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Overall Agenda

● Session I: 1:00-2:30
● Apache Spark (Michael Ringenburg, Cray)
● Anaconda Python and Dask Distributed (Michael Ringenburg, Cray)

● CUG Break: 2:30-3:00
● Session II: 3:00-4:30

● R (Kristyn Maschhoff, Cray)
● Cray Graph Engine (Kristyn Maschhoff, Cray)

● CUG Track Change: 4:30-4:40
● Session III: 4:40-6:20

● TensorFlow (Jing Huang and Vivek Rane, Intel)
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Training Accounts

● NERSC has provided temporary training accounts on Cori 
for tutorial attendees.
● You should have received a slip of paper with your username and 

password when you signed the user agreement
● Login: ssh <username>@cori.nersc.gov
● Allocation via slurm:

● Haswell nodes: salloc --reservation=CUG2C -N 5 -p regular -C haswell -t 
60 -A ntrain

● KNL nodes: salloc --reservation=CUG2C -N 1 -p regular -C knl -t 60 -A 
ntrain

● 150 Haswell and 30 KNL nodes total available in this reservation –
please don’t exceed your fair share
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Tutorial: Spark on Cray XC Systems
Michael Ringenburg, mikeri@cray.com
Principal Engineer, Analytics R&D, Cray Inc



Agenda

● Introduction to Spark
● History and Background
● Computation and Communication Model

● Spark on the XC40
● Installation and Configuration
● Local storage

● Running Spark on Cori
● Questions?
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In the beginning, there was Hadoop MapReduce…

● MapReduce: simplified parallel programming model
● All computations broken into two parts

● Embarassingly parallel map phase: apply single operation to every key,value-pair, 
produce new set of key,value-pairs

● Combining reduce phase: Group all values with identical key, performing combining 
operation to get final value for key

● Can perform multiple iterations for computations that require
● I/O intensive 

● Map writes to local storage.  Data shuffled to reducer’s local storage, reduce reads.
● Additional I/O between iterations in multi-iteration algorithms (map reads from HDFS, 

reduce writes to HDFS)
● Effective model for many data analytics tasks

● HDFS distributed file system (locality aware – move compute to data)
● YARN cluster resource manager
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Example: K-Means Clustering with MapReduce

● Initially: Write out random cluster 
centers

● Map: 
● Read in cluster centers
● For each data point, compute nearest cluster 

center and write <key: nearest cluster, value: 
data point>

● Reduce:
● For each cluster center (key) compute 

average of datapoints
● Write out this value as new cluster center

● Repeat until convergence (clusters 
don’t change)
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MapReduce Problems

● Gated on IO bandwidth, possibly interconnect as well
● Must write and read between map and reduce phases
● Multiple iterations must write results in next time (e.g., new cluster 

centers)
● No ability to persist reused data
● Must re-factor all computations as map then reduce 

(rinse and repeat?)
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What is Spark?

● Newer (2014) analytics framework
● Originally from Berkeley AMPLab/BDAS stack, now Apache project
● Native APIs in Scala.  Java, Python, and R APIs available as well.
● Many view as successor to Hadoop MapReduce.  Compatible with 

much of Hadoop Ecosystem.
● Aims to address some shortcomings of Hadoop 

MapReduce
● More programming flexibility – not constrained to one map, one 

reduce, write, repeat.
● Many operations can be pipelined into a single in-memory task
● Can "persist" intermediate data rather than regenerating every 

stage
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Spark Execution Model

● Master-slave parallelism
● Driver (master)

● Executes main
● Distributes work to executors

● Resilient Distributed Dataset (RDD)
● Spark's original data abstraction
● Partitioned amongst executors
● Fault-tolerant via lineage
● Dataframes/Datasets extend this abstraction

● Executors (slaves)
● Lazily execute tasks (local operations on 

partitions of the RDD)
● Global all-to-all shuffles for data exchange
● Rely on local disks for spilling data that's too 

large, and storing shuffle data

Driver
main()

…
Executor

Task

Task

Node 1

Executor

Task

Task

Executor

Task

Task

Node N

Executor

Task

Task

Node 0

= Java Virtual Machine Instance

= TCP Socket-based communication

Local disk(s)

Local disk(s)
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Spark Communication 
Model (Shuffles)

● All data exchanges 
between executors 
implemented via shuffle
● Senders (“mappers”) send 

data to block managers; block 
managers write to disks, tell 
scheduler how much destined 
for each reducer

● Barrier until all mappers 
complete shuffle writes

● Receivers (“reducers”) 
request data from block 
managers that have data for 
them; block managers read 
and send

Map task 
thread

Block 
manager

Disk

Reduce 
task 

thread
TCP

Spark 
Scheduler

Shuffle write

Shuffle read

Meta data

Copyright 2017 Cray Inc. 
11

CUG 2017



RDDs (and DataFrames/DataSets)

● RDDs are original data abstraction of Spark
● DataFrames add structure to RDDs: named columns
● DataSets add strong typing to columns of DataFrames (Scala and 

Java only)
● Both build on the basic idea of RDDs

● DataFrames were originally called SchemaRDDs

● RDD data structure contains a description of the data, 
partitioning, and computation, but not the actual data 
… why?
● Lazy evaluation
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Lazy Evaluation and DAGs

● Spark is lazily evaluated
● Spark operations are only executed when and if needed
● Needed operations: produce a result for driver, or produce a 

parent of needed operation (recursive)
● Spark DAG (Directed Acyclic Graph)

● Calls to transformation APIs (operations that produce a new 
RDD/DataFrame from one or more parents) just add a new node 
to the DAG, indicating data dependencies (parents) and 
transformation operation

● Action APIs (operations that return data) trigger execution of 
necessary DAG elements

● Example shortly…
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Tasks, Stages, and Pipelining

● If an RDD partition's dependencies are on a single other RDD 
partition (or on co-partitioned data), the operations can be 
pipelined into a single task
● Co-partitioned: all of the parent RDD partitions are co-located with child 

RDD partitions that need them
● Pipelined: Operations can occur as soon as the local parent data is ready 

(no synchronization)
● Task: A pipelined set of operations
● Stage: Execution of same task on all partitions

● Every stage ends with a shuffle, an output, or returning data back 
to the driver.
● Global barrier between stages.  All senders complete shuffle write before 

receivers request data (shuffle read)
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Spark Programming Model: Example

val arr1M = Array.range(1,1000001) 
val rdd1M = sc.parallelize(arr1M, 40)
val evens = rdd1M.filter(

a => (a%2) == 0
)

evens.take(5)

>>> Array[Int] = Array(2, 4, 6, 8, 10)

Create array of 
{1, 2, …, 1,000,000}  

Partition array into a 40-
partition RDD (can also 

create from file). Executors 
will execute tasks on 

parititions, so this is also 
the maximum parallelism. 

Spark transformation 
(Create new RDD from old 

RDD/RDDs)

Spark action
(return result to driver)

Lazy Evaluation: No computation until result requested

com
pute
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Example: Line-by-line

val arr1M = Array.range(1,1000001)

Driver:
{1, …, 1,000,000}

Executor 0: Executor 1: Executor 2: Executor 3:

Conceptually …

Copyright 2017 Cray Inc. 
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Example: Line-by-line

val rdd1M = sc.parallelize(arr1M, 8)

Driver:
{1, …, 1,000,000}

Executor 0:
{1 … 125000}

{500001 … 625000}

Executor 1:
{125001 … 250000}
{625001 … 750000}

Executor 2:
{250001 … 375000}
(750001 … 875000}

Executor 3:
{375001 … 500000}
(875001…1000000}

Conceptually …
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Example: Line-by-line

val evens = rdd1M.filter(a => a%2==0)

Driver:
{1, …, 1,000,000}

Executor 0:
{2,4, … 125000}

{500002,500004 …}

Executor 1:
{125002, 125004 …}
{625002, 625004 …}

Executor 2:
{250000,250002 …}
(750002,750004 …}

Executor 3:
{375002,375004 …}
(875002,875004 …}

Conceptually …
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Example: Line-by-line

evens.take(5)

Driver:
{1, …, 1,000,000}

{2, 4, 6, 8, 10}

Executor 0:
{2,4, … 125000}

{500002,500004 …}

Executor 1:
{125002, 125004 …}
{625002, 625004 …}

Executor 2:
{250000,250002 …}
(750002,750004 …}

Executor 3:
{375002,375004 …}
(875002,875004 …}

Conceptually …
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Example: Line-by-line

val arr1M = Array.range(1,1000001) 

Executor 0: Executor 1: Executor 2: Executor 3:

Reality: Lazy Evaluation
Driver:

{1, …, 1,000,000}
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Example: Line-by-line

val rdd1M = sc.parallelize(arr1M, 8)

Executor 0: Executor 1: Executor 2: Executor 3:

Input: Arr1M 
RDD Partition 0

RDD Partition 7
DAG (Directed 
Acyclic Graph) 
schedule

…

Driver:
{1, …, 1,000,000}

Copyright 2017 Cray Inc. 
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Example: Line-by-line

val evens = rdd1M.filter(a => a%2==0)

Executor 0: Executor 1: Executor 2: Executor 3:

Input: Arr1M 
RDD Partition 0

RDD Partition 7

FilteredRDD 0

FilteredRDD 7
DAG (Directed 
Acyclic Graph) 
schedule

… …

Driver:
{1, …, 1,000,000}
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Example: Line-by-line

evens.take(5)

Executor 0: Executor 1: Executor 2: Executor 3:

Input: Arr1M 
RDD Partition 0

RDD Partition 7

FilteredRDD 0

FilteredRDD 7
DAG (Directed 
Acyclic Graph) 
schedule

… … Take Result: 
RETURNS DATA

Driver:
{1, …, 1,000,000}
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Example: Line-by-line

evens.take(5)

Executor 0:
{1 … 125000}

Executor 1: Executor 2: Executor 3:

Input: Arr1M 
RDD Partition 0

RDD Partition 7

FilteredRDD 0

FilteredRDD 7

Start computing!

DAG (Directed 
Acyclic Graph) 
schedule

… … Take Result: 
RETURNS DATA

Driver:
{1, …, 1,000,000}
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Example: Line-by-line

evens.take(5)

Executor 0:
{2,4, … 125000}

Executor 1: Executor 2: Executor 3:

Input: Arr1M 
RDD Partition 0

RDD Partition 7

… FilteredRDD 0

FilteredRDD 7

… Take Result: 
RETURNS DATA

DAG (Directed 
Acyclic Graph) 
schedule

Driver:
{1, …, 1,000,000}
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Example: Line-by-line

evens.take(5)

Executor 0:
{2,4, … 125000}

Executor 1: Executor 2: Executor 3:

Input: Arr1M 
RDD Partition 0

RDD Partition 7

FilteredRDD 0

FilteredRDD 7

Driver:
{1, …, 1,000,000}

{2, 4, 6, 8, 10}

DAG (Directed 
Acyclic Graph) 
schedule

… … Take Result: 
RETURNS DATA
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Wait a second …

● How did Spark know that take() would only require data 
from one partition?
● What if filter() left fewer than 5 elements in the first partition?

Copyright 2017 Cray Inc. 
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Wait a second …

● How did Spark know that take() would only require data 
from one partition?
● What if filter() left fewer than 5 elements in the first partition?

● Answer … It didn't. 
● Take is typically used to fetch a small initial piece of the data
● Spark guesses that it will all be available in the first partition
● If not, tries the first four partitions …
● Then the first 16 …
● Etc…
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Modified example

● Imagine we want to perform a number of actions on (i.e., 
return different data about) our filtered RDD.

● For each action, Spark computes all the DAG steps…

val arr1M = Array.range(1,1000001) 
val rdd1M = sc.parallelize(arr1M, 8)
val evens = rdd1M.filter(a => (a%2) == 0)
val firstFiveEvens = evens.take(5)
// How many evens?
val totalEvens = evens.count()
// Sum of evens
val evenSum = evens.reduce((a,b) => a+b)

Count returns the 
total size of an RDD

Reduce performs a 
reduction over the 
dataset, combining 
elements with the 
argument function.
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Modified example

● Problem: This means recomputing the filtered "evens" RDD 
three times – inefficient.

val arr1M = Array.range(1,1000001) 
val rdd1M = sc.parallelize(arr1M, 8)
val evens = rdd1M.filter(a => (a%2) == 0)
val firstFiveEvens = evens.take(5)
// How many evens?
val totalEvens = evens.count()
// Sum of evens
val evenSum = evens.reduce((a,b) => a+b)

Count returns the 
total size of an RDD

Reduce performs a 
reduction over the 
dataset, combining 
elements with the 
argument function.
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Modified example

● Problem: This means recomputing the filtered "evens" RDD 
three times – inefficient.

● Solution: Persist the RDD!*

val arr1M = Array.range(1,1000001) 
val rdd1M = sc.parallelize(arr1M, 8)
val evens = rdd1M.filter(a => (a%2) == 0)
evens.persist()  // or cache()
val firstFiveEvens = evens.take(5)
// How many evens?
val totalEvens = evens.count()
// Sum of evens
val evenSum = evens.reduce((a,b) => a+b)

Persist tells Spark to keep 
the data in memory even 
after it is done with the 

action.  Allows future actions 
to reuse without recomputing.  
Cache is synonym for default 
storage level (memory).  Can 

also persist on disk, etc.

*Relies on immutability of val

Copyright 2017 Cray Inc. 
31

CUG 2017



Multi-stage Spark Example: Word Count
val lines = sc.textFile("mytext")
val words = lines.flatMap (

line => line.split(" ")
)

val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey()
val wordCounts = groupedWords.map(

t => (t._1, t._2.sum)
)

val counts = wordCounts.collect()

flatMap maps one 
value to (possibly) 

many, instead of one-
to-one like map

groupByKey combines all 
key-value pairs with the 

same key (k, v1), …, 
(k,vn) into a single key-

value pair (k, (v1, …, vn)).

Collect returns all 
elements to the driver

Load file

• Let's like at a simple example: computing the number of 
times each word occurs

• Load a text file
• Split it into words
• Group same words together (all-to-all communication)
• Count each word
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val lines = sc.textFile("mytext")
val words = lines.flatMap (

line => line.split(" ")
)

val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey()
val wordCounts = groupedWords.map(

t => (t._1, t._2.sum)
)

val counts = wordCounts.collect()

The Spark DAG

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…
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Execution

"fox jumps 
over"

"the brown 
dog"

"the quick 
brown"
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Partition 1

Partition 2
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Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect
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Execution

"fox jumps 
over"

"the brown 
dog"

(the, 1)
(brown, 1)
(dog, 1)

"the quick 
brown"

(the, 1)
(quick, 1)
(brown, 1)

(fox, 1)
(jumps, 1)
(over, 1)
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Split 1

Split 2
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Pair 1

Pair 2

Pair N
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Group N

… … … …
Count 1

Count 2

Count N

…

Collect
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Execution

"fox jumps 
over"

"the brown 
dog"

(the, 1)
(brown, 1)
(dog, 1)

"the quick 
brown"

(the, 1)
(quick, 1)
(brown, 1)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 1), (quick, 
1), (brown, 1)

(fox, 1), (jumps, 
1), (over, 1)

(the, 1), (brown, 
1), (dog, 1)

Write shuffle data to local file system

Barrier
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Count 1
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Execution

"the quick 
brown"

"fox jumps 
over"

"the brown 
dog"

(quick, (1))
(brown, (1, 1))

(fox, (1))
(jumps, (1))
(over, (1))

(the, (1, 1))
(dog, (1))

(the, 1), (quick, 
1), (brown, 1)

(fox, 1), (jumps, 
1), (over, 1)

(the, 1), (brown, 
1), (dog, 1)

Fetch shuffle data from remote file systems
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Execution

"the quick 
brown"

"fox jumps 
over"

"the brown 
dog"

(quick, 1)
(brown, 2)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 2)
(dog, 1)

(the, 1), (quick, 
1), (brown, 1)

(fox, 1), (jumps, 
1), (over, 1)

(the, 1), (brown, 
1), (dog, 1)
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Execution

"the quick 
brown"

"fox jumps 
over"

"the brown 
dog"

(quick, 1)
(brown, 2)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 2)
(dog, 1)

(the, 1), (quick, 
1), (brown, 1)

(fox, 1), (jumps, 
1), (over, 1)

(the, 1), (brown, 
1), (dog, 1)
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Execution

"the quick 
brown"

"fox jumps 
over"

"the brown 
dog"

(quick, 1)
(brown, 2)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 2)
(dog, 1)

(the, 1), (quick, 
1), (brown, 1)

(fox, 1), (jumps, 
1), (over, 1)

(the, 1), (brown, 
1), (dog, 1)
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HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Take(5)
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Spark on XC: Setup options
● Cluster Compatibility Mode (CCM) option

● Set up and launch standalone Spark cluster in CCM mode, run interactively 
from mom node, or submit batch script

● Exact details vary based on CLE version and workload manager
● An example recipe can be found in: 

“Experiences Running and Optimizing the Berkeley Data Analytics Stack on Cray 
Platforms”, Maschhoff and Ringenburg, CUG 2015

● Shifter option
● Shifter containerizer (think “Docker for XC”) developed at NERSC
● Acquire node allocation

● Run master image on one node
● Interactive image on another (or login)
● Worker images on rest

● Cray’s analytics on XC product (in beta testing) uses this approach
● Challenge: Lack of local storage for Spark shuffles and spills
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Reminder: Spark Shuffle –
Standard Implementation

● Senders (“mappers”) send data 
to block managers; block 
managers write to local disks, 
tell driver how much destined for 
each reducer

● Barrier until all mappers 
complete shuffle writes

● Receivers (“reducers”) request 
data from block managers that 
have data for them; block 
managers read from local disk 
and send

● Key assumption: large, fast local 
block storage device(s) available 
on executor nodes

Map task 
thread

Block 
manager

Disk

Reduce 
task 

thread

Driver 
(scheduler, 
block and 

shuffle trackers)

Shuffle write

Shuffle read

Meta data

Node
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Shuffle on XC – Version 1

● Problems: No local disk on standard XC40
● First try: Write to lustre instead

● Biggest Issue: Poor file access pattern for lustre (lots of small files, constant 
opens/closes).  Creates a major bottleneck on Lustre Metadata Server (MDS).

● Issue 2: Unnecessary extra traffic through network 

Map task 
thread

Block 
managerLustre

Reduce 
task 

thread
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Shuffle on XC – Version 2

● Second try: Write to RAMDisk
● Much faster, but …
● Issues: Limited to lessor of: 50% of node DRAM or unused DRAM; Fills up 

quickly; takes away memory that could otherwise be allocated to Spark
● Spark behaves unpredictably when it's local scratch space fills up (failures not 

always simple to diagnose)

Map task 
thread

Block 
managerRAMDisk

Reduce 
task 

thread
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Shuffle on XC – Version 3

● Third try: Write to RAMDisk and Lustre
● Set local directories to RAMdisk and lustre (can be list)
● Initially fast and keeps working when RAMDisk full
● Issues: Slow once RAMDisk fills; Round robin between directories (no bias 

towards faster RAM)

Map task 
thread

Block 
managerRAMDisk

Reduce 
task 

thread
TCP

Lustre
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Shuffle on XC – Version 3

● Third try: Write to RAMDisk and Lustre
● Set local directories to RAMdisk and lustre (can be list)
● Initially fast and keeps working when RAMDisk full
● Issues: Slow once RAMDisk fills; Round robin between directories (no bias 

towards faster RAM), but can specify multiple RAM directories

Map task 
thread

Block 
managerRAMDisk

Reduce 
task 

thread
TCP

Lustre
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Shuffle on XC – with Shifter PerNodeCache

● Shifter implementation: Per-node loopback file system
● NERSC’s Shifter containerization (in Cray CLE6) provides optional loopback-mounted per-node temporary 

filesystem
● Local to each node – fully cacheable
● Backed by a single sparse file on Lustre – greatly reduced MDS load, plenty of capacity, doesn’t waste space
● Performance comparable to RAMDisk, without capacity constraints (Chaimov et al, CUG ‘16)

● Cray’s Analytics on XC project (in beta) will ship as a Shifter image, and use this approach

Map task 
thread

Block 
manager

Sparse, 
cacheable 

“local” 
filesystem

Reduce 
task 

thread
TCP
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Other Spark Configurations

● Many config parameters … some of the more relevant:
● spark.shuffle.compress: Defaults to true.  Controls whether 

shuffle data is compressed.  In many cases with fast interconnect, 
compression and decompression overhead can cost more than 
the transmission time savings.  However, can still be helpful if 
limited shuffle scratch space.

● spark.locality.wait: Defaults to 3 (seconds).  How long to wait for 
available resources on a node with data locality before trying to 
execute tasks on another node.  Worth playing around with -
decrease if seeing a lot of idle executors.  Increase if seeing poor 
locality.  (Can check both in history server.)  Do not set to 0!
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Spark Performance on XC: HiBench
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Performance	of	HiBench	on	XC40	vs	Urika-XA	
Huge	Scale:	48	nodes,	12	cores/node		

XC40		

Urika-XA		

● Intel HiBench
● Originally MapReduce, Spark 

added in version 4
● Compared performance 

with Urika XA system
● XA: FDR Infiniband, XC40: 

Aries
● Both: 32 core Haswell nodes
● XA: 128 GB/node, XC40: 256 

GB/node (problems fit in 
memory on both)

● Similar performace on 
Kmeans, PageRank, Sleep

● XC40 faster for Sort, 
TeraSort, Wordcount, 
Bayes
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Spark Performance on XC: GraphX
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Spark on KNL

● Cray and Intel have recently started a collaboration to 
investigate and improve Spark on KNL performance
● Java and Spark currently run
● Performance vs Skylake varies from 20% slower to >4x slower
● “Typical” benchmarks at larger sizes ~3x slower than a dual-

socket Skylake node
● Still early … just starting to benchmark and profile.

● Looking at issues, profiling, attempting to identify causes and 
potential solutions.
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Early findings and tips

● Lots of skinny executors work better than fewer fatter executors
● On Xeon-based nodes this is not necessarily the case – fat often works 

nearly as well or occasionally better
● On KNL, though, often find best results with 1-2 cores per executor

● Make sure to adjust executor memory appropriately – all about memory/core
● E.g., 64 executors with 1 core and 2GB each, rather than 1 executor with 64 cores 

and 128 GB
● Skinny executors have better memory locality
● Skinny executors also have less JVM overhead
● JVM has issues scaling to many threads, e.g., https://issues.scala-

lang.org/browse/SI-9823 (cache thrashing with isInstanceOf) 
● Hyperthreading generally not helpful for Spark (on either Xeon or 

Xeon Phi)
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Early findings and tips

● Limit GC parallelism from JVM
● E.g., -XX:+UseParallelOldGC -XX:ParallelGCThreads=<N>, 

where N ≤ available threads/# executors
● Especially important with lots of skinny JVMs

● Otherwise each JVM will try to grab 5/8 total threads

● MCDRAM configured as cache works best with Spark
● Seeing ~43% of accesses coming from MCDRAM, ~11% directly 

from DDR
● Currently no ability in JVM to take advantage of MCDRAM in flat 

mode
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Running Preinstalled Spark on Cori

● Login to your training accounts
● Allocate Haswells, e.g.,

● salloc --reservation=CUG2C -N 5 -p regular -C haswell -t 60 -A ntrain
● module load spark
● start-all.sh
● Scala shell: spark-shell
● Python shell: pyspark
● Submit spark application: spark-submit
● When done: stop-all.sh
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WordCount demo

● spark-shell --executor-cores 12
● val lines = 

sc.textFile("/global/cscratch1/sd/mikeri/enron_mail/words.*.json.gz")
● val words = lines.flatMap (line => line.split(" "))
● val wordKV = words.map(s => (s, 1))
● val wordCounts = wordKV.reduceByKey((a, b) => a+b)
● wordCounts.persist()
● wordCounts.count()
● wordCounts.take(5)
● val sorted=wordCounts.sortBy(-_._2)
● sorted.take(5)
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Tutorial: Anaconda Python and Dask
Michael Ringenburg, mikeri@cray.com
Principal Engineer, Analytics R&D, Cray Inc



Install Anaconda

● Run the following in your home directory:
● wget https://repo.continuum.io/archive/Anaconda3-4.3.1-

Linux-x86_64.sh
● chmod +x ./Anaconda3-4.3.1-Linux-x86_64.sh
● ./Anaconda3-4.3.1-Linux-x86_64.sh
● Follow the prompts

● On cori, it is preinstalled for you:
● module load python/3.5-anaconda (or 2.7-anaconda)
● conda config --add envs_dirs $HOME/.conda_env

● Cray’s analytics on XC product (in beta) includes anaconda 
in the analytics shifter container
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Using the Conda environment manager
● Create a new conda environment with conda create

● E.g., create an environment with Python 3.5 and biopython: 
conda create --name bio biopython python=3.5

● Activate your environment: 
source activate bio
(bio) mikeri@cori07:~>

● Python 3.5 with biopython will now be your default python:
(bio) mikeri@cori07:~> python
Python 3.5.3 |Continuum Analytics, Inc.| (default, Mar 6 2017, 11:58:13)
>>> import Bio
>>> from Bio.Seq import Seq
>>> my_seq = Seq('CATGTAGACTAG')
>>> my_seq.translate()
Seq('HVD*', HasStopCodon(ExtendedIUPACProtein(), '*'))
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More Conda commands

● Deactivate an environement: source deactivate
● Get rid of an environment: conda remove
● Clone an environment: conda clone
● List environments: conda info --envs
● Find available packages: conda search
● List packages: conda list
● Add package to current environment: conda install
● More in docs: https://conda.io/docs/index.html
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Using Anaconda with PySpark

● Start up Spark cluster (see previous slides)
● Activate your conda environment

source activate bio
● Set PYSPARK_PYTHON to point to environment python

export PYSPARK_PYTHON=$CONDA_PREFIX/bin/python
● Run pyspark

pyspark
>>> import Bio
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Using PySpark and Anaconda to Complement a Set 
of Orchid Genomes

● In pyspark
● import Bio
● from Bio import SeqIO
● sequences = [seq_record.seq for seq_record in 

SeqIO.parse("/global/cscratch1/sd/mikeri/ls_orchid.fasta", 
"fasta")]

● seqRDD = sc.parallelize(sequences, 100)
● complementRDD = seqRDD.map(lambda seq: seq.complement())
● seqRDD.take(2)
● complementRDD.take(2)
● complementRDD.count()
● seqRDD.count()
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Setting up a dask.distributed Cluster, continued

● Add $HOME/anaconda3/bin to PATH, or load Cori anaconda 
3.5 module

● Set up a dask distributed environment
● conda create --name mydask dask distributed

● Get allocation
● salloc -N 4 -t 30 -C haswell

● Activate dask distributed 
● source activate mydask

● Start scheduler
● (If necessary export LC_ALL=en_US.UTF-8)
● dask-scheduler --scheduler-file $HOME/.dask_sched &
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Setting up a dask.distributed Cluster, continued

● Start workers on each node
● echo $SLURM_NODELIST

● nid00[620-623]
● which dask-worker

● /global/homes/m/mikeri/.conda_env/mydask/bin/dask-worker
● ssh -o StrictHostKeyChecking=no -p 22 nid00621 LC_ALL=en_US.UTF-8 

/global/homes/m/mikeri/.conda_env/mydask/bin/dask-worker
--scheduler-file $HOME/.dask_sched --nthreads 0 --nprocs 1 --host 
nid00621 &

● Cray’s Analytics on XC product will include an option to 
automatically set up a Dask Distributed scheduler and workers 
in your containers
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Using dask.distributed for word count

● Word count using Dask bag and distributed scheduler
● from dask import bag as db
● from distributed import Client, progress
● client = Client(scheduler_file='/global/homes/m/mikeri/.dask_sched')
● client.scheduler_info()
● email = 

db.read_text('/global/cscratch1/sd/mikeri/enron_mail/mailbag.*.json.gz')
● emailwords = email.str.split().concat()
● words = client.persist(emailwords)
● wordcount = words.frequencies().topk(300, lambda x: x[1])
● wc_future = client.compute(wordcount)
● progress(wc_future)
● result = client.gather(wc_future)
● result
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Revised word count

● Reuse persisted words bag
● wordcount2 = words.filter(lambda s: len(s) > 3 and 

s.isalpha()).map(lambda s: 
s.upper()).frequencies().topk(300, lambda x: x[1])

● wc2_future = client.compute(wordcount2)
● progress(wc2_future)
● result = client.gather(wc2_future)
● result
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Things to try during break

● salloc for 5 Haswell nodes on Cori:
● salloc --reservation=CUG2C -N 5 -p regular -C haswell -t 60 -A ntrain

● Spark
● module load spark
● start-all.sh
● Run spark commands, e.g.: spark-shell, pyspark, spark-submit
● Enron words dataset: /global/cscratch1/sd/mikeri/enron_mail/words.*.json.gz
● When done: stop-all.sh

● Anaconda
● module load python/3.5-anaconda (or 2.7-anaconda)
● conda config --add envs_dirs $HOME/.conda_env
● Try a biopython environment:

● conda create --name bio biopython python=3.5
● source activate bio
● Orchid Dataset: /global/cscratch1/sd/mikeri/ls_orchid.fasta
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Analytics on XC
Setting up an R Environment



What is R? 

CUG 2017 Copyright 2017 Cray Inc. 

● R project for Statistical Computing
● https://www.r-project.org
● Environment for statistical computing and graphics
● “GNU S”
● Freely available – but note most R packages have licenses

● (GPL-2, GPL-3, MIT, Apache, etc.)
● Latest Version R 3.4.0 (You Stupid Darkness)

● R version 3.4.0 (2017-04-21) -- "You Stupid Darkness"

● CRAN - The Comprehensive R Archive Network
● https://cran.r-project.org
● Network of ftp and web servers that store identical, up-to-date, versions of code 

and documentation for R
● R manuals

● https://cran.r-project.org/doc/manuals/
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What we plan to cover in the tutorial

● Setting up an R environment on XC
● Update on R support on XC built with Cray libsci

● module load cray-R
● Currently support R-3.3.3

● Build Instructions:
● Build R using gcc/gfortran
● Build R using Intel C++ and Fortran Compilers + MKL
● Build R using gcc/gfortran + MKL

● Using Anaconda to manage R packages and multiple R 
versions (environments)

● Setting up a R cluster using “parallel” package
● Setting up a pdbR environment (pdbMPI)
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Setting up an R environment on XC

● Base R Install
● Easiest way to install on XC is to build from source

● Allows one to build optimized versions which use optimized math libraries 
(Cray libsci, Intel MKL)

● Download most recent version from CRAN
● R-3.4.0.tar.gz
● wget https://cran.r-project.org/src/base/R-3/R-3.4.0.tar.gz

● CRAN repository also provides precompiled binaries 
● Linux, OS X, Windows

● Anaconda R
● Quite useful for managing R packages and multiple R environments on XC
● List of R language packages available for install from conda is located at 

http://repo.continuum.io/pkgs/r/
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Simple R build from source using gcc/gfortran

> module load gcc
> wget https://cran.r-project.org/src/base/R-3/R-3.4.0.tar.gz
> (Note: other mirror sites work as well, for example
> wget http://cran.rstudio.com/src/base/R-3/R-3.4.0.tar.gz
> tar -xzf R-3.4.0.tar.gz
> cd R-3.4.0/

> ./configure --prefix=/lus/scratch/kristyn/R/R-3.4.0/R-3.4.0
> make
> make check; make install
> cd /lus/scratch/kristyn/R/R-3.4.0/bin
> ./R
> file R

> ( R: POSIX shell script, ASCII text executable )
> file exec/R 

> (exec/R: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 
3.0.0
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Installed Packages – Base Install
> installed.packages()[,c("Version","License")]

CUG 2017 Copyright 2017 Cray Inc. 

Version License 

methods "3.4.0" "Part of R 3.4.0" 
mgcv "1.8-17" "GPL (>= 2)"
nlme "3.1-131" "GPL (>= 2) | file LICENCE"
nnet "7.3-12" "GPL-2 | GPL-3" 
parallel "3.4.0" "Part of R 3.4.0" 
rpart "4.1-11" "GPL-2 | GPL-3" 
spatial "7.3-11" "GPL-2 | GPL-3" 
splines "3.4.0" "Part of R 3.4.0" 
stats "3.4.0" "Part of R 3.4.0" 
stats4 "3.4.0" "Part of R 3.4.0" 
survival "2.41-3" "LGPL (>= 2)" 
tcltk "3.4.0" "Part of R 3.4.0" 
tools "3.4.0" "Part of R 3.4.0" 
utils "3.4.0" "Part of R 3.4.0" 

Version License 
base "3.4.0" "Part of R 3.4.0" 
boot "1.3-19" "Unlimited" 
class "7.3-14" "GPL-2 | GPL-3" 
cluster "2.0.6" "GPL (>= 2)"
codetools "0.2-15" "GPL" 
compiler "3.4.0" "Part of R 3.4.0" 
datasets "3.4.0" "Part of R 3.4.0" 
foreign "0.8-67" "GPL (>= 2)"
graphics "3.4.0" "Part of R 3.4.0" 
grDevices "3.4.0" "Part of R 3.4.0" 
grid "3.4.0" "Part of R 3.4.0" 
KernSmooth "2.23-15" "Unlimited" 
lattice "0.20-35" "GPL (>= 2)"
MASS "7.3-47" "GPL-2 | GPL-3" 
Matrix "1.2-9" "GPL (>= 2) | file LICENCE"
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Build of R using gcc/gfortran + Cray libsci

● Cray is providing a cray-R/3.3.3 rpm that is scheduled for release 
in May, built with gcc/6.1.0
● module load cray-R

● Example build recipe: (for those needing additional customization)
> module load gcc
> wget https://cran.r-project.org/src/base/R-3/R-3.4.0.tar.gz
> tar -xzf R-3.4.0.tar.gz
> cd R-3.4.0/
> ./configure --build=x86_64-suse-linux --prefix=%{install_dir} --with-blas="-

fopenmp -L/opt/cray/pe/libsci/16.11.1/GNU/5.1/x86_64/lib -lsci_gnu_51_mp" 
--with-lapack

> make
> make install 
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Build R using Intel C++ and Fortran Compilers + MKL

> module swap PrgEnv-cray PrgEnv-intel
> wget https://cran.r-project.org/src/base/R-3/R-3.4.0.tar.gz
> tar -xzf R-3.4.0.tar.gz

> setenv CC icc
> setenv CXX icpc
> setenv AR xiar
> setenv LD xild

> setenv CFLAGS “-03 –ipo –qopenmp –xHost”
> setenv CXXFLAGS “-03 –ipo –qopenmp –xHost”
> setenv MKL “-lmkl_gf_lp64 -lmkl_intel_thread -lmkl_core -liomp5 -lpthread”

> ./configure --prefix=/lus/scratch/kristyn/R/R-3.4.0/R-3.4.0 CC="icc -mkl" CXX="icpc -mkl" FC="ifort -mkl" F77="ifort -mkl" FPICFLAGS="-
fPIC" AR=xiar LD=xild --with-x=no --with-blas=-lmkl --with-lapack=-lmkl

> make
> make install
> cd /lus/scratch/kristyn/R/R-3.4.0/bin

https://software.intel.com/en-us/articles/build-r-301-with-intel-c-compiler-and-intel-mkl-on-linux
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Simple build using gcc/gfortran + MKL

> module load PrgEnv-intel
> module load gcc

> setenv CC gcc
> setenv F77 gfortran
> setenv AR xiar
> setenv LD xild
> setenv MKL “-lmkl_gf_lp64 -lmkl_intel_thread -lmkl_core -liomp5 -lpthread”

> ./configure --prefix=/lus/scratch/kristyn/R/R-3.4.0/R-3.4.0 --with-blas="$MKL" --with-lapack
> make
> make install
> cd /lus/scratch/kristyn/R/R-3.4.0/bin
> ./R

https://cran.r-project.org/doc/manuals/r-release/R-admin.html#MKL
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Build R + MKL build notes

Default is to build shared libraries:
Useful to print out shared library dependencies to verify MKL is being used

> ldd exec/R
linux-vdso.so.1 (0x00007ffc247ed000)
libmkl_gf_lp64.so => 
/opt/intel/compilers_and_libraries_2017.1.132/linux/mkl/lib/intel64_lin/libmkl_gf_lp64.so 
(0x00007f47f09da000)
libmkl_intel_thread.so => 
/opt/intel/compilers_and_libraries_2017.1.132/linux/mkl/lib/intel64_lin/libmkl_intel_thread.so
(0x00007f47eefcc000)
libmkl_core.so => /opt/intel/compilers_and_libraries_2017.1.132/linux/mkl/lib/intel64_lin/libmkl_core.so
(0x00007f47ed525000)
libiomp5.so => /opt/intel/compilers_and_libraries_2017.1.132/linux/compiler/lib/intel64/libiomp5.so 
(0x00007f47ed182000)

Can also specify to build static binary by using --enable-static when running ./configure
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Set up simple modulefile

● Create a modulefiles directory
● /lus/scratch/kristyn/modulefiles/R

● module use /lus/scratch/kristyn/modulefiles
● module load R/R-3.4.0

where the file R-3.4.0 contains

#%Module2.0
##
module load java
module load gcc

set R_VERSION R-3.4.0
set R_PATH /lus/scratch/kristyn/R/$R_VERSION/

prepend-path PATH $R_PATH/bin
prepend-path LD_LIBRARY_PATH $R_PATH/lib64/R/library
prepend-path MANPATH $R_PATH/share/man
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R/3.3.2 installed on Cori

module load R/3.3.2

kristyn@cori01:~> module display R/3.3.2
-------------------------------------------------------------------
/usr/common/software/modulefiles/R/3.3.2:

conflict R
module-whatis R is a free software environment for statistical computing and graphics. 

Built with Intel MKL support.
prepend-path PATH /global/common/cori/software/R/3.3.2/bin
prepend-path LD_LIBRARY_PATH /global/common/cori/software/R/3.3.2/lib64:

/global/common/cori/software/R/3.3.2/lib64/R/lib
-------------------------------------------------------------------
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Installing R Packages from CRAN

● Bring up R on login node and install needed packages 
● Need external access to download packages
● In general, most tested, and most reliable compiler for R packages are the 

GNU compilers (gcc, gfortran)
● Note, if using a site-installed version, any additional installed packages will be 

saved to a location in your home directory
● ~/R/x86_64-suse-linux-gnu-library/3.3

> R packages we will be using for the tutorial
> install.packages(“foreach”)
> install.packages(“doParallel”)
> install.packages(“rlecuyer”)
> install.packages(“randomForest”)
> install.packages(“SPARQL”)
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Managing R using Anaconda

● Anaconda R
● Quite useful for managing R packages and multiple R environments on XC
● List of R language packages available for install from conda is located at http://repo.continuum.io/pkgs/r/
● R Essentials bundle includes about 100 of the most popular packages for R

> conda create --name myR -c r r-essentials
> source activate myR

● Also can specify specific versions of R

> conda create --name myR_3.2.2 -c r r=3.2.2

● When using an older version of R I found it works better to create the conda environment first, activate 
this, then install the allowing packages, allowing conda to manage the package version dependencies

> source activate myR_3.2.2
> conda install -c r r-essentails r-xml
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Running R using CCM
> salloc -N 4 --partition=ccm_queue

> # Determine nid allocations
> echo “$SLURM_NODELIST” or env | grep SLURM

> SLURM_NODELIST=nid0000[4-7]

> # load R module
> module use /lus/scratch/R/modulefiles
> module load R/R-3.4.0

> # Log into head node and propagate environment
> module load ccm
> ccmlogin –V

> # Start up R on head node
> R

Note: CCM may not be available on all XC systems. This is a site-configuration. 
Cori no longer has CCM running, but is set up so one can use ssh between nodes within a job.

See   /global/cscratch1/sd/kristyn/CUG2017/R/README  for additional details.
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R using “parallel” package using CCM mode
Setting up a simple parallel socket cluster

“parallel” package
https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf

> library(parallel)
> machineVec <- c(rep("nid00004",4), rep("nid00005",4), rep("nid00006",4), rep("nid00007",4))

> machineVec
> [1] "nid00004" "nid00004" "nid00004" "nid00004" "nid00005" "nid00005"
> [7] "nid00005" "nid00005" "nid00006" "nid00006" "nid00006" "nid00006"
> [13] "nid00007" "nid00007" "nid00007" "nid00007"
> cl <- makeCluster(machineVec)
> cl
> socket cluster with 16 nodes on hosts 'nid00004', 'nid00005', 'nid00006', 'nid00007’

> help(makeCluster)

> stopCluster(cl)
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Simple Parallel Socket Cluster

● Basic functionality
● Runs 'Rscript' on the specified host(s) to set up a worker process 

which listens on a socket for expressions to evaluate, and returns the 
results (as serialized objects).

● Commonly used R packages which then build upon the 
“parallel” package
● “foreach” package

● Provides looping construct
● “doParallel” package

● Provides mechanism needed to execute foreach loops in parallel
● https://cran.r-project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf
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Example datasets 

> # Base install of R already includes several datasets
> # To look at the datasets available in loaded packages
> data()

> # load the iris dataset
> data(iris)
> head(iris)

> # Many R packages also contain additional datasets
> install.package(‘rattle’)
> data(wine, package='rattle')

> # Also can import data directly
> # Here read.table reads a file in table format and creates a dataframe from it
> url <- 'https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv'
> whitewine <- read.table(url,header=TRUE,sep=“;”)
> head(whitewine)
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Example Code: using foreach and doParallel
> library(parallel)
> library(foreach)
> library(doParallel)
> machineVec <- c(rep("nid00004",4), rep("nid00005",4), rep("nid00006",4), rep("nid00007",4))

> cl <- makeCluster(machineVec)
> # To use the "foreach", we need to register the cluster with
> registerDoParallel(cl)
> getDoParWorkers()

> # sequential execution
> system.time(foreach(i=1:100000) %do% sum(tanh(1:i)))
> # parallel execution
> system.time(foreach(i=1:10000) %dopar% sum(tanh(1:i)))

> mcoptions <- list(preschedule=FALSE, set.seed=FALSE, cores=4)
> system.time(foreach(i=1:100000,.options.multicore=mcoptions) %dopar% sum(tanh(1:i)))
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Example Code: randomForest

> # Parallel execution of randomForest
> x <- matrix(runif(500), 100)
> y <- gl(2, 50)
>
> library(randomForest)
>
> rf <- foreach(ntree=rep(25000, 6), .combine=combine, 

.multicombine=TRUE, .packages='randomForest') 
%dopar% { randomForest(x, y, ntree=ntree)}
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Programming with Big Data in R (pbdR)

CUG 2017 Copyright 2017 Cray Inc. 

● Set of highly scalable R packages for 
distributed computing in data science
● http://r-pbd.org/

● George Ostrouchov, Wei-Chen Chen, Drew 
Schmidt, Pragneshkumar Patel

● Winner of the Oak Ridge National 
Laboratory 2016 Significant Event Award 
for "Harnessing HPC Capability at OLCF 
with the R Language for Deep Data Science
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Installing pdbMPI package

● If not already installed, install rlecuyer package
● wget https://cran.r-project.org/src/contrib/rlecuyer_0.3-4.tar.gz
● R CMD INSTALL  --no-test-load rlecuyer_0.3-4.tar.gz

● Install pdbMPI package
● wget https://cran.r-project.org/src/contrib/pbdMPI_0.3-3.tar.gz
● R CMD INSTALL pbdMPI_0.3-3.tar.gz --configure-args="--with-

mpi=/opt/cray/pe/mpt/default/gni/mpich-gnu/51/ --disable-opa --
with-Rmpi-type=MPICH2" --no-test-load
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pdbMPI: run “Hello World”

Create file mpi_hello_world.r

# load the package
suppressMessages(library(pbdMPI, quietly = TRUE))

# initialize the MPI communicators
init()

# Hello world
message <- paste("Hello from rank", comm.rank(), "of", comm.size())
comm.print(message, all.rank=TRUE, quiet=TRUE)

# shut down the communicators and exit
finalize()

> srun -N 4 Rscript mpi_hello_world.r
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pbdMPi – beyond “Hello World”

● HPSC Cookbook – Wei-Chen Chen
● https://snoweye.github.io/hpsc/cookbook.html

● In addition there are several tutorials available with 
source code available for download

● Tutorials 1 and 2 both use the Iris dataset already 
available with base R install
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Parallel (SPMD) pi Example (from HPSC)

# File name: ex_pi_spmd.r
# Run: srun -N 2 Rscript --vanilla ex_pi_spmd.r

### Load pbdMPI and initial the communicator.
library(pbdMPI, quiet = TRUE)
init()
.comm.size <- comm.size()
.comm.rank <- comm.rank()

### Compute pi.
n <- 1000
totalcpu <- .comm.size
id <- .comm.rank + 1
mypi <- 4*sum(1/(1+((seq(id,n,totalcpu)-.5)/n)^2))/n # The example from Rmpi.
mypi <- reduce(mypi, op = "sum")

### Output from RANK 0 since mpi.reduce(...) will dump only to 0 by default.
comm.print(mypi)
finalize()
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Analytics on XC
Graph Analytics using CGE



Cray Graph Engine: Overview

● The Cray Graph Engine CGE
● An analytic in-memory graph database – capable of both basic graph 

pattern search (using SPARQL) and linear-algebraic search (graph 
theoretic using CGE-BGF)

● Built for “vertical scaling” based on parallel and distributed computing 
principles- competitors are all horizontally scaled

● Can handle 1000x the size of competing in-memory graph databases
● Can handle complex data (e.g. hot-spot vertices, long-diameter, etc.) 
● At least a 10x speed-up on query retrieval times and can be 100x 

faster on massive graph-theoretic workloads (50 GBs+ - 512 TBs)
● Brings interactivity to graph-based discovery over triple stores, disk-

based graph databases and graph-analytic toolkits.
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Cray Graph Engine: Updates and Features
● Multi-Architecture Support

● CGE is available on the Urika-GX and the XC platforms.
● Strong Scaling becomes a key differentiator 

● Bigger datasets => more nodes => better performance
● Integration with Spark (new)

● Interface to data sources
● Support for end-end analytic workflow realization

● Integration with Python/Jupyter Notebooks
● Connect to SPARQL endpoint using sparqlwrapper or sparql-client packages
● CGE Python API – utilizes the CGE Java API

● Start up server, run queries, updates, checkpoint, shut down
● Integration with R

● SPARQL package – connect to SPARQL endpoint, run queries, updates

● Don’t miss Rob Vesse’s talk on Thursday!
● Thursday, Technical Session 27B
● “Quantifying Performance of CGE: A Unifed Scalable Pattern Mining and Search System”
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Graph analysis workloads
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● Two main workloads
● Pattern matching
● Whole graph analysis

● Typical systems only 
good at one

● CGE excels at both
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What we plan to cover in the tutorial

● Background on CGE
● Pattern matching, whole-graph analysis
● Benchmarking results demonstrating CGE scaling on XC

● Hands-on exercises
● Build and start up a database (cge-launcher)
● Run queries

● Using the cge-cli command line
● Using the CGE Web UI

● Integration with R and Python
● Connecting to the CGE SPARQL endpoint

● Using R SPARQL package
● Using Python SPARQLwrapper package
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A Graph-pattern matching workload
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● Given a pattern of interest 
find all instances thereof…
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What SPARQL Can Do

● Subgraph isomorphism on specific, fixed patterns

“LUBM Query 9”
SELECT ?X, ?Y, ?Z
WHERE
{ ?X rdf:type ub:Student .
?Y rdf:type ub:Faculty .
?Z rdf:type ub:Course .
?X ub:advisor ?Y .
?Y ub:teacherOf ?Z .
?X ub:takesCourse ?Z}

● Plus lots of useful database features: filter, group, update…
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A Graph-theoretic Workload
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● What is the ranking of the targeted vertex?

● What's the shortest route from A to B?

108



Built-in Graph Functions (BGFs)

● RDF and SPARQL are graph-oriented, but SPARQL is limited 
in its ability to express graph processing

● We augmented SPARQL with a capability of calling library 
graph algorithms

● You can go from SPARQL to a graph algorithm and back to 
SPARQL for further refinement

● The whole is greater than the sum of its parts.
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Cray Graph Engine: Benchmarks

Copyright 2017 Cray Inc.  
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Cray Graph Engine: Benchmarks
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● Comparison to Spark+GraphX
Graph	Pattern	Search Graph-Theoretic	Algorithms
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Cray Graph Engine: Benchmarks
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● Architecture Portability
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CGE User Interface Model

● Database owner 
launches the 
database server

● Users interact via 
their preferred 
interface
● Command Line
● Web Browser
● SPARQL Tools & 

APIs
● CLI may be used 

for scripted 
workflows
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Building and launching

● cge-launch is used to build databases:

● cge-launch is a script that takes care of resource allocation for the user!

● After a successful build, the database directory will contain:

dataset.nt
rules.txt
dbQuads
string_table_chars
string_table_chars.index
graph.info
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/mnt/lustre/mydata –l logfile



The database port

Copyright 2017 Cray Inc.  

● A  TCP port used for communication with this server 
instance:

cge-launch –N 8 –I 16 –p 3750 …

● The default is 3750

● Changing this port allows multiple versions
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The database directory

Copyright 2017 Cray Inc.  

● The database directory, typically:

/mnt/lustre/user/datasets/lubm0

● Is the start of a directory tree containing all checkpoints, 
and potentially authorized_keys

● It can be moved, archived and returned (!)

● Multiple users can access it, with permissions

CUG 2017
116



The Command Line Interface (CLI)
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● The CLI is used for most interactions with the 
server, and has many options…

● cge-cli help (or cge-cli help checkpoint) 
will give verbose information on options

● Designed for scripted control, querying and 
updates with  database server

● Communications are secure SSH

cge-cli –db-port 3750 query myquery.rq
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Most common options

Copyright 2017 Cray Inc.  

query – submits SPARQL queries

update – submits SPARUL updates

sparql – submits both queries and updates

checkpoint – creates a database checkpoint

echo – check status of server
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Main Query Interface
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Hands on Exercises: Running CGE on Cori

● See README for instructions and exercises
● /global/cscratch1/sd/kristyn/CUG2017/CGE/README

● To use CGE Web UI, need to set up ssh tunneling
● Current cge-launch script for XC depends on xtprocadmin, 

● Only available on internal Cori MOM nodes cmom02 and cmom05, need to ssh to these nodes from login node
● Create tunnel from my laptop to internal cmom02 node on Cori 

● Use a random port number (8022) to connect to ssh port 22
● ssh –L localhost:8022:cmom02:22 cori.nersc.gov

● Then ssh directly into cmom02, choosing another random port number (15000) for CGE fe
● ssh –p 8022 –L localhost:15000:localhost:15000 localhost

● Set up database directory on Lustre
● Make sure Lustre striping is set

● lfs setstripe –c 16 –stripe-size 16m .
● Needed files: dataset.nt, graph.info, rules.txt

● Set up query_results directory on Lustre
● Make sure Lustre stripiing is set

● Be sure to set passwordless ssh
● ssh-keygen
● cat id_dsa.pub >> authorized_keys
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Back-Up Slides

(in case WiFi connectivity is poor)



SPARQL isn’t So Hot at…

● Breadth-first search
● Connected components
● Community detection
● …anything else that entails an indefinite-length search of the graph

● With one fairly unimportant exception: “property paths”
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Real-world Example:
Find Communities Among Botnets

Copyright 2017 Cray Inc. 

PREFIX cray:     <http://cray.com/>
PREFIX xsd:    <http://www.w3.org/2001/XMLSchema#>
CONSTRUCT {
?ip1 ?nInstances ?ip2

} WHERE {
SELECT ?ip1 ?ip2 (COUNT(?ip2) as ?nInstances)
WHERE {
?uid <http://cs.org/p/hasOrigAddr> ?ip1 .
?uid <http://cs.org/p/hasRespAddr> ?ip2 .
?uid <http://cs.org/p/hasOrigPort> ?port1URI .
?uid <http://cs.org/p/hasRespPort> ?port2URI .

BIND(xsd:integer(strafter(str(?port1URI),"http://cs.org/port#")) AS ?port1)
BIND(xsd:integer(strafter(str(?port2URI),"http://cs.org/port#")) AS ?port2)

FILTER(?port1 >= 2000 && ?port2 >= 2000 && !sameTerm(?ip1, ?ip2))
} GROUP BY ?ip1 ?ip2

}
NOW RUN COMMUNITY DETECTION ON THAT GRAPH!

pick out communication pairs

get their port IDs

pull the integers from their port IDs
( <http://cs.org/port#742> )

pick out the port IDs >= 2000, that botnets use

group all the distinct pairs…

…and count them

build a graph, using the counts as weights
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How We Extended SPARQL

● INVOKE is paired with SPARQL’s existing CONSTRUCT 
operator
CONSTRUCT  {
?ip1 ?nInstances ?ip2
WHERE {
…}
INVOKE  <http://cray.com/graphAlgorithm.community> (…)

● We extended SPARQL so that you can nest a 
CONSTRUCT/INVOKE pair.

● A new PRODUCING clause maps results back into SPARQL
PRODUCING ?vtx ?communID
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Botnets Revisited

Copyright 2017 Cray Inc.  

PREFIX cray:     <http://cray.com/>
PREFIX xsd:    <http://www.w3.org/2001/XMLSchema#>
CONSTRUCT {
?ip1 ?nInstances ?ip2

} WHERE {
SELECT ?ip1 ?ip2 (COUNT(?ip2) as ?nInstances)
WHERE {
?uid <http://cs.org/p/hasOrigAddr> ?ip1 .
?uid <http://cs.org/p/hasRespAddr> ?ip2 .
?uid <http://cs.org/p/hasOrigPort> ?port1URI .
?uid <http://cs.org/p/hasRespPort> ?port2URI .

BIND(xsd:integer(strafter(str(?port1URI),"http://cs.org/port#")) AS ?port1)
BIND(xsd:integer(strafter(str(?port2URI),"http://cs.org/port#")) AS ?port2)

FILTER(?port1 >= 2000 && ?port2 >= 2000 && !sameTerm(?ip1, ?ip2))
} GROUP BY ?ip1 ?ip2

}
INVOKE  <http://cray.com/graphAlgorithm.community> ()
PRODUCING ?vtx ?communID
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Applications for Available Algorithms

● Search / neighborhood identification and extraction
● Pattern-matching / subgraph isomorphism: (Core functionality)
● Cybersecurity application: Context and search, data exfiltration, beaconing, attack identification

● Community detection
● Modularity: 
● Relaxed clique
● Cybersecurity application: Botnet detection and server hierarchy mapping

● Path finding
● Shortest path, S-T connectivity
● Cybersecurity application: Identify likely paths for information flow between nodes

● Key node / edge identification
● Betweenness centrality
● Cybersecurity application: find the vulnerable points in network configurations

● Anomaly identification and clustering
● Cybersecurity application: Unknown-unknown identification
● Cybersecurity application: BadRank: finds likely worst actors by association with known bad actors, a la PageRank
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