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Abstract—Customers of the High Performance Computing 

Center (HLRS) tend to execute more complex and data-driven 

applications, often resulting in large amounts of data of up to  

1 Petabyte. The majority of our customers, however, is 

currently lacking the ability and knowledge to process this 

amount of data in a timely manner in order to extract 

meaningful information. We have therefore established a new 

project in order to support our users with the task of 

knowledge discovery by means of data analytics. We put the 

high performance data analytics system, a Cray Urika-GX, 

into operation to cope with this challenge. In this paper, we 

give an overview about our project and discuss immanent 

challenges in bridging the gap between HPC and data analytics 

in a production environment. The paper concludes with a case 

study about analyzing log files of a Cray XC40 to detect 

variations in system performance. We were able to identify 

successfully so-called aggressor jobs, which reduce 

significantly the performance of other simultaneously running 

jobs. 
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I.  INTRODUCTION 

The High Performance Computing Center (HLRS) is a 
research and service institution affiliated to the Information 
Centre of the University of Stuttgart. It is one of the three 
national supercomputing centers in Germany and one of the 
three members of the Gauss Centre for Supercomputing [1]. 
HLRS has strong ties to the industry, where the majority of 
industrial users stem from the engineering domain. HLRS 
conducts regularly academic workshops and industrial 
trainings. Both are targeted towards end-users with limited 
knowledge about HPC as well as domain experts. Topics 
covered include parallel programming (MPI), performance 
optimization and debugging, and introductions to 
programming languages for scientific computing such as 
Fortran and C++. Although not representative, these topics 
reveal that the HPC domain is geared towards maximizing 
performance by leveraging very specialized applications, 
tools, as well as low-level programming languages and 
paradigms. 

The first supercomputers were introduced in the early 
1960s, and thus current technology and software stacks are 
mature. Current HPC systems such as the Cray XC40 [2] 

enable end-users to perform not merely more complex 
simulations, but rather execute considerably more 
simulations in the same period of time. For example, 
executing and analyzing a few crash simulations is still easy 
to manage. However, with today’s computing power (e.g. the 
XC40 system at HLRS has a peak performance of 7.4 
PFlops), automotive companies tend to execute several 
hundred crash simulations; up to 1 Petabyte of result data can 
thus be generated within a single day. 

Since it no longer becomes feasible that data is processed 
and analyzed manually by domain experts, customers of 
HLRS are very interested in solutions to process 
automatically large amounts of data. With respect to crash 
simulations, analyzing result data of each simulation in near 
real-time can help to adjust input parameters for future 
simulations. Automotive companies could reduce the number 
of simulations from saying 1,000 to 5,000 while leaving out 
unwanted simulations. That way, the runtime of jobs could 
be reduced, and customers save money. Although a 
movement exists to combine HPC with Big Data Analytics, 
we believe that very few people are already there: Current 
HPC systems are not designed to meet the demands of Big 
Data Analytics [3,4]. 

We have established in 2016 a new project that deals 
with the challenge of combining HPC with data analytics for 
both academia and industry. Our customers should be 
enabled to perform their simulations leveraging the power of 
HPC, and then perform seamlessly data analytics on result 
data. In an ideal scenario, discovered knowledge is fed back 
into applications running on the HPC infrastructure to adapt 
future executions. Since the installed HPC system at HLRS 
does not fully satisfy requirements listed above, we have put 
a high-performance data-analytics system, a Cray Urika-GX 
[5], into operation. In the first project phase, both HLRS 
systems, the Cray XC40 and the Urika-GX, are operated 
independently. Our vision is to combine both in a seamless 
manner. However, this means that we have to tackle various 
challenges including security aspects, data transfer, and 
accounting, to name but a few. 

The remainder of this paper is organized as follows. 
Section 2 overviews predominant architectures in HPC and 
data analytics. Section 3 then highlights some of the main 
differences between HPC and performing data analytics. 
Section 4 continues to present the motivation for HLRS to 
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emphasize on Big Data. Section 5 then discusses challenges 
and opportunities that arise when operating the Urika-GX in 
combination with an existing HPC infrastructure. Section 6 
presents a first case study, which was done in collaboration 
with Cray. Log files of the HPC infrastructure are analyzed 
in order to identify performance variations. This paper 
concludes with an outlook. 

II. BACKGROUND 

This section briefly introduces the predominant architectures 

available for HPC and data analytics based on four layers: 

hardware, file system, resource managers, and programming 

model. We kindly refer readers with background knowledge 

in both domains to Section 3, which highlights main 

requirements of data analytics that are currently hardly 

satisfied by HPC architectures. 

A. HPC Architectures 

HPC is a well-established domain, in which everything 
from hardware to software is optimized for performance. It 
starts with the hardware, which is based on server-based 
components such as the Intel Xeon processor family, and 
interconnects that provide high-throughput and low-latency. 
A well-known interconnect is InfiniBand. It has a throughput 
of up to 10 times higher than a standard 10 Gigabit-Ethernet 
(10GigE) connection, and the latency if up to 10 times less 
than 10GigE. Figure 1 depicts Hazel Hen [6], HLRS’ Cray 
XC40 system, which is composed of more than 7,700 
compute nodes interconnected through Aries. Each diskless 
compute node has two sockets with an Intel Haswell 
processor, yielding nearly 200,000 cores. Furthermore, each 
compute node has 128 GB of random access memory 
(RAM) installed. Hazel Hen has a peak performance of 7.42 
Petaflops, and is currently ranked 14 in the Top500 [7]. 

As already described, compute nodes are disk-less, and 
thus storage is available globally via a distributed parallel 
file system such as Lustre [8] or Network File System (NFS). 
The Lustre at HLRS provides about 10 PB of storage to its 
users. Since the majority of HPC applications are batch jobs, 
resource managers for job submission—such as SLURM [9] 
or TORQUE [10]—are optimized for large scale. 

On the application layer, high performance programming 
languages, tools, and libraries are dominant: C/C++ and 
Fortran for the development of parallel applications using 
libraries such as MPI [11], OpenMP [12], and OpenCL [13]. 

MPI, for example, is a specification to allow for efficient 
communication in heterogeneous environments. It should be  
noted that developing for HPC requires a deep understanding 
and good knowledge about the underlying architectures, 
network topologies, programming environments and 
libraries. For instance, MPI-based applications require 
knowledge in communication concepts (point-to-point, one 
sided, collective, blocking vs non-blocking, …), declarative 
concepts (groups and topologies), and process management. 
In summary, it is not trivial to develop highly-efficient HPC 
applications from scratch. In addition, many HPC centers 
provide custom software, libraries and tools to manage jobs 
and storage. This often results in a vendor block, because 
customers cannot move seamlessly their jobs to other HPC 
centers. Thus, training courses and consultancy are often two 
activities offered by today’s HPC centers to attract new 
customers with limited knowledge. 

B. Big Data Architectures 

Commodity hardware including x86 processors, Ethernet 
interconnects, and local disk-based storage solutions provide 
the basis for common data analytics clusters. In comparison 
to HPC, data analytics systems often have local storage to be 
used for the Hadoop Distributed File System (HDFS). HDFS 
is the dominant file system used in the domain of data 
analytics. The file system features data replication, fault 
tolerance, and streaming data access, to name but a few. 
HDFS is further optimized towards storing large file sizes of 
up to several terabytes, and thus it is the main building block 
of a data analytics system. On top of HDFS reside a vast 
amount of frameworks and tools including Apache Hadoop 
[14] and Spark [15]. Both frameworks allow for efficient 
batch processing of individual jobs. Whereas Hadoop is 
based strictly on the well-known MapReduce paradigm 
(intermediate data is always stored on disk), Spark allows for 
in-memory processing. As a consequence, Spark can process 
data sets that fit into memory significantly more efficient. 
The Apache project offers also various tools to work with 
data stored in HDFS on a high-level; tools include Hive and 
Pig, which allow for explorative data analysis. Finally, 
developers and data scientists can choose from a rich variety 
of applications and libraries. Software is developed mainly in 
Java, Python, or GNU R. Available frameworks such as 
Apache Mahout as well as Spark’s MLlib, enable developers 
to easily perform both unsupervised and supervised machine 
learning tasks. 

Figure 1. Hazel Hen, a Cray XC40 system, at HLRS premises. 

 
Table 1. Comparison between HPC and Big Data based on four layers. 

Layer HPC Big Data 

Programming Model C/C++, Fortran 

MPI, OpenMP, 

OpenCL 

Java 

Hadoop, Spark 

Resource Manager TORQUE, 
SLURM 

YARN 
Mesos, Marathon 

File System Lustre, NFS HDFS 

Hardware Server components 

(e.g. Intel Xeon, 
InfiniBand) 

Commodity 

components 
(e.g. GigE) 

 

 

 



C. Hybrid Architectures 

The trend goes towards merging high performance 
technologies such as InfiniBand with Hadoop clusters. This 
transition has already taken place with the Cray Urika-GX 
platform. The platform incorporates Intel Xeon processors as 
well as Cray’s Aries interconnect, both hardware that is 
predominant in the HPC domain. HLRS have installed two 
systems with a total of 64 compute nodes; each equipped 
with 36-cores of Intel’s current Xeon processor generation. 
Nodes are staffed with 512 GB RAM, as well as 1.6 
terabytes of local SSD memory. Thus, the system is 
optimally designed to provide solutions for current and 
future challenges of data analytics. The platform has a state-
of-the-art data analytics software stack installed. Moreover, 
the special-purpose Cray Graph Engine enhances the 
analysis of semantic data, which is commonly present in 
biology and chemistry [16]. Here, Cray offers an alternative 
to Spark’s GraphX library. 

III. WHEN HPC MEETS BIG DATA 

HPC is best for demanding simulations that benefit from 
embarrassingly parallel computations; simulations typically 
generate and analyze data in-situ. As a consequence, the 
costly task of moving data around is well avoided. Big Data, 
however, introduces several new requirements [17–20]. 

A. Data Colocation 

Data-intensive applications require to pre-process and 
read-in large amounts of data. Data movement itself is costly 
on current HPC architectures due to the immanent separation 
between computation and storage. For example, HLRS’s 
Cray XC40 cluster has no local storage, and thus data is 
stored globally in the Lustre file system; moving data 
between nodes thus significantly depends on bandwidth and 
latency. Predominant architectures in data analytics, 
however, push the co-location of computation and data to be 
on the same node. Hence, data-intensive applications can 
benefit from data-locality; data movement in the cluster is 

minimized through optimal scheduling strategies that take 
locality into account: Required data is ideally already stored 
on the node, on which a job will be executed. Frameworks 
such as Apache Hadoop deal with data-locality through the 
prevailing distributed file system HDFS. 

In order to incorporate data analytics with HPC, existing 
shared file systems such as Lustre need to support HDFS. 
Benefits of direct HDFS support are twofold. First, HPC 
centers can avoid to have separate storages for HPC (Lustre) 
and data analytics (HDFS). Second, cost-intensive data 
movements can be avoided. Recent research proposes 
solutions to provide Hadoop extensions for Lustre [21]. 

Furthermore, a performance gain can be achieved by 
integrating MPI with Hadoop MapReduce [17,22,23]. In 
[17], the author proposes a framework for Hadoop with 
OpenMPI. The optimized MapReduce implementation 
leverages MPI-IO for parallel data reads, and both map and 
reduce functions are implements as MPI processes. Finally, 
output data is also written out via MPI-IO. 

B. Recurrent Analysis 

A typical workflow (e.g., explorative analysis) or 
algorithm (e.g., clustering) in data analytics requires to 
process the same dataset several times, and thus will benefit 
significantly from data locality, too. In this context, Apache 
Spark can maintain data in-memory to allow for efficient 
parallel processing of distributed data with iterative 
algorithms. 

Existing HPC systems such as HLRS’ Cray XC40 have 
128 GB RAM per node, and thus are limited compared to 
specialized data analytics hardware including the installed 
Cray Urika-GX at HLRS, which has 512 GB. Moreover, 
Spark allows to dynamically extend in-memory data to local 
storage such as SSDs, when RAM is not sufficient to hold 
the total amount of data. This mechanism, for example, is not 
support on current HPC architectures due to the lack of local 
storage. On the other hand, the Urika-GX system can handle 
this task with ease. The system also comes with a pre-
installed and regularly updated industry-based software 
stack. 

C. Everchanging Zoo of Software 

The software stack in HPC is in general limited, but very 
optimized to perform embarrassingly-parallel tasks. The 
operating environment is often based on customized Linux 
derivatives (e.g., CentOS), and for development, languages 
such as FORTRAN, C, and C++ are supported. In order to 
allow for parallel programming, modules such as MPI and 
SHMEM are available. Accessing the system is done solely 
via the command line through remote access. 

In comparison, the software stack in data analytics is 
manifold. The spectrum ranges from data ingestion (e.g., 
Apache Kafka, Apache Flume), storage (e.g., HDFS, HBase 
and Cassandra), processing (e.g., Apache Hadoop, Apache 
Spark), and querying (e.g., Apache Hive). All these 
individual tools are interconnected to form custom solutions. 
As a consequence, developers need to have the freedom to 
choose the best tool for their current problem. The 

Table 2. Technical details of the Urika-GX systems installed at HLRS. 

 System 1 

(Gilgamesch) 

System 2 

(Enkidu) 

Nodes 48 16 

Compute nodes 41 9 

CPU 2x Intel BDW 18-Core, 2.1 GHz 

RAM 512 GB 

Local Storage 2 TB HDD; Intel DC P3608 SSD (1.6 TB) 

File System Sonexion 900 with 240 TB 
4.0 GB/s throughput 

Software  YARN, Mesos, Marathon 

 Hadoop, Spark, Cray Graph Engine, 
GNU R 

 Apache Kafka, Cassandra 

 Apache Hive 

 … 
 

 



underlying infrastructure should therefore support the 
concepts of sandboxing and containerization. 

D. Scheduling 

Scheduling for HPC is optimized for large-scale batch 
jobs. Predominant resource managers are SLURM and 
TORQUE. In general, a standard FIFO scheduling strategy is 
used in combination with multiple job queues. Thus, a job is 
scheduled as soon as required compute resources are 
available. Ideally, one would like have at least three different 
queues: interactive, batch jobs, heterogeneous jobs. The 
difference between the last two queue types is that the latter 
requires a heterogeneous set of compute nodes (e.g., 
additional graphic nodes). Moreover, HPC centers can add 
another queue to prioritize specific jobs. 

Well-established resource managers for Big Data are 
YARN and Mesos. YARN is specifically installed to manage 
Hadoop jobs, whereas Mesos allocates resources for all other 
jobs (e.g., Spark). In this respect, Mesos can be seen as a 
global resource manager for the whole infrastructure. As 
with SLURM, YARN is implemented for long-running batch 
jobs, and does not support interactive jobs. These jobs can be 
handled by Mesos, though. On a data analytics platform such 
as the Urika-GX, multiple resource managers are required: 
Hadoop jobs are served via YARN, Spark jobs are managed 
through Mesos, and the Cray Graph Engine uses internally 
SLURM. It should be mentioned, that a unified interface 
exists. Scheduling policies in YARN and Mesos are 
manifold. For example, the fair sharing policy is often used 
per default, meaning that all jobs are assigned an equal share 
of the available resources. 

E. Services 

Whereas on HPC infrastructures at most some 
monitoring tools collect information on job execution, 
performance and power consumption, a big variety of 
services and daemons exist while running data analytics 
tasks. It starts with resource managers such as YARN or 
Mesos, which require to have different services running on 
both managing and compute nodes. Each compute node, for 
example, has both a YARN node manager running as well as 
Mesos slave clients. Furthermore, each compute node 
provides access to a Web interfaces for retrieving status 
information. On the managing nodes, additional Web 
interfaces are installed to allow users to retrieve job-related 
information. In addition, the login nodes have more than ten 
services running including user interfaces for Zookeeper, 
Mesos, Spark, HDFS, Marathon, Hadoop, Hive, to name but 
a few. The Urika-GX platform is also shipped with the 
Hadoop User Experience (HUE) service, which is a Web UI 
that aggregates all individual services. Additional Web 
server start when individual jobs are triggered, e.g., a Spark 
launches another job monitoring server. 

F. Sandboxing 

Data scientists usually select a subset of the above 
mentioned tools and frameworks in order to build a 
customized solution that best tackles a given problem. 
Infrastructures can support this flexibility in daily work by 

offering containerization support. Containerization is a 
virtualization technique to encapsulate software in 
containers, that are running in the kernel space of the 
operating system. A prominent example are Docker 
containers. They are simple to describe and set-up, and thus 
can be easily shared and re-used. 
 

The additional requirements imposed by Big Data can 
simply be satisfies through a dedicated infrastructure such as 
the Cray Urika-GX. It is a more challenging task when an 
existing HPC infrastructure should be used for data analytics, 
though. In [24], the authors report on their experience with 
executing Hadoop and Spark jobs on the Cray XC series. 
Whereas good performance could be reported for Spark, 
where the jobs could benefit from 32 GB RAM per compute 
node1, the performance of Hadoop jobs was, in comparison, 
rather poor, because of the frequent read/write requests to the 
connected Lustre. In order to support all kinds of jobs with 
best performance, HLRS installed dedicated hardware. 

                                                           
1 Please note that Spark performs computation in-memory. 

 
 

Figure 1. Part of the infrastructure at HLRS. 

 

 

 

 



IV.  BIG DATA ANALYTICS AT HLRS 

HLRS and Cray have launched an ambitious project to 
deal with the challenges of combining HPC with Big Data 
analytics. Hazel Hen, the current HPC flag-ship system of 
HLRS, is extended with specific data analytics hardware 
designed by Cray—a Urika-GX. In the first phase of the 
project, the Urika-GX system is operated in two individual 
configurations: a larger configuration (48 nodes) for 
production and a smaller configuration (16 nodes) for 
development and testing. Each configuration comes with an 
industry-based Big Data software stack including Apache 
Hadoop, Apache Spark, and the Cray Graph Engine as a 
means to perform data analytics. By the end of the project, it 
planned to merge both individual configurations. 

In the project, we are investigating the hardware of the 
Urika-GX and its usefulness for our customers. Since the 
majority of today’s data analytics algorithms are oriented 
towards text processing (e.g., news clustering) and graph 
analysis (e.g., social network studies), we are further in need 
to evaluate these algorithms with respect to their 
applicability to the engineering domain. Thus, we will 
examine future concepts for both hardware and software. We 
will therefore pursue multiple case studies from divergent 
domains throughout the next three years. 

The project’s vision is to incorporate the Urika-GX with 
the existing HPC system at HLRS. This ambitious goal 
requires to tackle various operative challenges including 
security aspects, fast and secure data transfer, and 
accounting, to name but a few. The project will (a) research 
new methodologies and develop frameworks to achieve a 
seamless integration of both systems; (b) further pursue 
multiple case studies in order to evaluate the applicability of 
current technologies to current challenges in both academia 
and industry; (c) investigate data analytics in industrial areas. 

Our first case study was conducted in collaboration with 
Cray. In the past, we have randomly observed performance 
variations of our Cray XC40 system, which is composed of 
more than 7,000 compute nodes. System administrators tried 
to identify the root cause for these performance drops by 
manually studying log files of the entire compute cluster. 
However, they were unable to extract meaningful insights 
from these log files that track individual jobs, including 
information about when and where jobs were executed. 
Although system health management of IT infrastructures is 
a well-established methodology to identify errors in software 
or faulty hardware since decades, it is often infeasible for 
experts to identify any causes due to the vast amount of 
semi-structured data. Thus, monitoring today’s IT 
infrastructures has actually become a big data challenge on 
its own. When classifying log data into the five V’s of big 
data (volume, velocity, veracity, variety, and value), we 
argue that value is key with respect to this case study. In 
current IT infrastructures, monitoring is performed, large 
amounts of log files are stored for long term preservation, 
but system administrators are lacking the required time or 
expertise to analyze the data accordingly, and to derive from 
the results consequences towards future management and 

usage of resources. Due to the volume and velocity of the 
data, we utilized the Cray Urika-GX system with its pre-
installed data analytics software stack to process and analyze 
log files. Before Section 6 reports on the methodology and 
first results obtained with respect to the log file analysis, 
Section 5 first discusses challenges that arise when 
integrating a new data analytics system into existing 
infrastructure. 

V. INTEGRATION OF HPC WITH BIG DATA ANALYTICS 

Making the decision to incorporate an additional system 
into existing infrastructure is always challenging. We 
therefore discuss next some key tasks that came up while 
adding the two new Urika-GX systems to our portfolio. 
 

1) Usage Model 
Data analytics platforms per se are targeted for single-

user usage and for small teams that work closely together. 
Clusters are often operated in-house. In these cases, strict 
user and group permissions as well as access rights for jobs 
and data have not the highest priority. From an end user 
point of view, it is acceptable that other users from the same 
team can see others jobs and data. Users may have even root 
permissions to install additional software. However, coming 
from the HPC domain, security plays a significant role in 
order to maintain system health and data security. At HLRS, 
we aim to use the Urika-GX system in a multi-user scenario, 
and thus user and group permissions have to be aligned 
across the system including the file system. For example, 
users need to be prevented from having access to other user’s 
data in HDFS. 

 

2) Software 
Although the Urika-GX is shipped with a fundamental 

set of pre-configured software for performing data analytics, 
future end users might request additional software to be 
installed on the system. Software components could, for 
example, include Google’s TensorFlow or extra databases 
such as the well-established NoSQL database MongoDB. 
Critical here is that new software components are often 
required to be installed for distributed usage, and they also 
need to be incorporated into existing software like Spark. 
TensorFlow on the Urika-GX, for instance, is started through 
a specific Spark kernel which can be loaded interactively and 
used in Jupyter notebooks. These are just two examples for 
software that is requested by customers. In order to satisfy 
most end users and not limit one selves to a handful of 
software components, we need to implement a practicable 
solution for future software installations. Based on our 
experience with HPC, a future model could be composed of 
three layers: a) users are allowed to install components 
locally, b) Cray maintains a global software repository that 
includes supported software such as TensorFlow, and which 
is then accessible by all users, and c) HLRS will also 
maintain another repository of not supported software 
components, which is accessible by selected users. 



3) Security 
Following the multi-user model, security requirements on 

the Urika-GX systems need to satisfy the high security 
requirements that HLRS has already implemented on their 
HPC systems. This means that the Urika-GX is not directly 
connect to the World Wide Web, and that per default Web 
server have to be deactivated. As a consequence, some 
services mentioned in the previous sections are not available 
for end users. Furthermore, the Urika-GX systems have to 
undergo a security audit. When the audit is passed, the 
systems can be connected with the existing Lustre of HLRS’ 
Hazel Hen to allow for a seamless data transfer between the 
HPC and Big Data infrastructures, as well as to HLRS’ 
LDAP server to manage user accounts globally. When 
operating the Urika-GX independently, one can rely on the 
local LDAP server pre-installed on the Urika system. 
However, we would like to mount the shared Linux home for 
each user, and thus we will need access to the global LDAP. 
 

4) Accounting 
Performing proper user accounting on HPC is trivial: 

monitor per user the number of compute nodes used as well 
as the overall wall-clock time. Pricing is then done per node 
hour. While driving a multi-user model on the Urika-GX 
systems, accounting is not as straightforward. Users can 
allocate resources not just through a single resource 
manager, but rather via three different managers. Each 
resource manager such as Mesos has a different API and 
might not log the required information including cores 
allocated and HDFS/Lustre storage used. Mesos also 
maintains job information based on a global user, and thus a 
job is not directly associated with the user that started the 
job. Moreover, the same resources might be used 
simultaneously by different users, which subsequently, might 
even result in performance loss. An adequate solution might 
be to establish an independent resource monitoring tool that 
collects the required information as mentioned above. That 
way, the solution striven for is then independent of the 
resource managers installed on the system. 
 

5) Data Ingestion and Storage 
Since the Urika-GX systems are not directly connected to 

the Internet, the system cannot directly support applications 
or services that perform real-time analytics based on 
streaming data. Sources for streaming data could be social 
networks, for example. However, the focus of HLRS is on 
the engineering domain, where streaming data is not as 
prevalent as in other research domains. The lack of direct 
Internet access for data ingestion can be solved by an extra 
proxy node, on which specific services and ports are 
activated. More important for HLRS is the connection to the 
existing Lustre storage, so that data produced by applications 
on the HPC cluster can be transferred to the Urika-GX own 
Lustre storage or directly into HDFS. 

VI. CASE STUDY: LOG FILE ANALYSIS 

Performance variability on HPC platforms is a critical 
issue with serious implications on the users: irregular 
runtimes prevent users from correctly assessing performance 
and from efficiently planning allocated machine time. The 
hundreds of applications, which are sharing thousands of 
resources concurrently, escalate the complexity of 
identifying the causes of runtime variations. On production 
systems, implementing trial-and-error approaches is 
practically impossible. On that account, making use of 
existing information represents a preferable path to solution. 
Cray systems collect large amounts of data related to user 
applications, data that can be highly valuable for 
understanding performance variability. Novel analytics tools 
enable the exploring of ways to use the data for identifying 
and understanding performance variability. In this context, 
we have developed a Spark-based tool for analyzing system 
logs with the goal of identifying applications that show high 
variability (victims) and applications potentially causing the 
variability (aggressors). Understanding the nature of both 
types of applications is crucial to developing a solution to 
these issues. This section goes through the different steps of 
the analysis (data aggregation and filtering, victim and 
aggressor detection, validation) and the configuration 
parameters that help refine the search space. The analysis 
was implemented using Spark’s RDD and DataFrame API 
and was tested on data coming from production systems. 

A. Dataset 

In practice, detecting application interference is 
challenging due to the very large number of jobs running on 
the system at any given time. On a system like Hazelhen 
there are typically hundreds of jobs running at any time. 
Cray systems collect large amounts of data related to user 
applications, which can be valuable for understanding 
performance variability. This data is collected on the Cray 
System Management Workstation (SMW). A promising 
approach to identify and understand performance variability 
is to use analytics tools to explore this data.  In this context, 
we have used Spark to develop tools for data analysis with 
the goal of identifying victim and aggressor applications. 

On the HLRS system, we have worked with a dataset 
extracted from SMW log files. This dataset consists of 
system log files that contain relevant information regarding 
all the applications running on the machine. 

B. Analysis 

Spark-based analysis of SMW data consists of three main 
steps: data extraction and filtering, victim detection, 
aggressor detection and validation. The main goal of the 
Spark-based tools is to reduce the search space for 
aggressors. To this end, we have defined configuration 
parameters that help refine the results of the analysis. The 
main steps of the analysis are detailed in the following. 



1) Data extraction and filtering 
The SMW log files from the Cray XC40 were pre-

processed at the customer site to make the details 
anonymous.  This was done using python scripts that were 
developed by Cray. It would have been possible to do this 
step using Spark, if that had been available on site. Next, the 
files extracted from the above process were passed to Cray 
and loaded as an entire dataset onto a Urika-GX platform.  
The data contained information on each application running 
on the Cray XC40 system: job start time, end time, elapsed 
time, command that was used to run the application and the 
nodes used. 

Finally, the dataset required filtering to keep only the 
useful, correct information (e.g.: remove bad lines, discard 
lines with incomplete commands, disregard application runs 
that are too short probably because of errors, etc.). 

 

2) Victim detection 
Applications that show high variability in runtime over 

several runs with identical setup are labeled as victims. First, 
we determine the baseline for each application as either the 
average or the minimum elapsed time over all the runs of 
each application. Second, we detect all the runs that were 
slower than the baseline by a certain (configurable) factor. 
The victim set contains these slow runs for all the 
applications. 

 

3) Aggressor detection 
Based on the victims set, we include in the potential 

aggressor set, all the applications running at the same time as 
the victims. Applications (sharing the same command) that 
are found more often are promoted to the top of the list. 
Further refining can be done based on the size of the 

aggressor (number of nodes it was using) and the time 
overlap of the aggressor with the victims. 

Parameters introduced at each step of the analysis act as 
leverage mechanism for reducing the search space. Figure 2 
summarizes the parameters available in the workflow. 

 

4) Implementation and results 
The three parts of the analysis were implemented as a 

single Spark application using the core RDD and DataFrame 
API. The initial dataset extracted from the SMW logs is 
processed by several Spark workers by loading the data into 
memory and performing the analysis described above. All 
the processing takes place in memory, only the final results 
are written to disk (Lustre).  

While the filtering of the data and the victim detection 
steps do not require significant resources (CPU and 
memory), the last step of finding aggressors does need 
considerable computation power. For each victim, Spark 
starts a thread to search through the application set and get 
all the applications running at the same time as the victim. 
Considering the victim set can be quite large in number (in 
the order of thousands, reaching tens of thousands), we have 
used Spark’s FutureRDD API to run these threads in parallel 
on the Urika-GX.  

We have run the analysis on an initial dataset reflecting 
HLRS applications spanning two weeks. The factor used to 
classify victims was set at two times the average runtime and 
the factor used to classify aggressors was set to more than 
1,000 allocated nodes. This analysis—with the factors set as 
above—identified 472 victims, and 2,892 potential 
aggressors. Seven of those potential aggressors were running 
on more than 1,000 nodes and three of them were found 
repeatedly. 

On a larger dataset (SMW data over three months), the 
same analysis found 3,215 victims, 67,908 aggressors and 17 
of them using more than 1,000 nodes. The analysis took 268 
seconds on 300 cores on the Urika-GX. 

VII. CONCLUSIONS AND OUTLOOK 

Our vision is to integrate data analytics with HPC in 
order to support our customers in analyzing the increasing 
amount of results produced by data-intensive applications. 
We therefore put two Urika-GX platforms into operation to 
extend our current HPC clusters. In this paper, we reported 
on current challenges that arise due to different requirements 
in data analytics (e.g., data colocation, recurrent analysis, 
and scheduling) as well as due to hurdles to be tackled while 
incorporating a new system into existing infrastructure (e.g., 
usage model, security, data storage, and accounting). We 
also highlighted one of our first use cases about a log file 
analysis in order to detect jobs that cause performance loss 
on our HPC cluster. Here, we successfully demonstrated that 
dividing jobs into aggressors and victims can help to identify 
a subset of jobs that affect the runtime of simultaneous 
running jobs significantly. 

Whereas, we have presented a so-called offline scenario 
for the log analysis, we aim in the future to implement an 
online scenario, where log data is streamed directly to the 
Urika-GX system to identify performance variations on the 

 

Figure 2. Three steps of the analysis workflow (data filtering, victim 
detection, and aggressor detection) including configuration parameters. 

 

 

 

 

 



HPC cluster in near real-time. Furthermore, future work will 
also focus on enhancing the analytics part to account for and 
identify faulty hardware in advance using anomaly detection. 
System administrators deal currently with a so-called post-
mortem scenario, where the error or hardware fault has 
already happened. Since a system could then be non-
functional for several hours, post-mortem scenarios should 
be avoided by offering a sophisticated means to predict 
hardware failures. 
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