

Flash-Native Caching for predictable job completion in data intensive environments

Cray User Group - CUG 2017

May 9th 2017

Seattle, WA Carlos A. A. Thomaz – Technical Product Manager

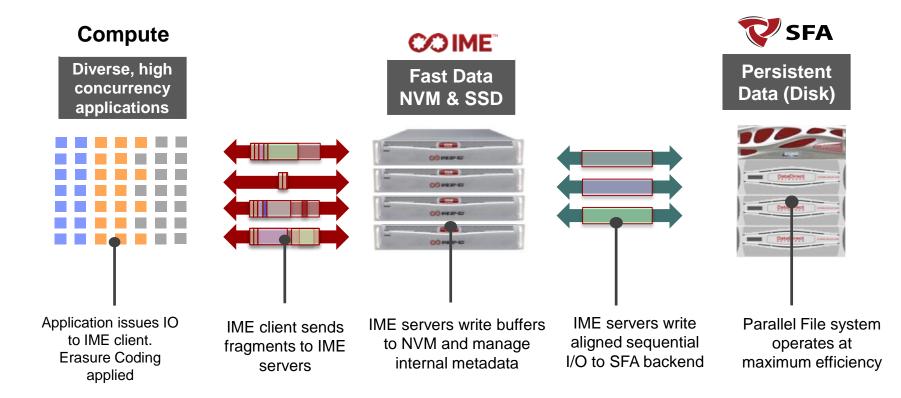
DDN | IME

DDN's approach on Burst Buffer and beyond

- Radical Shift in Performance/Watt,RU,Device
- Dramatic Random IO and Shared file IO performance
- Self-Optimising in Noisy Environments
- Intelligent Read-ahead
- Flash-Native implementation
- Extreme Rebuild Speeds
- Full Data Protection
- Improved efficiency of the Parallel Filesystem

DDN | IME The Infinite Memory Engine

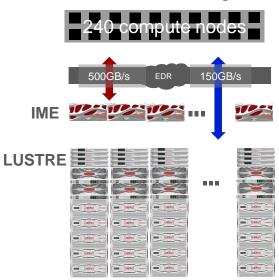
- A S/W Application Accelerator which leverages NVMe and SSD to remove system level performance bottlenecks
 - High bandwidth
 - Low latency (Read & Write, Large & Small, Aligned & Random)
 - Data integrity & protection
 - Massive scalability
 - No application changes required

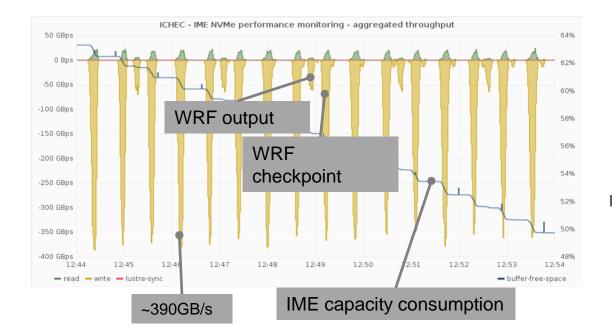


- 1. POSIX compatibility for Commercial Big Data Applications
- 2. Solid-state cache provides linespeed performance under almost any I/O profile
- 3. Re-aligns I/O greatly increasing file system performance
- 4. API for job scheduler & application integration

4

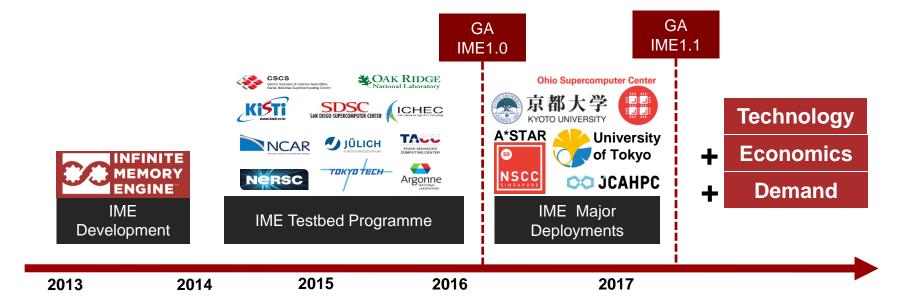
DDN | IME I/O dataflow in a nutshell





WRF | IME 48 jobs across 240 compute nodes

48 concurrent MPI job 5 node/job 20 MPI rank/node IME erasure coding 7+1


WRF at Scale | IME Summary Results

	IME		Parallel File system		
	#	Throughput per Metric (GB/s/ <x>)</x>	#	Throughput per Metric (GB/s/ <x>)</x>	IME Improvement
Application Throughput (GB/s)	380		100		x 3.8
Rack Units	36	10.5	224	0.45	x 23
# IO Nodes	18	21	42	2.4	x 8.7
# Drives	432	0.9	2800	0.04	x 22
Power Consumption (KW)	27	14	70	1.4	x 10

Thank You

Interesting to hear more? Find us outside at DDN table

CUG 2017

