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Abstract—The Cray Graph Engine (CGE) was developed as one of the first applications to embody the vision of an analytics
ecosystem that can be run on multiple Cray platforms. This paper presents CGE as a solution that addresses the need for a unified,
ad-hoc, subject-matter driven graph-pattern search and linear-algebraic graph mining system. We demonstrate that the CGE
implemented using the PGAS parallel programming model performs better than most off-the-shelf graph query engines with ad-hoc
pattern search while also enabling the study of graph-theoretic spectral properties in runtimes comparable to optimized graph-analysis
libraries. Currently CGE is provided with the Cray R� Urika R�-GX system and can also run on the Cray R� XC40TM systems. Through
experiments, we show that compared to other state-of-the-art tools, CGE offers strong scaling on graphs that are three orders of
magnitude larger and more complex (long diameters, hypergraphs, etc.) while enabling computationally intensive pattern searches on
those graphs.
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1 INTRODUCTION

PATTERN discovery and predictive modeling from seem-
ingly related “Big Data” represented as massive, ad-

hoc, heterogeneous networks (e.g. extremely large graphs
with complex, possibly unknown structure) is an outstand-
ing problem. While some of these challenges have been
addressed in academic literature, and with off-the-shelf
tools offering query engines for graph data, the academic
contributions need benchmark and validation at scale be-
fore they can be adopted for real-world use cases in both
government and industry. With graphs, the two worlds
of pattern search with ad-hoc queries and pattern mining
using spectral graph theory (e.g. shortest path, PageRank
[1], betweenness centrality) have always been considered
as two different aspects of graph analytics. While ad-hoc
queries help understand vertex-centric sub-graph patterns,
the spectral theoretic approach helps understand the global
properties and behaviors of entities modeled into the graph.

Very few off-the-shelf compute and data architecture
solutions are capable of handling petabyte scale graphs and
can also operate with latencies to support interactive analyt-
ics. While some databases can offer interactivity with query
mechanisms, computing spectral properties on graphs may
not be supported. This capability to discover insights using
subject-matter-expert intuition and the ability to use math-
ematical rigor to hypothesize or mine potential patterns of
interest is emerging as a key use case within graph analytics.
To the best of our knowledge, there is no unified system that
is capable of both.

In this paper, we present Cray Graph Engine (CGE)
built on parallel processing and distributed querying fun-
damentals as a potential solution that addresses this need.
We present the design, implementation and benchmarking

results of core kernels for high performance graph analytics
within CGE and describe the performance characteristics
of CGE on current and emerging Cray architectures. We
show CGE is capable of: (i) speeding-up ad-hoc searches
and graph-theoretic mining, and (ii) scaling to massive data
sizes. We demonstrate CGE as a unified platform capable
of handling use-cases from both worlds. Thus setting the
foundation for temporal, streaming and snapshot analysis
of massive graphs in future.

We start by discussing some of the trade-offs involved
in architecting a multi-platform application. In the past [2],
we have focused primarily on the software architecture
targeting a single hardware platform. With CGE now run-
ning across multiple platforms, we describe how differences
in hardware architecture, both at node level and network
level, affect performance. There are also differences in the
resource scheduling and job launch mechanisms used across
the platforms which we refer to collectively as the workload
manager (WLM).

We describe how we abstract away from the underlying
WLM to provide a consistent application launch experience
across platforms. Although this presents a user-friendly
experience across platforms, and multiple WLMs on those
platforms, it also creates challenges. The abstraction layer
needs to ensure that when the user requests an application
topology that the resources topology they receive from the
WLM is appropriate and consistent.

We used the industry standard synthetic benchmark
LUBM [3] that is a commonly used benchmark for pattern
search and query. We demonstrate the utility and capability
of CGE on several real-world datasets from the Stanford
Network Analysis Project (SNAP) [4], using a variety of
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whole graph analysis techniques such as PageRank [1] and
degree distribution. These graphs are expected to be quite
challenging compared to synthetic benchmarks. We further
extend our testing of query performance and scaling to a
widely used real world life science database, the Uniprot [5]
database of protein data and annotations.

The results from the use cases showcase the key capa-
bilities of CGE as a unified platform for graph analytics.
It allows accessing tuned native graph algorithms within
a general purpose query language. This permits scale-up
and speed-up of the most complex parts of graph analysis
while still enabling flexible construction of domain-specific
algorithms using the query language. Thus allowing users
to unleash graph-theoretic mining on datasets that are three
orders in magnitude the size of what workstations are able
to handle.

The benchmarking results and comparisons allow us
to demonstrate the scalability and performance benefits
of CGE. This allows users to understand the kinds of
workloads for which CGE would be beneficial and how
performance differs across platforms. Users can then make a
more informed decision about whether CGE is appropriate
to their problem and on what platform it is best run.

2 BACKGROUND

Our goal is to study graph analysis tasks under two
broad categories: graph pattern matching and graph min-
ing. Given a graph G and a pattern P that specifies the
structural requirements, graph pattern matching retrieves
all sub-graphs that satisfy P from G. This operation can
answer questions like - “Who are all the patients who
have received therapy t1 and t2 by physicians p1 and p2
respectively?”. Graph pattern matching has been applied
to studies in protein-protein interaction [6], social network
analysis [7], fraud detection [8] and so on. On traditional/re-
lational databases, the ability to search for ad-hoc patterns
of interest would require complicated join-operations. The
graph as a data structure avoids such complexity. A typical
pattern matching workflow can be abstractly described as
follows. Patterns (that represent a particular domain-specific
hypothesis) are formulated by subject-matter-experts based
on their domain intuition. The patterns are then expressed
into queries and those queries are sent to and processed by
graph analysis systems. Based on the analysis of retrieved
sub-graph instances, experts may refine the results and
continue the exploratory analysis. The extreme scale graph
pattern matching problem is the sub-graph isomorphism
problem (used for emergent pattern identification). The sub-
graph isomorphism problem is computationally expensive
and known to be NP-complete in the general case. Our
working definition of graph pattern search is a manageable
subset of the sub-graph isomorphism problem called the
basic graph pattern (BGP) search.

The second category of problems in graph analysis is
graph mining which aims to discover knowledge from
graphs using mathematical properties drawn from graph-
theory. Unlike graph pattern matching, graph mining does
not begin with user-defined queries. Instead, these tech-
niques are used to filter through data in exploratory ways
by ranking/scoring associations. Graph mining techniques

answer questions like “who is the most influential person
in the social network?” (knowledge discovery) or “who
is likely to be a friend of person p1?” (prediction). Well-
known graph mining operations include graph-theoretic
definitions of degree distribution, triangle counts, eccen-
tricity, connected components, PageRank and so on. These
mathematically inspired heuristics, as opposed to the ad-hoc
intuition driven with graph pattern matching, complements
the pattern search capability in study of behaviors within
social networks [9], the resilience and stability of electrical
grids [10], web search engines [11], recommendation en-
gines [12], etc.

Recent surveys on managing and mining graph data [13]
and graph algorithms [14], [15] along with the study of laws
and generating models [16], has helped design of tools such
as SUBDUE [17], gSpan [18] , OddBall [19], Pegasus [20],
NetworkX [21], GraphLab [22], [23] etc. for graph mining.
However, not all of the algorithms and tools are able to scale
up and handle massive datasets (in the order of terabytes).
Pegasus or GraphLab, which can be instantiated on high
performance cloud infrastructures, are restricted to mining
homogenous graphs. On the other hand, graph-databases
such as Neo4j [24], Titan [25], Trinity [26] etc. can host
and retrieve massive heterogeneous graphs on commodity
hardware, but do not have the data-mining functionalities
of Pegasus or GraphLab.

A few major differences among graph analysis systems
include system architectures (e.g. standalone, distributed,
appliance), graph data models (e.g. RDF, property graph),
graph data formats (e.g. N-triple, RDF/XML, GraphML),
and query interface (e.g. query languages, APIs).

There have been several efforts towards general purpose
graph processing. Such systems provide a computation
model or a library/API that can be exploited to implement
graph mining algorithms or graph pattern matching-based
applications.

Triple stores (e.g. Jena [27], Sesame [28], RDFSuite [29],
SPARQLVerse [30], EAGRE [31], TriAD [32], 4Store [33],
YARS2 [34]) are a popular class of database for the storage
and retrieval of RDF triples. They are a class of systems that
are specifically designed for optimally storing, retrieving
and querying graph data [35]. What triple stores have in
common is that they focus on the storage and retrieval
of RDF triples using SPARQL [36]. Another major class
of graph databases instead use the property graph model
including Neo4j, DEX [37], Titan, etc. These graph databases
differ from each other, and Triple stores, in terms of the
query language they support (e.g. Cypher [35], Gremlin
[37], SNQL [38], etc.). In particular the lack of a commonly
adopted standardized query language creates vendor lock-
in and reduces portability of workloads.

NetworkX is a Python library for the creation, manip-
ulation, and analysis of complex networks. Pegasus [20] is
a Map-Reduce based implementation of graph algorithms
that runs on Hadoop [39]. GraphX [40] is a graph processing
system on top of Apache SparkTM [41]. The data models used
by these systems are quite diverse. Pegasus uses adjacency
matrices, but NetworkX and GraphX use the property graph
as their data models. As these systems emphasize efficient
processing of graph mining algorithms, they do not provide
any query language processing capability. GraphX and Net-
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workX provides a set of APIs that can be used for graph
pattern matching, but they require programming efforts to
perform graph pattern matching.

Based on our survey of infrastructures, tools and algo-
rithms, we identify the following scientific and technical
challenges for graph-mining at scale:

(i) There are no reliable and scalable solutions and tools
for integrating, storing, retrieving and processing massive
heterogeneous graph-datasets; (ii) Properties of large, real-
world, ad-hoc, heterogeneous graphs (allowing different
types of vertices and edges) are not as well understood
as those of homogeneous complex networks [16], [42].
Existing methods assume apriori knowledge of a well-
understood model for network formation (e.g. Barabasi-
Albert [9], or Erdos-Renyi [43]) (iii) Analysts that work with
massively parallel processing databases have difficulty with
even relatively simple graph-theoretical analysis. Primarily
because of the extreme difficulty in writing (SQL) queries
for graph patterns that are not known in advance, involve
many vertices, and require approximate matching (quali-
ties which all co-exist in graph-mining applications) [44].
Further Graph-theoretic feature identification via interactive
querying algorithms on distributed storage solutions (off-
the-shelf IT hardware and software) usually requires com-
plex implementations. These limit flexibility, assumes sparse
relationships between entities in the graph and often fails to
scale to the size of real-world problems.

3 ARCHITECTURE

In our previous paper [2] we discussed the architecture
of Cray Graph Engine (CGE) primarily from a software
perspective. As we have continued to develop the ap-
plication into a true multi-platform application we have
had to become more aware of how the differing hardware
architectures influence our performance. Taking different
architectures into account has caused us to make subsequent
design decisions with those in mind. In this section we first
detail the practical differences between the two hardware
architectures we support - XC and Urika-GX - before dis-
cussing how they influence both observed performance and
our design.

3.1 Hardware Differences
The primary difference between the two platforms is the
physical network. While both platforms use the Cray Aries
network, the way in which the two platforms are connected
is very different. In the case of the XC platform [45], the
Aries chips are connected directly to the processors on the
Cray proprietary compute blades. However, on the Urika-
GX platform, which uses commodity Intel motherboards,
the Aries chips are located on separate Dual-Aries Network
Cards (DANCs) which are interfaced with the motherboards
via PCIe connections. This introduces an extra physical hop
in the network routing which is not present on the XC
platform. This typically manifests as an additional latency
in communications which leads to a measurable slowdown
in throughput relative to running on the XC platform.

As can be seen in Figure 1, there is a large gap in TCP/IP
performance of around 20 GiB/s. For non-HPC applications
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like Apache Spark which rely upon TCP/IP for communica-
tions this can make a difference across platforms. Although
we would note that the throughput seen is typically far
larger than these applications would usually expect to see
on commodity hardware that would usually rely on 1 or 10
Gig Ethernet.

Fast Memory Access (FMA) is a feature of the Aries
network that permits efficient communication to and from
remote memory. As can be seen in Figure 2, FMA perfor-
mance is essentially identical between platforms. The GX is
marginally slower but only by a few MiB/s which means
actual performance should be relatively close as we will
see later in Figure 5. Therefore HPC applications like CGE,
which primarily relies upon FMA traffic, should still be able
to achieve similar throughput across the two platforms. We
would note that there is a measurable latency of approxi-
mately 240 nanoseconds on the GX platform as compared to
the XC platform. Although this is a tiny amount, over the
lifetime application we may make hundreds of thousands
of network requests, and as such this latency will add up.
Therefore as we will discuss in Section 3.2 we need to
structure our communications to take this into account.

On the other hand, the Urika-GX architecture has some
advantages that the XC does not. A typical GX node will
have much larger local memory than an equivalent XC
node. Additionally, the presence of local SSD storage allows
us the option of leveraging that as additional scratch space if
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we wish. While we do not do this currently we are actively
exploring this as a future enhancement. Primarily, this will
provide a way to achieve a better parity of scaling between
the two platforms since on the GX platform we have an
upper cap on the number of physical nodes that limits our
scale on that platform.

As we will show later in Section 4, the observed per-
formance difference between Urika-GX and XC is minimal.
However, we would note that the performance difference
was not always this close. As we will discuss in this section,
a lot of thought and work has gone into achieving this
performance parity between the two platforms.

3.2 Influences on Design
The differences in the network architecture has had a clear
influence on our software architecture and design decisions.
Primarily this has focused on finding ways to exploit locality
as much as possible to avoid unnecessary network traffic.

One interesting example of this is the implementation of
the SPARQL [36] ORDER BY operator which orders query
results according to one or more ordering conditions. In
general, we implement this by having each image first sort
its local set of solutions according to the ordering conditions,
followed by a global sort where images exchange solutions
in order to arrive at the final sort order. Depending on
the amount of solutions to be sorted this can be a very
expensive operation involving a large volumes of network
traffic. In order to avoid congestion in the network we
explicitly schedule the exchanges of data to avoid all to all
communication, instead using a staggered data exchange
where images perform pairwise exchanges in a sequential
fashion. Additionally our implementation of global sort is a
variant of merge sort implemented such that most merges
occur on node, therefore most data exchange is done via the
shared memory on the node avoiding the network entirely.

However, in cases where the set of solutions to be sorted
is relatively small the expense of the network exchange can
far outweigh the cost of actually sorting the data. In these
cases we instead choose to do the entire sort locally on a
single image. This still requires some degree of network
data exchange in order to gather the relevant data on a
single image, but this is a much simpler network operation
than that required to complete a global sort. In some of
our standard test cases we were able to see an order of
magnitude improvement in the sort time when the sort was
small enough.

Another example pertains to load balancing. Ideally we
want each image to perform an equal amount of work such
that images minimize the time spent waiting at synchro-
nization barriers and thus CPU cycles wasted. However, by
its very nature of being a database engine images naturally
become unbalanced over time in the course of answering
queries. For example, the SPARQL FILTER operator elim-
inates solutions where an expression does not evaluate to
true. It is possible that a given image might eliminate all of
its solutions while another may eliminate none. Therefore
despite the costs of using the network we have found that it
is better for overall performance to periodically re-balance
the intermediate solutions across all the images. This en-
sures that each image has roughly the same amount of work

to do for any step of answering the query and allows us to
maximize the utilization of our compute resources.

Even our re-balancing algorithm is designed to minimize
network traffic when possible. Whenever we can we first
re-balance locally within each node, i.e. images running
on the same physical node re-balance their portion of the
work between themselves. This can be carried out entirely
using the shared memory avoiding the network entirely. The
current statistical distribution of solutions is then used to
determine how unbalanced the load currently is across the
entire application. We consider the work to be unbalanced
if a given image has 10% more work to do than the global
average amount of work. If this is the case then we proceed
to do a global re-balance which does involve network traffic.
However, since by this point we have already rebalanced
locally the global balance should already be reasonable as a
local re-balancing should have removed the extremes of the
work distribution. Therefore most of the time we can avoid
the global re-balancing entirely and the only network data
exchange that happens is the exchange of statistics.

Another design decision that we took to maximize net-
work performance was to structure our network usage to
use non-blocking constructs wherever large data exchanges
are necessary. By using non-blocking constructs in com-
bination with multi-threading we are able to issue many
parallel network requests against remote memory at the
same time. In doing this, we are able to offset the additional
latency encountered on some platforms by experiencing that
latency in parallel and continuing to do work while waiting
for requests to complete. The downside of non-blocking
constructs is that they require us to be more careful about
global synchronization. At some point we typically have to
wait for any outstanding requests to complete in order for us
to proceed with further work, as otherwise we may access
uninitialized memory that leads to a variety of cryptic error
conditions. Therefore there is a balancing act, we prefer non-
blocking constructs for larger data exchanges but rely upon
blocking constructs for simpler exchanges.

One other key influence on design and implementation
was our widespread adoption of configuration settings.
These can be used to tweak many of the parameters that
may be sensitive to the platform upon which we are run-
ning. For example, the aforementioned threshold at which
we decide to do a single image sort is a configurable setting.
There are a variety of settings that exist most of which
end users need never be aware of, nor should they ever
need to change, since the default values for each of these
has been arrived at through our own internal performance
testing. Allowing these settings to be changed if necessary
allows our support organization to provide customers with
ways to tweak behavior in the field should they encounter
a problematic query. Receiving this feedback from the field
has allowed us, where appropriate, to tweak the defaults
to better reflect real world use cases that our own internal
datasets may not yet reflect thus enhancing the product for
all users in the future.

3.3 Abstracting the Work Load Manager

One key decision that we made early on was that we wished
to abstract away from the Work Load Managers (WLMs)
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used on the different platforms in order to provide our users
with a consistent application launch experience. Rather than
having to provide users with detailed instructions on how
to launch our application on each platform we instead
provide a wrapper that handles this for our users called
cge-launch. Users provide application-specific options
and a general specification of the desired runtime topology.
Runtime topology is defined in terms of the number of
physical nodes and is the number of images i.e. processes
to run per physical node. Typically we expressed this in the
form N ⇥ I Where N is the number of nodes and I is the
number of images per node.

Our launcher then has the task of taking this desired
runtime topology and translating it into a physical topology
using the platforms work load manager. It uses informa-
tion present in the users environment to determine what
the underlying platform workload manager is and then
to generate an appropriate translation to the suitable job
submission commands, e.g. qsub or srun. In making this
translation our aim is to arrive at a physical topology that
maximises application performance by satisfying a number
of constraints:

• Balance images across potentially heterogeneous
nodes.

• Balance images across sockets for multi-socket nodes.
• Assign local memory in the correct Non-uniforn

memory acess (NUMA) region to each image.
• Assign core affinities to each image.
• Suitable environment for each image to enable use of

libdmapp/libpgas and the Aries network.

The traditional HPC workload managers such as
Moab R�/Torque and Slurm present on our XC systems make
this relatively easy. Indeed the first version of the launcher
was developed on a XC system using a Moab/Torque
based workload manager. When we started running on
Slurm-based systems the only difficulty was in verifying
the equivalence between the set of options generated for
Moab/Torque versus those generated for Slurm.

In order to be able to cope with site-specific needs, e.g.
use of queues, node features etc. we also provided the ability
for users to provide custom options which are passed di-
rectly to the underlying workload manager. This can be used
when we encounter platforms configured differently from
those we have previously tested on. A couple of examples
are use of queues/partitions and use of node features/con-
straints. Many common constraints are supported out of
the box, e.g. minimum cores and memory, by translating
options provided to the launcher into the native equivalent
for the platform workload manager.

3.3.1 Default Core Affinity Behaviours

One problem we have repeatedly experienced as we have
gradually ported and run our software across more work-
load managers and different hardware configurations is
their differences in behaviour with regards to default core
affinity binding. By this we mean the behaviour of being
able to bind a particular process to a specific core/socket
and thus an associated NUMA region. This is very impor-
tant for an application like ours which relies upon locality
and efficient network data exchange. If processes are not

properly bound and allowed to “float” between cores and
sockets this can lead to significant slowdowns for two
reasons:

1) Local memory access may cross NUMA regions.
2) Remote memory access requires a significant addi-

tional overhead as the PGAS runtime has to deter-
mine where the remote process and its memory is
currently located.

This second item is compounded by the first. Not only
must the runtime determine where the process is currently
running, but once it has done that the local memory ac-
cess may be across NUMA regions resulting in additional
latency.

We also experience the issue that different workload
managers exhibit different default core affinity behaviors
and that these behaviors may change depending on the
physical topology being requested. Specifically, in the case
of Slurm, auto-binding in an exclusive partition only works
when the number of images on a physical node is a multiple
of the number of cores available. So depending on the
hardware on any given system we may see very different
performance if we do not explicitly specify the binding
behavior to use. For example, if you ask for 16 images and
you have a 16 core node the processes will automatically be
created with core affinities such that each process is bound
to specific core. However, if you had a 12 core node then
the default behavior would not assign core affinities thereby
impacting performance. Therefore wherever the platform
supports it we make sure to specify an explicit core affinity
behavior. These are included into our platform specific
translations.

3.3.2 Implementation on Mesos

On the Urika-GX platform where we use the Apache Mesos
[46] resource manager it was necessary to do a lot of ad-
ditional work to provide the required functionality. Mesos
does not have many of the concepts that we would expect to
find in a traditional HPC scheduler e.g. core affinity, instead
primarily focusing on basic resource attributes such as cores
and memory. Additionally it does not have any knowledge
of the Aries network and so does not understand how to
configure the launched processes in order to allow them to
communicate across the high-speed network. Therefore in
order to support it as a workload manager it was necessary
to develop an intermediate layer which we named mrun
(short for Mesos run) that handles these aspects.

mrun has two main responsibilities. Firstly it handles
the negotiations with Mesos in order to obtain the neces-
sary resources to satisfy the requested application topology.
Secondly it handles the configuration of the environments
such that applications are launched with access to the Aries
network. Resource negotiation with Mesos is actually han-
dled by using the Marathon [47] framework which provides
building blocks to make it easier to interface existing ap-
plications with Mesos. In order to provide the necessary
functionality we needed to reproduce a portion of ALPS [48]
capabilities within mrun. We were able to do this by adding
a dependency upon libalpscomm allowing us to directly
call the appropriate functions. Essentially our implementa-
tion uses Mesos to launch mrun wrapper processes on the
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target physical nodes, each process uses libalpscomm to
configure the environment appropriately and then fork our
actual processes i.e. the CGE server processes.

4 SCALING EXPERIMENTS

We first demonstrate the scaling capabilities for CGE on
XC by focusing on a set of synthetic benchmarks. Scaling
experiments were run on an internal 6-cabinet XC develop-
ment system with 1024 compute nodes of mixed node type
(Haswell, Broadwell and KNL). We limited our study to a
set of dual-socket 36-core Broadwell nodes, ranging in fre-
quency from 2.1-2.3GHz, with 128GB DDR4-2400 memory
per node. Scaling studies were run starting at 32 nodes up
to 512 nodes.

For comparisons with Urika-GX we used a 48 node
system (the largest configuration available) which has dual-
socket 32-core 2.3GHz Broadwell nodes with 256GB DDR-
2400 memory per node. Since a GX only has a maximum of
44 usable compute nodes we limit GX runs to 32 nodes to
allow for direct comparisons to the smallest XC runs.

In all cases 16 images per node are used to run CGE.
This has been found to be a sweet spot for performance
by not over-subscribing the injection bandwith through
PCIe into the Aries network, yet still providing sufficient
computational parallelism.

The software used for these experiments was a CGE
3.0UP00 code base compiled using Cray Compiler Environ-
ment (CCE) 8.5.

4.1 Basic Graph Pattern (Pattern Matching) Scaling
The primary unit of search for the SPARQL query language
is the Basic Graph Pattern, or BGP. Finding all the instances
of a BGP across a large graph is basically a subgraph
isomorphism problem. A SPARQL query always starts with
a BGP search, followed by additional filters, joins or other
operators. Performance on the LUBM [3] benchmark focuses
primarily on the BGP, which makes this a good test suite
for testing the scaling efficiency for the core pattern search
capability of CGE.

Figure 3 shows the scaling performance of the 14 LUBM
queries using 32, 64, 128, 256, and 512 nodes on our internal
Cray XC-40 system. Execution time is plotted on a loga-
rithmic scale because execution times varies considerably
across the 14 queries due to differences in query complexity.
Execution time reported is the strict query time and does not
include the time required for writing the results to the Lustre
file system. This is common practice for this benchmark
since at these scales several of the queries are expected to
produce hundreds of millions to billions of results, thus the
IO time would dwarf the time to compute query results
and the results would benchmark the system IO not com-
pute performance. LUBM25K is a relatively moderate-sized
benchmark at approximately 3 billion quads. Scaling re-
mains quite good up through 256 nodes, although we do see
scaling is starting to taper off between 256 and 512 nodes.
For the larger LUBM dataset, LUBM200K, at approximately
24 billion quads, Figure 4 show strong scaling up to 512
nodes.

Note that the two most complex queries, queries 2 and 9,
do not exhibit as strong scaling as the other queries, tapering
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off in performance as we go from 256 to 512 nodes. These
queries in particular search for triangles within the graph
and as discussed later in section 5 appear to encounter a
scaling limitation in the merge phase of the BGP evaluation.

Figure 5 shows a performance comparison of Urika-GX
to XC for the LUBM25K benchmark run across the same
number of nodes. As expected we see that Urika-GX is
only slightly slower on the majority of the queries. This
is primarily due to the additional network overhead. As
shown earlier in Figure ?? the Fast Memory Access (FMA)
throughput upon which CGE relies is essentially identical
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TABLE 1
SNAP Datasets used for Study

Dataset Description
cit-patents Citation network among US Patents

soc-LiveJournal1 LiveJournal online social network
com-Friendster Friendster online social network

between platforms. Therefore the only real difference is the
extra latency in the physical network which results in a
minimal slowdown.

4.2 Using Graph algorithms to measure global proper-
ties
To evaluate the performance of the whole graph analysis
components of CGE we use a set of graphs available from
the Stanford Network Analysis Project (SNAP) [4] listed in
Table 1. Properties for each of these graph are shown in
Table 2. These graphs are snapshots of real world datasets
representing commonly encountered and analyzed graphs.

The SNAP repository provides a wide selections of dif-
ferent sized graphs. For this study we were most interested
in the moderate to larger sized graphs where the number of
vertices was greater than 1 million. The graphs provided by
SNAP are simple integer edge lists. To import into CGE,
we used a simple code to convert these to an N-Triples
format using Spark. For each of the datasets we pre-built
the database from the N-Triples generated N-Triples file. We
did not include the build or load time of the database, but
focused on the query time for running each of the graph
algorithms.

4.2.1 Algorithms

We looked at the performance of a small set of three com-
monly used graph analysis algorithms: degree distribution,
PageRank [1], and triangle counting. Implementations for
these algorithms are available in most graph mining sys-
tems.

PageRank is a widely used graph analysis algorithm
which was originally developed as a way to measure the
importance of website pages. The use of PageRank has
expanded to other graph analysis applications to measure
the importance of vertices in a graph. In addition to a
configurable damping factor (typically set at 0.85), there ex-
ist multiple variations and simplifications of the PageRank
algorithm.

The current Built-In Graph Function (BGF) [49] im-
plementation of PageRank includes the rank adjustment
for leaf-nodes, or vertices with zero out-degree, while the
“Python+SPARQL” implementation did not. To make the
comparisons more apples-to-apples, we are including the
bi-directional edges in the BGP, such that the graphs are
essentially undirected with no zero out-degree vertices. The
SPARQL query for this can be seen in Listing 1.

Degree distribution provides the number of vertices with
a specific degree count. This can be achieved purely through
standard SPARQL features as shown in Listing 2 using
the GROUP BY and aggregation features of the language.
This provides a quick measure of the connectivity and

distribution of the graph. This is often used as a basis for
further analysis, for example are there a small number of
vertices with very high degree thus implying hot spots in
the graph. Additionally it can be used in ranking algorithms
to compare a given vertex against the global distribution.

Triangle Counting also plays an important function in
graph analysis. Triangles are the most basic non-trivial
subgraphs in graphs. Many social networks, for example,
contain lots of triangles, where friends of friends tend to
become friends themselves. This pattern is also observed in
other types of networks as well such as biological and online
networks (Web graphs).

For Triangle Counting, the counts provided by the SNAP
repository consider the network as undirected. Our current
BGF implementation for triangle counting currently targets
only directed graphs, so to generate an undirected graph
we also include the bi-directional edges. We also include the
added restriction that our Triangle Counting queries only
counts distinct triangles composed of unique sets of three
vertices. This allows us to directly compare the triangle
counts with the counts provided in the SNAP repository.
Listing 3 shows the SPARQL query for Triangle Counting
which uses the CGE BGF. You can see the bi-directional
edges included in the BGP portion within the CONSTRUCT
and the additional FILTER operation required for counting
only distinct triangles.

The “Python+SPARQL” implementation of the query is
similar, but here we first need to save the results from the
same BGP into a named graph as part of an optimization
step between iterations.
PREFIX cray : <http :// cray . com/>

SELECT ? ver tex ? rank
WHERE{

CONSTRUCT {
? ver tex1 ? edge ? ver tex2 .

}
WHERE {

{ ? ver tex1 ? edge ? ver tex2 . }
UNION
{ ? ver tex2 ? edge ? ver tex1 . }

}
INVOKE cray : graphAlgorithm . pagerank ( 0 . 0 0 0 1 , 0 . 8 5 )
PRODUCING ? ver tex ? rank

}
ORDER BY DESC( ? rank )

Listing 1. PageRank using SPARQL w/ BGF

SELECT ? degree (COUNT( ? degree ) AS ? count )
WHERE
{

{
SELECT (COUNT( ? ver tex ) AS ? degree )
WHERE
{

{ ? ver tex <urn : connectedTo> ? outgoing . }
UNION
{ ? incoming <urn : connectedTo> ? ver tex . }

}
GROUP BY ? ver tex

}
}
GROUP BY ? degree
ORDER BY ? degree

Listing 2. Degree Distribution using SPARQL

PREFIX cray : <http :// cray . com/>

SELECT ? to ta l num tr iang les
WHERE{

CONSTRUCT {
? ver tex1 ? edge ? ver tex2

}
WHERE {

{ ? ver tex1 ? edge ? ver tex2 }
UNION
{ ? ver tex2 ? edge ? ver tex1 }
FILTER ( ? ver tex1 < ? ver tex2 )

}
INVOKE cray : graphAlgorithm . t r i a n g l e c o u n t i n g ( 2 )
PRODUCING ? to ta l num tr iang les
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TABLE 2
Graph Metrics for SNAP Datasets

Dataset Vertices Edges Triangles Unique Degrees
cit-patents 3,774,768 16,518,948 7,515,023 370

soc-LiveJournal1 4,847,571 68,993,773 285,730,264 2,045
com-Friendster 65,608,366 1,806,067,135 4,173,724,142 3,148

}

Listing 3. Triangle Counting Query using SPARQL w/ BGF

4.2.2 Graph Algorithm Results

For degree distribution, which is expressible in pure
SPARQL, we do not provide an optimized implementation
since it is a single query. Therefore there is also no need
to look at iterative approaches for this algorithm because
there would only be a single iteration. Performance for this
algorithm can be seen in Figure 6 where we see that this
query exhibits limited scaling.

The problem with degree distribution is that the scala-
bility is fundamentally limited by the characteristics of the
dataset. The query is in essence a two stage reduction. In
the first stage we reduce by vertex, and per Table 2 we
have millions of vertices so there is plenty of parallelism
available at this stage. However, in the second stage we
reduce by degree, of which there are typically only a few
thousand unique degrees. As can be seen in Table 2 even
the larget dataset, Friendster, only has 3,148 unique degrees.
Thus there is a limit to the amount of parallelism we can
usefully apply in this second stage. As we see in Figure
6 once we use a sufficient number of nodes such that there
are more images available than unique degrees performance
actually starts to worsen. This is because each group key, in
this case the unique degree value, is hashed to a specific
image and data for each group is aggregated at that image.
When there are more images available than unique group
keys we inherently create load imbalance. Some proportion
of images will have zero work to do while others may have
to compute many groups because as with any hash function
it is imperfect. Despite this the analysis can still be run in
interactive timeframes. It may be possible to achieve further
improvements by further optimizing the implementation of
the GROUP BY operator though as noted the nature of the
dataset may place a limit on scaling.

For PageRank and Triangle Counting we provide a
performance comparison between two different approaches
both available within CGE. The first approach, which we
refer to as “Python+SPARQL”, uses the approach presented
in [50] which maps an iterative algorithm to a combination
of SPARQL queries whose execution sequence is managed
using a procedural language such as Python or Javascript.
Intermediate results produced during the computation are
saved as temporary named graphs within the running
database. Here we were able to leverage the implemen-
tations for PageRank and Triangle Counting discussed in
[51]. The second approach is to use the optimized built-in
graph function (BGFs) for PageRank and Triangle Counting
provided by CGE [49]. These leverage an extension to the
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Fig. 6. CGE Performance: Degree Distribution

language that allows us to call native Coarray C++ imple-
mentations of the algorithms from within a SPARQL query.
This allows for a standard query to be used to identify
the portion of the graph to be analyzed before the native
algorithm is invoked.

In Figures 7 and 8 you can see the scaling results for
PageRank using the two approaches. We can see that for the
smaller datasets the BGF approach is 2 orders of magnitude
faster and 1 order of magnitude faster for the largest dataset.
We would also note that the BGF approach exhibits strong
scaling whereas the “Python+SPARQL” approach yields
very little benefit as we scale up.

Figures 9 and 10 show the scaling results for triangle
counting using the two approaches. Here we can say that
while the BGF approach is an order of magnitude faster we
achieve limited scaling on this algorithm. We are investi-
gating why triangle counting does not scale up currently
and have a couple of potential culprits. One potential issue
is that we consider candidate triangles in batches and the
choice of batch size may be sub-optimal for larger node
counts. Another issue is that the characteristics of the graph
may be causing hot spotting and load imbalance whereby
some processes have far more work to do than others.
Despite the lack of scaling we are again able to complete
these queries in interactive time.

4.3 Comparing CGE to Spark GraphX

In [52] they presented a comprehensive comparison be-
tween several graph analysis ecosystems. Their conclusions
were that the stand-alone systems like NetworkX, Neo4j
and Apache Jena provided good performance for small
scale graphs, but only scalable solutions, such as Apache
Spark, GraphX and Urika R�-GD were able to provide inter-
active level query response times for larger graphs, with
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the Cray Urika R�-GD system providing the most scalable
performance. The authors of [52] also graciously provided
us with their Spark GraphX implementations for the LUBM
queries.

In mid 2016 Databricks introduced GraphFrames [53], a
graph processing library based on Spark DataFrames which
over time may replace the Spark GraphX library. With better
support provided for Spark DataFrames in Spark 2.0, we did
some initial investigation into rewriting the Spark GraphX
LUBM queries, based on Spark GraphRDD triplets, to use
GraphFrames, based on Spark DataFrames instead. Graph-
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Fig. 10. CGE Performance: Triangle Counting using Python+SPARQL

Frames uses a query syntax based on the Cypher query
language used by Neo4j. What we found at the time was that
our GraphFrames implementations of the LUBM queries
were able to generate correct results for simple pattern
matching queries such as Query 1, but returned incorrect
results for the more complex trianglular queries such as
Query 2 and Query 9. We do plan to continue to monitor
the GraphFrames project as the implementation continues
to mature, therefore for this performance comparison we
only use the Spark GraphX-based queries.

One limitation which the authors pointed out for the
Cray Urika-GD system was the size of the shared memory,
noting that performance could hit a wall once the dataset
exceeded the size of the memory. With CGE on Cray XC, we
are now able to scale out to much larger node configurations
and memory sizes. As an extension to their earlier work, we
show the performance of LUBM25K using Spark GraphX on
XC and compare this performance to that of CGE.

We run Spark 2.1.0 using the Beta version of Cray’s
forthcoming analytics on XC package. We deploy Spark as a
set of containers running in the Shifter containerizer [54] on
compute nodes of our Cray XC system:

• One node runs a container with a Spark master im-
age. The master schedules work across the executor
(worker) nodes.

• One node runs an interactive image that users may
use to interact with the Spark cluster via Java, Scala,
Python, R or SQL.

• The remaining allocated nodes run Spark executors
(workers) inside Shifter containers. These executors
execute tasks on partitions of the user’s data.

We configure our Shifter containers to utilize Shifter’s
per-node cache feature to provide local temporary storage.
The per-node cache provides an XFS loopback mounted
filesystem to each container, backed by a file on Lustre [55].
This eliminates one of the primary bottlenecks seen with
running frameworks like Spark on compute-dense HPC
systems with little or no local storage—namely, the poor
performance of shared storage when used to emulate the
per-node local storage which these frameworks depend on
for spilling and shuffling. This poor performance is due
to two primary causes: difficulties with OS caching, and
bottlenecks on the shared storage metadata due to many
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small file accesses on multiple worker nodes. By providing
a separate, effectively-local filesystem to each node, Shifter’s
per-node cache eliminates both of these issues.

Typically Spark applications maximise performance by
co-locating the computation with the data. Since the data
is stored on the parallel Lustre filesystem it will not be co-
located with the computation initially. To mitigate this our
spark codes first load in the data from the parallel filesystem
and then explicitly perform a Spark persist() operation,
this instructs Spark to cache the data in-memory on the
compute nodes. Thus the actual computation operates fully
in memory on co-located data. Where shuffles are neces-
sary the temporary data is written to the aforementioned
loopback filesystem. Since these files are typically small and
short lived they usually remain in OS disk cache in-memory
and they are not flushed to physical storage.

Using the LUBM [3] benchmark suite, which exercises
the graph pattern matching capabilities of the SPARQL
query engine, is certainly favorable to CGE, since this is
what is was designed to do well. Figure 11 highlights the
significant performance advantage observed when compar-
ing Spark GraphX performance to CGE performance with
the moderately sized LUBM25K dataset. Graph pattern
matching can be both latency sensitive and communication
intensive. Although both Spark and CGE communicate over
the high-performance Aries network on XC, Spark com-
munication uses TCP/IP, while CGE uses the lower-level
Distributed Memory Application (DMAPP) [56] communi-
cation layer.

For exploratory graph analysis, Spark GraphX, although
still an order of magnitude slower than CGE, is much more
competitive. Here we compare the performance of running
PageRank using Spark GraphX, and compare this to the two
different SPARQL implementations, the “Python+SPARQL”
PageRank implementation and the CGE BGF PageRank im-
plementation. As one would expect, the customized native
Coarray C++ implementation of the PageRank BGF pro-
vided CGE with outperforms both the “Python+SPARQL”
approach and the Spark GraphX implementation. For pur-
poses of comparison we use the faster static iterations
version of PageRank provided in Spark. The number of
iterations used is the number of iterations it takes the CGE
BGF implementation, which does convergence checking, to
converge to a solution. Thus creating an apples-to-apples
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comparison of the algorithm running the same number of
iterations.

However, as can be seen in Figures 12 and 13 the differ-
ence in performance varies considerably depending on the
dataset. For the smaller LiveJournal dataset shown in Figure
12 we see that the BGF implementation is clearly orders of
magnitude better achieving times approximately 100x that
of the Spark GraphX implementation running in 1.79 sec-
onds versus 115.5 seconds (taking the best times achieved).
However, in the larger and more complex Friendster graph
shown in Figure 13 the BGF implementation is clearly better
the performance ratio is around 10x that of Spark GraphX
running in 53.84 seconds versus 500 seconds.

CGE and Spark are both supported components of the
forthcoming Cray analytics stack for XC and we recently
added a new feature to the CGE distribution, the CGE
Spark API, which helps make moving data between CGE
and Spark more seamless. This feature allows Spark pro-
grammers to convert CGE results files in tab-separated-
values format (“.tsv” files) into Spark DataFrames. For more
details, see the CGE Users Guide [57].

5 UNIPROT RESULTS

The UniProt [5] database is the authoritative collection of
functional information on proteins, and includes annota-
tions, interrelationships and in some cases the amino acid
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sequences of the proteins themselves. Proteins are the build-
ing blocks of all life on earth, and the Uniprot database
is crucial to Life Science researchers hoping to understand
them. Uniprot concentrates on Human proteins, though
other widely studied organisms such as rice, mouse and
zebrafish are also well represented.

The UniProt Consortium is a collaboration between the
European Bioinformatics Institute (EBI), the Swiss Insti-
tute of Bioinformatics (SIB) and the Protein Information
Resource (PIR). It has been a pioneer in Semantic Web
technology, and Uniprot has been distributed in RDF format
since 2008. New releases are distributed every four weeks.
The interactions between proteins are complex and widely
linked, so a graph representation is very useful.

Uniprot is continually growing as more scientific data
is added and the very latest release contains 27,291,595,271
triples (27 Billion). The database we used for this investi-
gation is from mid-2016 and contains 22 Billion triples. In
the form of an N-Triples (.nt) file on disk it is roughly 3.8
Terabytes. Including sections for different organisms, there
are 17 named graphs.

For our study we looked at the scaling performance of
eight queries applied to the Uniprot dataset as shown in
Table 3. Six of the queries are example queries provided
from the Uniprot SPARQL endpoint [58]. We also included
two queries provided by Eric Neumann, which were pro-
vided as sample hands-on examples at the Semantic Web
Interest Group, June 2009 Workshop [59]. These queries
were specifically selected to demonstrate more complex
BGPs and query structure than the synthetic benchmarks.

Although we continue to scale up to 512 nodes on six of
the eight queries, scaling tapers off significantly between 256
nodes and 512 nodes. Focusing in on Query 11 (shown in
Listing 4), which takes the longest amount of time, we broke
down the amount of time spent in each phase of the BGP
(SCAN, JOIN, MERGE) portion of the Query. We used this
data to identify which phase is a current limitation. Table
4 shows that the SCAN and JOIN phases are scaling well,
but the MERGE phase is clearly limiting scaling. The SCAN
phase shows strong scaling all the way to 512 nodes, and the
JOIN phase exhibits good scaling up to 512 nodes though it
is clearly tapering off. However, the MERGE performance is
essentially identical across all node counts showing that it is

TABLE 3
Uniprot Database queries used for study

Query Origin Description
Q3 Example 3 Select all E-Coli K12 Uniprot

http://sparql.uniprot.org (including strains) entries and
their amino acid sequence

Q6 Example 6 Select all cross-references to
http://sparql.uniprot.org external databases of the

category ’3D structure
databases’ of UniProt entries
that are classified with the
keyword ’Acetoin biosynthesis
(KW-0005)’

Q8 Example 8 Select the preferred gene name
http://sparql.uniprot.org and disease annotation of all

human UniProt entries that are
known to be involved in a disease

Q11 Example 11 Select all UniProt entries with
http://sparql.uniprot.org annotated transmembrane regions

and the regions’ begin and end
coordinates on the canonical sequence

Q14 Query 9 Finding Proteins with
Eric Neumann Reactome associations
2009 Workshop

Q15 Query 15 Finding Proteins with both Reactome
Eric Neumann and Citation associations to each other
2009 Workshop

Q17 Example 17 Select the average number of
http://sparql.uniprot.org cross-references to the PDB

database of UniProt entries that have
at least one cross-reference to
the PDB database

Q18 Example 18 Select the number of UniProt entries
http://sparql.uniprot.org for each of the EC (Enzyme

Commission) second level categories

# S e l e c t a l l UniProt e n t r i e s with annotated transmembrane regions
# and the regions ’ begin and end coordinates on the canonica l sequence

PREFIX up:<http :// purl . uniprot . org/core/>
PREFIX fa ldo:<http :// biohackathon . org/resource/fa ldo#>

SELECT ? prote in ? begin ?end
WHERE
{

? prote in a up : Prote in .
? prote in up : annotat ion ? annotat ion .
? annotat ion a up : Transmembrane Annotation .
? annotat ion up : range ? range .
? range fa ldo : begin/fa ldo : p o s i t i o n ? begin .
? range fa ldo : end/fa ldo : p o s i t i o n ?end

}

Listing 4. Uniprot Query 11: Annotated transmembrane regions

exhibiting no scaling.
In the SCAN phase, we find candidate solutions for each

query quad pattern, a pattern that matches edges in the
graph, in the BGP by searching through the local portion
of the database residing on that image. Each SCAN is em-
barrassingly parallel and communication between images
is only needed to balance the solutions across images after
each image has performed their local scan operation. As
already described in Section 3.2, this balancing is imple-
mented such as to minimize network data exchange. The
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TABLE 4
BGP time breakdown for Uniprot Query 11 (seconds)

Phase (Ops) 64 nodes 128 nodes 256 nodes 512 nodes
SCAN (8) 5.74 3.12 1.76 0.98
JOIN (5) 1.73 0.98 0.65 0.53

MERGE (6) 5.86 6.17 5.94 6.10

Total 14.01 10.60 8.52 7.70

result of the SCAN phase is a list of solution sets, known as
Intermediate Result Arrays (IRAs), where each IRA repre-
sents the matches for a specific scan.

In the JOIN phase, we attempt to reduce the size of the
candidate solutions returned by the SCAN phase by compar-
ing the variable bindings across multiple IRAs. JOIN is just
a simple unary association of the SCAN output on a single
variable. For each unbound variable (UBV) that appears
in multiple IRAs, we determine which internal identifiers,
known as HURIs, are valid for that UBV. To be valid, a HURI
must appear in at least one solution of all solution sets that
contain that UBV. This allows eliminating solutions which
cannot possibly be merged in the subsequent MERGE phase
thus reducing the solution space.

The final MERGE phase is essentially a merge join of the
IRAs. It first uses a complex heuristic to try to determine
an optimal schedule, i.e. an ordering in which to perform
the sequence of merges. Communication is all-to-all, in that
during the merge every image must send its data to all the
other images. We have optimized this at a node level so
images within the same physical node share any data which
was read from a remote image. The algorithm then becomes
a nested loop of the form shown in Listing 5.
f o r ( i n t 6 4 t grp = 0 ; grp < num groups ; grp++) {

f o r ( i n t 6 4 t grp img = 0 ; grp img < num images in grp ; grp img++) {
// Do merge work

}
}

Listing 5. Psuedo-code for MERGE phase

The outer most loop is a loop over the number of groups.
The number of outer loop iterations increases as we add
more nodes and communication/global synchronization is
required between each iteration. We do pre-fetching to over-
lap the communication with the on-node computation. We
also plan to look at taking advantage of the forthcoming
availablity of synchronization within sub-teams of images.
This would reduce the amount of global synchronization.
Our loop nest would now be a triple loop nest, with the
outer loop a loop over teams, the middle loop over groups,
and the inner most loop still over images within the same
physical node.

Within the local computation, the memory access pat-
terns are very much data driven, and the number of poten-
tial matches or solutions is unknown. Since this is a merge
join the amount of work depends upon both how many
intermediate solutions must be sorted but also upon the
selectivity of the merge join. If a merge join has low se-
lectivity it produces many merges which requires scanning
large portions of the data to find all compatible solutions
to be merged. This can lead to an explosion of the interme-
diate solution space as we proceed through the merges. As
already noted, we use a heuristic to schedule the order of

the merges. This tries to prefer high selectivity merges i.e.
those that will reduce the size of the intermediate solution
space. However, it is difficult to estimate in advance the
selectivity of a given merge join so we may not always pick
an ideal schedule. In the worst pathological cases where a
merge has no common variables we are forced to compute a
cross product which squares the solution space. If multiple
cross products are encountered the solution space may grow
exponentially during the course of the MERGE phase.

In the cases of merge joins that substantially expand
the solution space we suspect that we are defeating the
processor cache leading to cache thrashing. Each image
is sequentially reading through the currently node-local
portions of the data, and may repeat this multiple times. So
where we have large solution spaces much of the memory
read will have been evicted from cache by the time it is
needed again. Therefore one area of additional performance
optimization is to look at the current cache performance
when performing the local merge phases. This will involve
the use of low level profiling via CrayPAT and based on
these findings we will look at ways to improve memory
reuse or to avoid thrashing the cache.

6 CONCLUSION

In conclusion we have presented CGE and described the
challenges and successes we have had porting to run across
multiple hardware platforms. We have been able to demon-
strate the ability for an application to strongly scale up from
our Urika-GX platform onto our XC platform. Thus provid-
ing a clear upgrade path of customers as their datasets and
workload increase in size and complexity.

Through experiments we have shown that CGE exhibits
strong scaling across a variety of graph analytics workloads.
Compared to leading open source competitors we are able
to achieve substantially better performance on those work-
loads and scale performance to massive graphs. We exhibit
10 to 100 times better performance than those solutions
depending on the workload and dataset. This enables in-
teractive analyses that were previously not possible at scale.

Our results demonstrate that CGE is capable of strong
performance across the two kinds of graph analysis work-
loads where traditionally systems have only targeted one.
This shows that is it possible to engineer a system that is
able to support both workloads without compromising on
performance. This is a significant improvement over previ-
ous systems which either limited users to one workload, or
forced them to compromise on performance.

Finally, we have identified areas where we still have
further scaling work to do. Where time allowed we have
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provided preliminary root cause analysis for these. Addi-
tional work is still required to confirm these analyses and
address these limitations. However, as has been discussed
some of these limitations are data and workload depen-
dence, as such scope for improvement may vary.

7 FUTURE WORK

As explained in Section 3.2, we aim to maximize perfor-
mance of our application by maximizing locality when
possible. Currently we are somewhat limited by the Coarray
C++ runtime in that it only provides for global synchro-
nization across all images. There are many places where we
would be better served by performing a more constrained
synchronization, e.g. within the images of a given physical
node or within a small subset of nodes. The developers
of Coarray C++ within Cray are currently working on
implementing a teams feature which will allow images to
be subdivided into teams based upon arbitrary criteria e.g.
physical node ID. This should allow us to further optimize
our application by reducing the number of global synchro-
nizations required in favor of more local synchronizations.

We will also be looking to investigate how to resolve
some of the current limitations on scaling identified in this
paper. In particular we will focus on the merge code that we
know to be a problem per Section 5. Since that operation is
used in almost every query any performance improvements
there will yield benefits across many workloads.
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