high
variability (victims) and applications potentially causing the
variability (aggressors). Understanding the nature of both
types of applications is crucial to developing a solution to
these issues. This section goes through the different steps of
the analysis (data aggregation and filtering, victim and
aggressor detection, validation) and the configuration
parameters that help refine the search space. The analysis
was implemented using Spark’s RDD and DataFrame API
and was tested on data coming from production systems.

A. Dataset

In practice, detecting application interference is
challenging due to the very large number of jobs running on
the system at any given time. On a system like Hazelhen
there are typically hundreds of jobs running at any time.
Cray systems collect large amounts of data related to user
applications, which can be valuable for understanding
performance variability. This data is collected on the Cray
System Management Workstation (SMW). A promising
approach to identify and understand performance variability
is to use analytics tools to explore this data. In this context,
we have used Spark to develop tools for data analysis with
the goal of identifying victim and aggressor applications.

On the HLRS system, we have worked with a dataset
extracted from SMW log files. This dataset consists of
system log files that contain relevant information regarding
all the applications running on the machine.

B. Analysis

Spark-based analysis of SMW data consists of three main
steps: data extraction and filtering, victim detection,
aggressor detection and validation. The main goal of the
Spark-based tools is to reduce the search space for
aggressors. To this end, we have defined configuration
parameters that help refine the results of the analysis. The
main steps of the analysis are detailed in the following.

1) Data extraction and filtering
The SMW log files from the Cray XC40 were pre-

processed at the customer site to make the details
anonymous. This was done using python scripts that were
developed by Cray. It would have been possible to do this
step using Spark, if that had been available on site. Next, the
files extracted from the above process were passed to Cray
and loaded as an entire dataset onto a Urika-GX platform.
The data contained information on each application running
on the Cray XC40 system: job start time, end time, elapsed
time, command that was used to run the application and the
nodes used.

Finally, the dataset required filtering to keep only the
useful, correct information (e.g.: remove bad lines, discard
lines with incomplete commands, disregard application runs
that are too short probably because of errors, etc.).

2) Victim detection
Applications that show high variability in runtime over

several runs with identical setup are labeled as victims. First,
we determine the baseline for each application as either the
average or the minimum elapsed time over all the runs of
each application. Second, we detect all the runs that were
slower than the baseline by a certain (configurable) factor.
The victim set contains these slow runs for all the
applications.

3) Aggressor detection
Based on the victims set, we include in the potential

aggressor set, all the applications running at the same time as
the victims. Applications (sharing the same command) that
are found more often are promoted to the top of the list.
Further refining can be done based on the size of the

aggressor (number of nodes it was using) and the time
overlap of the aggressor with the victims.

Parameters introduced at each step of the analysis act as
leverage mechanism for reducing the search space. Figure 2
summarizes the parameters available in the workflow.

4) Implementation and results
The three parts of the analysis were implemented as a

single Spark application using the core RDD and DataFrame
API. The initial dataset extracted from the SMW logs is
processed by several Spark workers by loading the data into
memory and performing the analysis described above. All
the processing takes place in memory, only the final results
are written to disk (Lustre).

While the filtering of the data and the victim detection
steps do not require significant resources (CPU and
memory), the last step of finding aggressors does need
considerable computation power. For each victim, Spark
starts a thread to search through the application set and get
all the applications running at the same time as the victim.
Considering the victim set can be quite large in number (in
the order of thousands, reaching tens of thousands), we have
used Spark’s FutureRDD API to run these threads in parallel
on the Urika-GX.

We have run the analysis on an initial dataset reflecting
HLRS applications spanning two weeks. The factor used to
classify victims was set at two times the average runtime and
the factor used to classify aggressors was set to more than
1,000 allocated nodes. This analysis—with the factors set as
above—identified 472 victims, and 2,892 potential
aggressors. Seven of those potential aggressors were running
on more than 1,000 nodes and three of them were found
repeatedly.

On a larger dataset (SMW data over three months), the
same analysis found 3,215 victims, 67,908 aggressors and 17
of them using more than 1,000 nodes. The analysis took 268
seconds on 300 cores on the Urika-GX.

VII. CONCLUSIONS AND OUTLOOK

Our vision is to integrate data analytics with HPC in
order to support our customers in analyzing the increasing
amount of results produced by data-intensive applications.
We therefore put two Urika-GX platforms into operation to
extend our current HPC clusters. In this paper, we reported
on current challenges that arise due to different requirements
in data analytics (e.g., data colocation, recurrent analysis,
and scheduling) as well as due to hurdles to be tackled while
incorporating a new system into existing infrastructure (e.g.,
usage model, security, data storage, and accounting). We
also highlighted one of our first use cases about a log file
analysis in order to detect jobs that cause performance loss
on our HPC cluster. Here, we successfully demonstrated that
dividing jobs into aggressors and victims can help to identify
a subset of jobs that affect the runtime of simultaneous
running jobs significantly.

Whereas, we have presented a so-called offline scenario
for the log analysis, we aim in the future to implement an
online scenario, where log data is streamed directly to the
Urika-GX system to identify performance variations on the

Figure 2. Three steps of the analysis workflow (data filtering, victim
detection, and aggressor detection) including configuration parameters.

HPC cluster in near real-time. Furthermore, future work will
also focus on enhancing the analytics part to account for and
identify faulty hardware in advance using anomaly detection.
System administrators deal currently with a so-called post-
mortem scenario, where the error or hardware fault has
already happened. Since a system could then be non-
functional for several hours, post-mortem scenarios should
be avoided by offering a sophisticated means to predict
hardware failures.

ACKNOWLEDGMENT

The project is funded by the State of Baden-
Württemberg, Ministry of Science, Research and the Arts
Baden-Württemberg. Cray Inc. is partner in the project.

REFERENCES

[1] Gauss Centre for Supercomputing e.V., “About GCS,”

http://www.gauss-centre.eu/gauss-

centre/EN/AboutGCS/aboutGCS_node.html.

[2] Cray Inc., “Cray XC Series Brochure,”

http://www.cray.com/sites/default/files/Cray-XC-

Series-Brochure.pdf.

[3] T. C. Chiang, “Can HPC and Big-Data Analytics co-

exist?” 10/20/2016,

http://comcen.nus.edu.sg/technus/hpc/can-hpc-big-

data-analytics-co-exist/.

[4] A. Jackson, “Big Data: What's wrong with HPC?”

9/3/2015,

https://www.epcc.ed.ac.uk/blog/2015/08/27/big-data-

whats-wrong-hpc.

[5] Cray Inc., “Cray Urika-GX Product Brochure,”

http://www.cray.com/sites/default/files/Cray-Urika-

GX-Product-Brochure.pdf.

[6] High Performance Computing Center Stuttgart,

“Systems: Cray XC40 (Hazel Hen),”

http://www.hlrs.de/systems/cray-xc40-hazel-hen/.

[7] TOP500, “Top500 List - November 2016,”

https://www.top500.org/list/2016/11/?page=1.

[8] Seagate Technology LLC, “Lustre Filesystem,”

http://lustre.org/.

[9] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM:

Simple Linux Utility for Resource Management,” in

Job Scheduling Strategies for Parallel Processing, G.

Goos, J. Hartmanis, J. van Leeuwen et al., Eds., vol.

2862, pp. 44–60, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2003.

[10] G. Staples, “TORQUE---TORQUE resource manager,”

in Proceedings of the 2006 ACM/IEEE conference on

Supercomputing - SC '06, B. Horner-Miller, Ed., p. 8,

ACM Press, New York, New York, USA, 2006.

[11] W. Gropp, E. Lusk, and A. Skjellum, Using MPI:

Portable parallel programming with the message-

passing interface, MIT Press, Cambridge, Mass., 1999.

[12] L. Dagum and R. Menon, “OpenMP: An industry

standard API for shared-memory programming,” IEEE

Computational Science and Engineering, vol. 5, no. 1,

pp. 46–55, 1998.

[13] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A

Parallel Programming Standard for Heterogeneous

Computing Systems,” Computing in science &

engineering, vol. 12, no. 3, pp. 66–72, 2010.

[14] T. White, Hadoop: The Definitive Guide / Tom White,

O'Reilly, Farnham, 2012.

[15] The Apache Software Foundation, “Apache Spark -

Lightning-Fast Cluster Computing,”

http://spark.apache.org/.

[16] C. Joslyn, B. Adolf, S. al-Saffar et al., “High

Performance Descriptive Semantic Analysis of

Semantic Graph Databases,” in 1st Workshop on High-

Performance Computing for the Semantic Web at

ESWC.

[17] A. Cheptsov, “HPC in Big Data Age: An Evaluation

Report for Java-Based Data-Intensive Applications

Implemented with Hadoop and OpenMPI,” pp. 175–

180.

[18] N. Malitsky, “Bringing the HPC reconstruction

algorithms to Big Data platforms,” in Bringing the

HPC reconstruction algorithms to Big Data platforms,

pp. 1–8, IEEE, 2016.

[19] S. Singh, N. Narayan, and G. Raj, “Survey on Data

Processing and Scheduling in Hadoop,” International

Journal of Computer Applications, vol. 119, no. 22,

pp. 27–30, 2015.

[20] P. Xuan, J. Denton, P. K. Srimani et al., “Big data

analytics on traditional HPC infrastructure using two-

level storage,” in Proceedings of the 2015

International Workshop on Data-Intensive Scalable

Computing Systems - DISCS '15, P. C. Roth, Ed.,

pp. 1–8, ACM Press, New York, New York, USA,

2015.

[21] O. Kulkarni and D. Ferber, “Hadoop MapReduce over

Lustre,” http://cdn.opensfs.org/wp-

content/uploads/2014/10/8-Hadoop_on_lustre-

CLUG2014.pdf.

[22] X. Lu, F. Liang, B. Wang et al., “DataMPI: Extending

MPI to Hadoop-Like Big Data Computing,” in 2014

IEEE 28th International Parallel and Distributed

Processing Symposium, pp. 829–838, IEEE, 2014.

[23] S. J. Plimpton and K. D. Devine, “MapReduce in MPI

for Large-scale graph algorithms,” Parallel Computing,

vol. 37, no. 9, pp. 610–632, 2011.

[24] R. Schmidtke, G. Laubender, and T. Steinke, “Big Data

Analytics on Cray XC Series DataWarp using Hadoop,

Spark and Flink,” in CUG Proceedings, 2016.

